organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E)-N1-(2,3,4,5,6-Penta­fluoro­benzyl­­idene)-N4-(3,4,5-trimeth­­oxy­benzyl­­idene)benzene-1,4-di­amine

aDepartment of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
*Correspondence e-mail: frank.blockhuys@ua.ac.be

(Received 15 November 2011; accepted 17 November 2011; online 23 November 2011)

The title compound, C23H17F5N2O3, forms a layered centrosymmetric crystal structure in which C—H⋯F inter­actions are responsible for the formation of planar ribbons along [110], meth­oxy–meth­oxy (C—H⋯O) inter­actions for the formation of layers parallel to [[\overline1]13], and OCH3π and C—F⋯π inter­actions for the stacking of these layers.

Related literature

For asymmetrically substituted AπD distyryl­benzene deriv­atives, see: Bartholomew et al. (2000[Bartholomew, G. P., Baza, G. C., Bu, X. H. & Lachicotte, R. J. (2000). Chem. Mater. 12, 1422-1430.]). For compounds with π-conjugated systems and fluorinated rings, see: Coates et al. (1998[Coates, G., Dunn, A., Henling, L., Ziller, J., Lobkovsky, E. & Grubbs, R. (1998). J. Am. Chem. Soc. 120, 3641-3649.]); Adamson et al. (1994[Adamson, A. J., Archambeau, Y., Banks, R. E., Beagley, B., Helliwell, M., Pritchard, R. G. & Tipping, A. E. (1994). Acta Cryst. C50, 967-971.]); Li et al. (1994[Li, A. W., Bin, X., Zhu, S. Z., Huang, Q. C. & Liu, J. S. (1994). J. Fluorine Chem. 68, 145-148.]); Ponzini et al. (2000[Ponzini, F., Zagha, R., Hardcastle, K. & Siegel, J. S. (2000). Angew. Chem. Int. Ed. 39, 2323-2325.]); Allaway et al. (2002[Allaway, C. L., Daly, M., Nieuwenhuizen, M. & Saunder, G. C. (2002). J. Fluorine Chem. 115, 91-99.]); Collings et al. (2004[Collings, J. C., Smith, P. S., Yufit, D. S., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2004). CrystEngComm, 6, 25-28.]); Papagni et al. (2010[Papagni, A., Del Buttero, P., Bertarelli, C., Miozzo, L., Moret, M., Pryce, M. T. & Rizzato, S. (2010). New J. Chem. 34, 2612-2621.]). For structures of related benzyl­idine aniline oligomers, see: Collas, De Borger et al. (2011[Collas, A., De Borger, R., Amanova, T. & Blockhuys, F. (2011). CrystEngComm, 13, 702-710.]); Collas, Zeller & Blockhuys (2011[Collas, A., Zeller, M. & Blockhuys, F. (2011). Acta Cryst. C67, o171-o174.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17F5N2O3

  • Mr = 464.39

  • Triclinic, [P \overline 1]

  • a = 7.131 (2) Å

  • b = 11.749 (3) Å

  • c = 12.654 (3) Å

  • α = 83.85 (2)°

  • β = 83.12 (2)°

  • γ = 89.50 (2)°

  • V = 1046.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 7650 measured reflections

  • 3831 independent reflections

  • 2077 reflections with I > 2σ(I)

  • Rint = 0.012

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.240

  • S = 1.06

  • 3831 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
List of relevant short contacts in the crystal packing of the title compound (Å, °)

Cg2 and Cg3 are the centroids of the C31–C36 and C51–C56 rings, respectively.

DXA DX XA DA DXA
C33—H33⋯F6i 0.93 2.66 3.452 (4) 144
C35—H35⋯F2ii 0.93 2.51 3.293 (4) 142
C52—H52⋯F5i 0.93 2.49 3.370 (4) 158
C531—H53B⋯O53iii 0.96 2.63 3.353 (5) 132
C551—H55B⋯O55iv 0.96 2.72 3.567 (4) 148
C551—H55CCg3v 0.96 2.78 3.604 (4) 145
C6—F6⋯Cg2vi 1.33 (1) 3.28 (1) 3.699 (4) 98 (1)
C6—F6⋯Cg3vii 1.33 (1) 3.34 (1) 3.507 (4) 86 (1)
C541—H54C⋯F3viii 0.96 2.52 3.430 (5) 158
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+2, -z+1; (iii) -x+3, -y, -z+2; (iv) -x+4, -y+1, -z+2; (v) -x+3, -y+1, -z+2; (vi) x-1, y, z; (vii) -x+2, -y+1, -z+1; (viii) x+1, y-1, z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: DREAR (Blessing, 1987[Blessing, R. (1987). Crystallogr. Rev. 1, 3-58.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Even though a perfluorinated aromatic ring is an excellent acceptor moiety for inclusion in asymmetrically substituted push-pull distyrylbenzene derivatives of the A-π-D type, only one such compound (CSD refcode REFKUI), with a tert-butyl group as a rather poor electron donor (D) (Bartholomew et al., 2000), is found in the CSD (Allen, 2002). Eight other A-π-D structures containing perfluorinated rings are known, but all of these have π-systems limited to two peripheral rings connected by a spacer: JALLAK, JALKUD and JALKOX have a –CC– spacer (Collings et al., 2004), SERQEL (Coates et al., 1998) and NUZVAG (Papagni et al., 2010) are stilbenes, and YOVWUB (Li et al., 1994), WERXEW (Adamson et al., 1994), HUTXUP and BANGOM (Allaway et al., 2002) are benzylidene anilines. Also, the structure of one octupolar star-shaped compound with a benzene ring as the central moiety and –CC– spacers (WEVYOL) has been determined (Ponzini et al., 2000). Here, we present the first solid-state structure of an asymmetrically substituted push-pull benzylidene aniline derivative with a more extended conjugated system.

The title compound, (I), can be easily obtained from the condensation of 3,4,5-trimethoxybenzaldehyde with E-N-pentafluorobenzylidene-1,4-phenylenediamine, (II), which can be prepared from pentafluorobenzaldehyde and 1,4-phenylenediamine, but only at lower temperatures, considering that the extreme activation of the carbonyl group in the latter benzaldehyde would otherwise lead to the symmetrical bis(benzylidene aniline). (I) crystallizes as quasi-planar molecules in the centrosymmetric space group P1: the dihedral angle between the l.s. planes of rings 1 and 3 (Fig. 1) is 2.58 (17)°, while the one between rings 3 and 5 is 7.81 (17)°. Molecules of (I) are found in the syn conformation in which both imine spacers point in the same direction.

The crystal packing features relatively flat ribbons of oligomers held together by three CH···F interactions (Fig. 2 and Table 1, entries 1–3). These ribbons are then fused by two mutual methoxy···methoxy (CH···O) interactions to form layers (Fig. 2 and Table 1, entries 4 and 5). Finally, the layers of quasi-planar molecules are stacked by dint of three interactions involving the π-systems of the electron-rich aromatic rings, i.e., the central and the methoxy-substituted rings [with centroids Cg(3) and Cg(5), respectively]. First, a mutual OCH3···π interaction initiated by the methoxy groups in the 5-position exists between the layers (Fig. 3 and Table 1, entry 6). Then, the weakly polarizable fluorine atom F6 simultaneously contacts both above mentioned centroids (Fig. 4 and Table 1, entries 7 and 8). Finally, the methoxy group in the 4-position (located out of the plane of the rest of the molecule) participates in a CH···F weak hydrogen bond (Table 1, entry 9; not given in the Figures). Thus, all methoxy groups and all fluorine atoms except F4 are used in the supramolecular arrangement.

The nitrogen atoms in the imine spacers and the activated azomethine hydrogen atoms H21 and H41 do not participate in any intermolecular contacts. This may be linked to the absence of the typical twist of the central phenylenediamine ring of about 40° out of the planes of the spacers and the peripheral rings [for recent examples, see: Collas, De Borger, Amanova & Blockhuys (2011) and Collas, Zeller & Blockhuys (2011)], as the availability of the nitrogen atom in (I) is reduced. On the other hand, the resulting planar conformation leads to an improved stacking of molecules, notwithstanding the modest packing efficiency of only 68.3%.

Related literature top

For asymmetrically substituted AπD distyrylbenzene derivatives, see: Bartholomew et al. (2000). For compounds with π-conjugated systems and fluorinated rings, see: Coates et al. (1998); Adamson et al. (1994); Li et al. (1994); Ponzini et al. (2000); Allaway et al. (2002); Collings et al. (2004); Papagni et al. (2010). For structures of related benzylidine aniline oligomers, see: Collas, De Borger et al. (2011); Collas, Zeller & Blockhuys (2011). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

All reagents and solvents were obtained from ACROS and used as received, except for pentafluorobenzaldehyde which was purchased from Fluorochem Ltd. All NMR spectra were recorded in CDCl3 on a Bruker Avance II spectrometer at frequencies of 400 MHz for 1H and 100 MHz for 13C with tetramethylsilane (TMS) as internal standard. Chemical shifts are given in p.p.m. and coupling constants J in Hz. Melting points were obtained with an open capillary electrothermal melting point apparatus and are uncorrected.

E-N-Pentafluorobenzylidene-1,4-phenylenediamine (II). To a cooled solution (233 K) of 1,4-phenylenediamine (2.2 g, 0.02 mol) in CH2Cl2 (100 ml) was added dropwise a solution of pentafluorobenzaldehyde (4.0 g, 0.02 mol). After addition, the mixture was allowed to warm up to room temperature. The yellow precipitate was collected via filtration and washed with diethyl ether. The yield was 4.3 g (0.015 mol, 73%). M.p. 460 K. δ1H 3.80 (s, 2H, NH2), 6.69 (d, 3J = 8.6, 2H, H33 and H35), 7.18 (d, 3J = 8.6, 2H, H32 and H36), 8.57 (s, 1H, H21). δ13C 112.06 (m, C1), 115.41 (C33 and C35), 122.79 (C32 and C36), 137.82 (m, 1JCF = 253, C3 and C5), 141.93 (m, 1JCF = 258, C4), 142.03 (C31), 146.00 (m, 1JCF = 261, C2 and C6), 146.72 (C34), 150.37 (C21).

(E,E)-N-(3,4,5-Trimethoxybenzylidene)-N'- (pentafluorobenzylidene)-1,4-phenylenediamine (I). To a solution of (II) (285 mg, 1 mmol) in methanol was added 3,4,5-trimethoxybenzaldehyde (200 mg, 1 mmol). The solution was left to stir overnight and the resulting yellow powder was collected via filtration and washed with cold methanol. The yield was 299 mg (0.64 mmol, 64%). M.p. 482 K. δ1H 3.92 (s, 3H, 4-OCH3), 3.95 (s, 6H, 3-OCH3 and 5-OCH3), 7.17 (s, 2H, H52 and H56), 7.27 (s, 2H, H33 and H35), 7.30 (s, 2H, H32 and H36), 8.40 (s, 1H, H41), 8.60 (s, 1H, H21). δ13C 56.30 (4-OCH3), 60.99 (3-OCH3 and 5-OCH3), 105.89 (C52 and C56), 111.31 (C1), 121.84 (C33 and C35), 122.02 (C32 and C36), 131.81 (C51), 141.13 (C54), 149.86 (C34), 150.35 (C31), 153.59 (C53 and C55), 159.17 (C41). Due to the low solubility of (I) and the signal broadening associated with the (long-range) coupling with the 19F nuclei, signals for C2, C3, C4, C5, C6 and C21 can not be distinguished from the noise in the 13C spectrum. Suitable crystals were grown by the slow evaporation of an acetone solution.

Structure description top

Even though a perfluorinated aromatic ring is an excellent acceptor moiety for inclusion in asymmetrically substituted push-pull distyrylbenzene derivatives of the A-π-D type, only one such compound (CSD refcode REFKUI), with a tert-butyl group as a rather poor electron donor (D) (Bartholomew et al., 2000), is found in the CSD (Allen, 2002). Eight other A-π-D structures containing perfluorinated rings are known, but all of these have π-systems limited to two peripheral rings connected by a spacer: JALLAK, JALKUD and JALKOX have a –CC– spacer (Collings et al., 2004), SERQEL (Coates et al., 1998) and NUZVAG (Papagni et al., 2010) are stilbenes, and YOVWUB (Li et al., 1994), WERXEW (Adamson et al., 1994), HUTXUP and BANGOM (Allaway et al., 2002) are benzylidene anilines. Also, the structure of one octupolar star-shaped compound with a benzene ring as the central moiety and –CC– spacers (WEVYOL) has been determined (Ponzini et al., 2000). Here, we present the first solid-state structure of an asymmetrically substituted push-pull benzylidene aniline derivative with a more extended conjugated system.

The title compound, (I), can be easily obtained from the condensation of 3,4,5-trimethoxybenzaldehyde with E-N-pentafluorobenzylidene-1,4-phenylenediamine, (II), which can be prepared from pentafluorobenzaldehyde and 1,4-phenylenediamine, but only at lower temperatures, considering that the extreme activation of the carbonyl group in the latter benzaldehyde would otherwise lead to the symmetrical bis(benzylidene aniline). (I) crystallizes as quasi-planar molecules in the centrosymmetric space group P1: the dihedral angle between the l.s. planes of rings 1 and 3 (Fig. 1) is 2.58 (17)°, while the one between rings 3 and 5 is 7.81 (17)°. Molecules of (I) are found in the syn conformation in which both imine spacers point in the same direction.

The crystal packing features relatively flat ribbons of oligomers held together by three CH···F interactions (Fig. 2 and Table 1, entries 1–3). These ribbons are then fused by two mutual methoxy···methoxy (CH···O) interactions to form layers (Fig. 2 and Table 1, entries 4 and 5). Finally, the layers of quasi-planar molecules are stacked by dint of three interactions involving the π-systems of the electron-rich aromatic rings, i.e., the central and the methoxy-substituted rings [with centroids Cg(3) and Cg(5), respectively]. First, a mutual OCH3···π interaction initiated by the methoxy groups in the 5-position exists between the layers (Fig. 3 and Table 1, entry 6). Then, the weakly polarizable fluorine atom F6 simultaneously contacts both above mentioned centroids (Fig. 4 and Table 1, entries 7 and 8). Finally, the methoxy group in the 4-position (located out of the plane of the rest of the molecule) participates in a CH···F weak hydrogen bond (Table 1, entry 9; not given in the Figures). Thus, all methoxy groups and all fluorine atoms except F4 are used in the supramolecular arrangement.

The nitrogen atoms in the imine spacers and the activated azomethine hydrogen atoms H21 and H41 do not participate in any intermolecular contacts. This may be linked to the absence of the typical twist of the central phenylenediamine ring of about 40° out of the planes of the spacers and the peripheral rings [for recent examples, see: Collas, De Borger, Amanova & Blockhuys (2011) and Collas, Zeller & Blockhuys (2011)], as the availability of the nitrogen atom in (I) is reduced. On the other hand, the resulting planar conformation leads to an improved stacking of molecules, notwithstanding the modest packing efficiency of only 68.3%.

For asymmetrically substituted AπD distyrylbenzene derivatives, see: Bartholomew et al. (2000). For compounds with π-conjugated systems and fluorinated rings, see: Coates et al. (1998); Adamson et al. (1994); Li et al. (1994); Ponzini et al. (2000); Allaway et al. (2002); Collings et al. (2004); Papagni et al. (2010). For structures of related benzylidine aniline oligomers, see: Collas, De Borger et al. (2011); Collas, Zeller & Blockhuys (2011). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: DREAR (Blessing, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; hydrogen atoms are represented by spheres with an arbitrary radius.
[Figure 2] Fig. 2. : The CH···F interactions responsible for the formation of the planar ribbons and the CH···O interactions responsible for the formation of layers. See Table 1 for details.
[Figure 3] Fig. 3. : The CH···π interactions responsible for the stacking of the layers. See Table 1 for details.
[Figure 4] Fig. 4. : The CF···π interactions responsible for the stacking of the layers. See Table 1 for details.
(E,E)-N1-(2,3,4,5,6-Pentafluorobenzylidene)- N4-(3,4,5-trimethoxybenzylidene)benzene-1,4-diamine top
Crystal data top
C23H17F5N2O3Z = 2
Mr = 464.39F(000) = 476
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.131 (2) ÅCell parameters from 25 reflections
b = 11.749 (3) Åθ = 5.8–20.8°
c = 12.654 (3) ŵ = 0.13 mm1
α = 83.85 (2)°T = 298 K
β = 83.12 (2)°Prism, orange
γ = 89.50 (2)°0.3 × 0.2 × 0.2 mm
V = 1046.5 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
Radiation source: fine-focus sealed tubeθmax = 25.3°, θmin = 1.6°
Graphite monochromatorh = 88
θ/2ω scansk = 1414
7650 measured reflectionsl = 1515
3831 independent reflections3 standard reflections every 60 min
2077 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1397P)2 + 0.0922P]
where P = (Fo2 + 2Fc2)/3
3831 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C23H17F5N2O3γ = 89.50 (2)°
Mr = 464.39V = 1046.5 (5) Å3
Triclinic, P1Z = 2
a = 7.131 (2) ÅMo Kα radiation
b = 11.749 (3) ŵ = 0.13 mm1
c = 12.654 (3) ÅT = 298 K
α = 83.85 (2)°0.3 × 0.2 × 0.2 mm
β = 83.12 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
7650 measured reflections3 standard reflections every 60 min
3831 independent reflections intensity decay: none
2077 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.240H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
3831 reflectionsΔρmin = 0.32 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. Reflection -1 1 3 was omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4594 (4)0.8471 (3)0.3807 (2)0.0644 (8)
C20.4713 (5)0.9623 (3)0.3488 (3)0.0699 (9)
C30.3407 (6)1.0190 (3)0.2900 (3)0.0826 (10)
C40.1929 (5)0.9579 (4)0.2629 (3)0.0885 (12)
C50.1764 (5)0.8446 (4)0.2928 (3)0.0822 (10)
C60.3086 (5)0.7896 (3)0.3501 (3)0.0706 (9)
C310.8512 (5)0.7527 (3)0.5358 (3)0.0736 (9)
C320.8325 (6)0.6361 (3)0.5613 (4)0.1033 (15)
H320.73000.59860.54150.124*
C330.9613 (6)0.5748 (3)0.6149 (3)0.0974 (14)
H330.94630.49600.63040.117*
C341.1146 (4)0.6285 (3)0.6469 (2)0.0632 (8)
C351.1320 (4)0.7443 (3)0.6226 (2)0.0675 (8)
H351.23360.78180.64350.081*
C361.0026 (4)0.8074 (3)0.5677 (3)0.0692 (9)
H361.01730.88620.55230.083*
F20.6128 (3)1.02449 (18)0.3725 (2)0.1006 (8)
F30.3585 (4)1.1305 (2)0.2600 (2)0.1206 (9)
F40.0656 (4)1.0128 (3)0.2066 (2)0.1289 (10)
F50.0318 (3)0.7845 (3)0.26703 (19)0.1193 (9)
F60.2870 (3)0.67739 (19)0.37783 (18)0.0951 (7)
C110.5942 (5)0.7820 (3)0.4420 (3)0.0742 (9)
H110.57800.70300.45400.089*
C411.2322 (5)0.4731 (3)0.7473 (3)0.0667 (8)
H411.12100.43510.74080.080*
C511.3720 (4)0.4127 (3)0.8089 (2)0.0631 (8)
C521.3406 (5)0.2992 (3)0.8467 (3)0.0691 (9)
H521.23240.26250.83300.083*
C531.4695 (5)0.2393 (3)0.9049 (3)0.0684 (8)
C541.6325 (4)0.2948 (3)0.9237 (3)0.0691 (9)
C551.6611 (4)0.4107 (3)0.8878 (3)0.0660 (8)
C561.5323 (4)0.4700 (3)0.8289 (2)0.0666 (8)
H561.55250.54660.80330.080*
C5311.2776 (6)0.0728 (3)0.9403 (4)0.1006 (13)
H53A1.17580.11700.97170.151*
H53B1.27710.00210.97900.151*
H53C1.26180.06620.86700.151*
C5411.7388 (6)0.2398 (4)1.0885 (3)0.0918 (11)
H54A1.73600.31821.10340.138*
H54B1.84070.20101.12030.138*
H54C1.62140.20331.11790.138*
C5511.8259 (5)0.5788 (4)0.9087 (3)0.0869 (11)
H55A1.84770.61040.83510.130*
H55B1.92640.60150.94610.130*
H55C1.70790.60660.94090.130*
N110.7261 (4)0.8232 (3)0.4786 (2)0.0855 (9)
N411.2556 (4)0.5735 (2)0.7032 (2)0.0688 (7)
O531.4518 (4)0.1280 (2)0.9453 (2)0.0898 (8)
O541.7660 (3)0.2351 (2)0.97682 (19)0.0817 (7)
O551.8193 (3)0.4583 (2)0.9145 (2)0.0844 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0601 (18)0.075 (2)0.0590 (17)0.0068 (16)0.0117 (14)0.0037 (15)
C20.0618 (19)0.074 (2)0.072 (2)0.0107 (16)0.0097 (16)0.0037 (16)
C30.082 (2)0.088 (3)0.072 (2)0.004 (2)0.0062 (19)0.0133 (19)
C40.070 (2)0.132 (4)0.062 (2)0.012 (2)0.0185 (17)0.002 (2)
C50.067 (2)0.118 (3)0.066 (2)0.005 (2)0.0178 (17)0.016 (2)
C60.067 (2)0.081 (2)0.0649 (19)0.0119 (17)0.0087 (16)0.0101 (16)
C310.078 (2)0.071 (2)0.074 (2)0.0098 (17)0.0294 (17)0.0077 (16)
C320.108 (3)0.072 (2)0.139 (3)0.032 (2)0.076 (3)0.018 (2)
C330.115 (3)0.064 (2)0.121 (3)0.022 (2)0.069 (3)0.018 (2)
C340.0668 (19)0.0662 (19)0.0578 (17)0.0078 (15)0.0177 (14)0.0004 (14)
C350.0650 (19)0.071 (2)0.0672 (18)0.0177 (16)0.0186 (15)0.0032 (15)
C360.072 (2)0.0628 (18)0.072 (2)0.0137 (16)0.0174 (16)0.0068 (15)
F20.0859 (14)0.0770 (13)0.1376 (19)0.0243 (11)0.0311 (13)0.0158 (12)
F30.121 (2)0.0973 (17)0.131 (2)0.0054 (14)0.0103 (16)0.0430 (15)
F40.1015 (18)0.188 (3)0.0967 (16)0.0282 (17)0.0426 (14)0.0170 (16)
F50.0858 (15)0.172 (3)0.1109 (17)0.0216 (16)0.0427 (13)0.0292 (16)
F60.0956 (15)0.0853 (15)0.1084 (16)0.0248 (12)0.0244 (12)0.0126 (12)
C110.075 (2)0.067 (2)0.082 (2)0.0064 (17)0.0232 (18)0.0049 (16)
C410.0615 (19)0.067 (2)0.073 (2)0.0038 (16)0.0170 (15)0.0019 (16)
C510.0565 (18)0.070 (2)0.0637 (18)0.0001 (15)0.0139 (14)0.0060 (15)
C520.068 (2)0.070 (2)0.074 (2)0.0008 (16)0.0261 (16)0.0082 (16)
C530.073 (2)0.0602 (19)0.076 (2)0.0048 (16)0.0223 (17)0.0072 (16)
C540.0604 (19)0.079 (2)0.0696 (19)0.0111 (17)0.0157 (15)0.0082 (16)
C550.0497 (17)0.080 (2)0.0693 (19)0.0018 (15)0.0116 (14)0.0077 (16)
C560.0579 (19)0.071 (2)0.070 (2)0.0019 (15)0.0103 (15)0.0008 (15)
C5310.105 (3)0.074 (2)0.124 (3)0.016 (2)0.041 (3)0.013 (2)
C5410.092 (3)0.104 (3)0.082 (3)0.005 (2)0.034 (2)0.004 (2)
C5510.068 (2)0.101 (3)0.093 (3)0.019 (2)0.0210 (19)0.008 (2)
N110.086 (2)0.0748 (18)0.100 (2)0.0144 (16)0.0445 (18)0.0129 (15)
N410.0686 (16)0.0697 (17)0.0693 (16)0.0082 (13)0.0220 (13)0.0030 (13)
O530.0953 (18)0.0672 (15)0.112 (2)0.0011 (13)0.0462 (15)0.0038 (13)
O540.0683 (15)0.0948 (17)0.0846 (16)0.0174 (12)0.0264 (12)0.0040 (13)
O550.0548 (13)0.0951 (18)0.1049 (18)0.0099 (12)0.0239 (12)0.0016 (14)
Geometric parameters (Å, º) top
C1—C21.371 (4)C41—N411.253 (4)
C1—C61.390 (4)C41—C511.470 (4)
C1—C111.466 (4)C41—H410.9300
C2—F21.332 (4)C51—C521.378 (4)
C2—C31.383 (5)C51—C561.394 (4)
C3—F31.327 (4)C52—C531.386 (4)
C3—C41.377 (6)C52—H520.9300
C4—F41.339 (4)C53—O531.353 (4)
C4—C51.347 (6)C53—C541.395 (5)
C5—F51.346 (4)C54—O541.375 (4)
C5—C61.372 (5)C54—C551.397 (5)
C6—F61.333 (4)C55—O551.358 (4)
C31—C321.376 (5)C55—C561.388 (4)
C31—C361.384 (4)C56—H560.9300
C31—N111.421 (4)C531—O531.418 (4)
C32—C331.363 (5)C531—H53A0.9600
C32—H320.9300C531—H53B0.9600
C33—C341.389 (5)C531—H53C0.9600
C33—H330.9300C541—O541.410 (4)
C34—C351.366 (4)C541—H54A0.9600
C34—N411.414 (4)C541—H54B0.9600
C35—C361.383 (4)C541—H54C0.9600
C35—H350.9300C551—O551.411 (5)
C36—H360.9300C551—H55A0.9600
C11—N111.223 (4)C551—H55B0.9600
C11—H110.9300C551—H55C0.9600
C2—C1—C6116.2 (3)C52—C51—C56121.0 (3)
C2—C1—C11124.9 (3)C52—C51—C41118.8 (3)
C6—C1—C11118.9 (3)C56—C51—C41120.2 (3)
F2—C2—C1120.7 (3)C51—C52—C53120.4 (3)
F2—C2—C3117.0 (3)C51—C52—H52119.8
C1—C2—C3122.3 (3)C53—C52—H52119.8
F3—C3—C4120.7 (3)O53—C53—C52124.9 (3)
F3—C3—C2120.3 (4)O53—C53—C54115.8 (3)
C4—C3—C2119.0 (4)C52—C53—C54119.3 (3)
F4—C4—C5120.5 (4)O54—C54—C53120.0 (3)
F4—C4—C3119.1 (4)O54—C54—C55120.0 (3)
C5—C4—C3120.4 (3)C53—C54—C55120.1 (3)
F5—C5—C4120.7 (3)O55—C55—C56124.0 (3)
F5—C5—C6119.5 (4)O55—C55—C54115.6 (3)
C4—C5—C6119.7 (3)C56—C55—C54120.4 (3)
F6—C6—C5117.7 (3)C55—C56—C51118.8 (3)
F6—C6—C1119.9 (3)C55—C56—H56120.6
C5—C6—C1122.4 (3)C51—C56—H56120.6
C32—C31—C36118.5 (3)O53—C531—H53A109.5
C32—C31—N11125.2 (3)O53—C531—H53B109.5
C36—C31—N11116.3 (3)H53A—C531—H53B109.5
C33—C32—C31121.3 (3)O53—C531—H53C109.5
C33—C32—H32119.4H53A—C531—H53C109.5
C31—C32—H32119.4H53B—C531—H53C109.5
C32—C33—C34120.8 (3)O54—C541—H54A109.5
C32—C33—H33119.6O54—C541—H54B109.5
C34—C33—H33119.6H54A—C541—H54B109.5
C35—C34—C33117.9 (3)O54—C541—H54C109.5
C35—C34—N41116.6 (3)H54A—C541—H54C109.5
C33—C34—N41125.5 (3)H54B—C541—H54C109.5
C34—C35—C36121.8 (3)O55—C551—H55A109.5
C34—C35—H35119.1O55—C551—H55B109.5
C36—C35—H35119.1H55A—C551—H55B109.5
C35—C36—C31119.7 (3)O55—C551—H55C109.5
C35—C36—H36120.1H55A—C551—H55C109.5
C31—C36—H36120.1H55B—C551—H55C109.5
N11—C11—C1125.2 (3)C11—N11—C31121.1 (3)
N11—C11—H11117.4C41—N41—C34120.8 (3)
C1—C11—H11117.4C53—O53—C531117.5 (3)
N41—C41—C51123.2 (3)C54—O54—C541113.5 (3)
N41—C41—H41118.4C55—O55—C551117.1 (3)
C51—C41—H41118.4
C6—C1—C2—F2178.8 (3)N11—C31—C36—C35179.2 (3)
C11—C1—C2—F20.1 (5)C2—C1—C11—N115.4 (6)
C6—C1—C2—C30.4 (5)C6—C1—C11—N11175.7 (3)
C11—C1—C2—C3179.3 (3)N41—C41—C51—C52174.5 (3)
F2—C2—C3—F30.3 (5)N41—C41—C51—C565.9 (5)
C1—C2—C3—F3179.5 (3)C56—C51—C52—C530.5 (5)
F2—C2—C3—C4179.5 (3)C41—C51—C52—C53179.9 (3)
C1—C2—C3—C40.3 (6)C51—C52—C53—O53180.0 (3)
F3—C3—C4—F40.6 (6)C51—C52—C53—C540.8 (5)
C2—C3—C4—F4179.6 (3)O53—C53—C54—O542.4 (5)
F3—C3—C4—C5179.5 (3)C52—C53—C54—O54176.9 (3)
C2—C3—C4—C50.3 (6)O53—C53—C54—C55178.2 (3)
F4—C4—C5—F50.2 (6)C52—C53—C54—C552.6 (5)
C3—C4—C5—F5179.7 (3)O54—C54—C55—O553.7 (4)
F4—C4—C5—C6179.7 (3)C53—C54—C55—O55176.9 (3)
C3—C4—C5—C60.4 (6)O54—C54—C55—C56176.4 (3)
F5—C5—C6—F60.0 (5)C53—C54—C55—C563.0 (5)
C4—C5—C6—F6179.8 (3)O55—C55—C56—C51178.2 (3)
F5—C5—C6—C1178.9 (3)C54—C55—C56—C511.7 (5)
C4—C5—C6—C11.2 (5)C52—C51—C56—C550.1 (5)
C2—C1—C6—F6179.9 (3)C41—C51—C56—C55179.7 (3)
C11—C1—C6—F60.9 (5)C1—C11—N11—C31179.0 (3)
C2—C1—C6—C51.1 (5)C32—C31—N11—C114.2 (6)
C11—C1—C6—C5179.9 (3)C36—C31—N11—C11176.0 (3)
C36—C31—C32—C331.3 (7)C51—C41—N41—C34178.6 (3)
N11—C31—C32—C33178.9 (4)C35—C34—N41—C41165.6 (3)
C31—C32—C33—C340.9 (8)C33—C34—N41—C4114.3 (6)
C32—C33—C34—C350.2 (6)C52—C53—O53—C5319.0 (5)
C32—C33—C34—N41179.7 (4)C54—C53—O53—C531171.9 (3)
C33—C34—C35—C360.1 (5)C53—C54—O54—C54191.7 (4)
N41—C34—C35—C36180.0 (3)C55—C54—O54—C54188.9 (4)
C34—C35—C36—C310.3 (5)C56—C55—O55—C55118.3 (5)
C32—C31—C36—C350.9 (6)C54—C55—O55—C551161.6 (3)

Experimental details

Crystal data
Chemical formulaC23H17F5N2O3
Mr464.39
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.131 (2), 11.749 (3), 12.654 (3)
α, β, γ (°)83.85 (2), 83.12 (2), 89.50 (2)
V3)1046.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7650, 3831, 2077
Rint0.012
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.240, 1.06
No. of reflections3831
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.32

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), DREAR (Blessing, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

List of relevant short contacts in the crystal packing of the title compound (Å, °). top
EntryDXAX···AD–X···A
1C33H33F6i2.66144
2C35H35F2ii2.51142
3C52H52F5i2.49158
4C531H53bO53iii2.63132
5C551H55bO55iv2.72148
6C551H55cCg(5)v2.78145
7C6F6Cg(3)vi3.276 (3)97.71 (19)
8C6F6Cg(5)vii3.335 (3)86.15 (19)
9C541H54cF3viii2.52188
Symmetry codes: (i) 1 – x, 1 – y, 1– z; (ii) 2 – x, 2 – y, 1 – z; (iii) 3 – x, – y, 2 – z; (iv) 4 – x, 1 – y, 2 – z; (v) –3 – x, 1 – y, 2 – z; (vi) –1 + x, y, z; (vii) 2 – x, 1 – y, 1 – z; (viii) 1 + x, –1 + y, 1 + z.
 

Acknowledgements

AC wishes to thank the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) for a predoctoral grant. Financial support by the University of Antwerp under grant No. GOA-2404 is gratefully acknowledged.

References

First citationAdamson, A. J., Archambeau, Y., Banks, R. E., Beagley, B., Helliwell, M., Pritchard, R. G. & Tipping, A. E. (1994). Acta Cryst. C50, 967–971.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllaway, C. L., Daly, M., Nieuwenhuizen, M. & Saunder, G. C. (2002). J. Fluorine Chem. 115, 91–99.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBartholomew, G. P., Baza, G. C., Bu, X. H. & Lachicotte, R. J. (2000). Chem. Mater. 12, 1422–1430.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. (1987). Crystallogr. Rev. 1, 3–58.  CrossRef Google Scholar
First citationCoates, G., Dunn, A., Henling, L., Ziller, J., Lobkovsky, E. & Grubbs, R. (1998). J. Am. Chem. Soc. 120, 3641–3649.  Web of Science CSD CrossRef CAS Google Scholar
First citationCollas, A., De Borger, R., Amanova, T. & Blockhuys, F. (2011). CrystEngComm, 13, 702–710.  Web of Science CSD CrossRef CAS Google Scholar
First citationCollas, A., Zeller, M. & Blockhuys, F. (2011). Acta Cryst. C67, o171–o174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCollings, J. C., Smith, P. S., Yufit, D. S., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2004). CrystEngComm, 6, 25–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLi, A. W., Bin, X., Zhu, S. Z., Huang, Q. C. & Liu, J. S. (1994). J. Fluorine Chem. 68, 145–148.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPapagni, A., Del Buttero, P., Bertarelli, C., Miozzo, L., Moret, M., Pryce, M. T. & Rizzato, S. (2010). New J. Chem. 34, 2612–2621.  Web of Science CSD CrossRef CAS Google Scholar
First citationPonzini, F., Zagha, R., Hardcastle, K. & Siegel, J. S. (2000). Angew. Chem. Int. Ed. 39, 2323–2325.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds