organic compounds
(E,E)-N1-(2,3,4,5,6-Pentafluorobenzylidene)-N4-(3,4,5-trimethoxybenzylidene)benzene-1,4-diamine
aDepartment of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
*Correspondence e-mail: frank.blockhuys@ua.ac.be
The title compound, C23H17F5N2O3, forms a layered centrosymmetric in which C—H⋯F interactions are responsible for the formation of planar ribbons along [110], methoxy–methoxy (C—H⋯O) interactions for the formation of layers parallel to [13], and OCH3⋯π and C—F⋯π interactions for the stacking of these layers.
Related literature
For asymmetrically substituted A–π–D distyrylbenzene derivatives, see: Bartholomew et al. (2000). For compounds with π-conjugated systems and fluorinated rings, see: Coates et al. (1998); Adamson et al. (1994); Li et al. (1994); Ponzini et al. (2000); Allaway et al. (2002); Collings et al. (2004); Papagni et al. (2010). For structures of related benzylidine aniline oligomers, see: Collas, De Borger et al. (2011); Collas, Zeller & Blockhuys (2011). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: DREAR (Blessing, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S160053681104904X/zl2429sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681104904X/zl2429Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S160053681104904X/zl2429Isup3.cml
All reagents and solvents were obtained from ACROS and used as received, except for pentafluorobenzaldehyde which was purchased from Fluorochem Ltd. All NMR spectra were recorded in CDCl3 on a Bruker Avance II spectrometer at frequencies of 400 MHz for 1H and 100 MHz for 13C with tetramethylsilane (TMS) as internal standard. Chemical shifts are given in p.p.m. and coupling constants J in Hz. Melting points were obtained with an open capillary electrothermal melting point apparatus and are uncorrected.
E-N-Pentafluorobenzylidene-1,4-phenylenediamine (II). To a cooled solution (233 K) of 1,4-phenylenediamine (2.2 g, 0.02 mol) in CH2Cl2 (100 ml) was added dropwise a solution of pentafluorobenzaldehyde (4.0 g, 0.02 mol). After addition, the mixture was allowed to warm up to room temperature. The yellow precipitate was collected via filtration and washed with diethyl ether. The yield was 4.3 g (0.015 mol, 73%). M.p. 460 K. δ1H 3.80 (s, 2H, NH2), 6.69 (d, 3J = 8.6, 2H, H33 and H35), 7.18 (d, 3J = 8.6, 2H, H32 and H36), 8.57 (s, 1H, H21). δ13C 112.06 (m, C1), 115.41 (C33 and C35), 122.79 (C32 and C36), 137.82 (m, 1JCF = 253, C3 and C5), 141.93 (m, 1JCF = 258, C4), 142.03 (C31), 146.00 (m, 1JCF = 261, C2 and C6), 146.72 (C34), 150.37 (C21).
(E,E)-N-(3,4,5-Trimethoxybenzylidene)-N'- (pentafluorobenzylidene)-1,4-phenylenediamine (I). To a solution of (II) (285 mg, 1 mmol) in methanol was added 3,4,5-trimethoxybenzaldehyde (200 mg, 1 mmol). The solution was left to stir overnight and the resulting yellow powder was collected via filtration and washed with cold methanol. The yield was 299 mg (0.64 mmol, 64%). M.p. 482 K. δ1H 3.92 (s, 3H, 4-OCH3), 3.95 (s, 6H, 3-OCH3 and 5-OCH3), 7.17 (s, 2H, H52 and H56), 7.27 (s, 2H, H33 and H35), 7.30 (s, 2H, H32 and H36), 8.40 (s, 1H, H41), 8.60 (s, 1H, H21). δ13C 56.30 (4-OCH3), 60.99 (3-OCH3 and 5-OCH3), 105.89 (C52 and C56), 111.31 (C1), 121.84 (C33 and C35), 122.02 (C32 and C36), 131.81 (C51), 141.13 (C54), 149.86 (C34), 150.35 (C31), 153.59 (C53 and C55), 159.17 (C41). Due to the low solubility of (I) and the signal broadening associated with the (long-range) coupling with the 19F nuclei, signals for C2, C3, C4, C5, C6 and C21 can not be distinguished from the noise in the 13C spectrum. Suitable crystals were grown by the slow evaporation of an acetone solution.
Even though a perfluorinated aromatic ring is an excellent acceptor moiety for inclusion in asymmetrically substituted push-pull distyrylbenzene derivatives of the A-π-D type, only one such compound (CSD refcode REFKUI), with a tert-butyl group as a rather poor (D) (Bartholomew et al., 2000), is found in the CSD (Allen, 2002). Eight other A-π-D structures containing perfluorinated rings are known, but all of these have π-systems limited to two peripheral rings connected by a spacer: JALLAK, JALKUD and JALKOX have a –C≡C– spacer (Collings et al., 2004), SERQEL (Coates et al., 1998) and NUZVAG (Papagni et al., 2010) are stilbenes, and YOVWUB (Li et al., 1994), WERXEW (Adamson et al., 1994), HUTXUP and BANGOM (Allaway et al., 2002) are benzylidene anilines. Also, the structure of one octupolar star-shaped compound with a benzene ring as the central moiety and –C≡C– spacers (WEVYOL) has been determined (Ponzini et al., 2000). Here, we present the first solid-state structure of an asymmetrically substituted push-pull benzylidene aniline derivative with a more extended conjugated system.
The title compound, (I), can be easily obtained from the condensation of 3,4,5-trimethoxybenzaldehyde with E-N-pentafluorobenzylidene-1,4-phenylenediamine, (II), which can be prepared from pentafluorobenzaldehyde and 1,4-phenylenediamine, but only at lower temperatures, considering that the extreme activation of the carbonyl group in the latter benzaldehyde would otherwise lead to the symmetrical bis(benzylidene aniline). (I) crystallizes as quasi-planar molecules in the centrosymmetric 1: the dihedral angle between the l.s. planes of rings 1 and 3 (Fig. 1) is 2.58 (17)°, while the one between rings 3 and 5 is 7.81 (17)°. Molecules of (I) are found in the syn conformation in which both imine spacers point in the same direction.
PThe crystal packing features relatively flat ribbons of oligomers held together by three CH···F interactions (Fig. 2 and Table 1, entries 1–3). These ribbons are then fused by two mutual methoxy···methoxy (CH···O) interactions to form layers (Fig. 2 and Table 1, entries 4 and 5). Finally, the layers of quasi-planar molecules are stacked by dint of three interactions involving the π-systems of the electron-rich aromatic rings, i.e., the central and the methoxy-substituted rings [with centroids Cg(3) and Cg(5), respectively]. First, a mutual OCH3···π interaction initiated by the methoxy groups in the 5-position exists between the layers (Fig. 3 and Table 1, entry 6). Then, the weakly polarizable fluorine atom F6 simultaneously contacts both above mentioned centroids (Fig. 4 and Table 1, entries 7 and 8). Finally, the methoxy group in the 4-position (located out of the plane of the rest of the molecule) participates in a CH···F weak hydrogen bond (Table 1, entry 9; not given in the Figures). Thus, all methoxy groups and all fluorine atoms except F4 are used in the supramolecular arrangement.
The nitrogen atoms in the imine spacers and the activated azomethine hydrogen atoms H21 and H41 do not participate in any intermolecular contacts. This may be linked to the absence of the typical twist of the central phenylenediamine ring of about 40° out of the planes of the spacers and the peripheral rings [for recent examples, see: Collas, De Borger, Amanova & Blockhuys (2011) and Collas, Zeller & Blockhuys (2011)], as the availability of the nitrogen atom in (I) is reduced. On the other hand, the resulting planar conformation leads to an improved stacking of molecules, notwithstanding the modest packing efficiency of only 68.3%.
For asymmetrically substituted A–π–D distyrylbenzene derivatives, see: Bartholomew et al. (2000). For compounds with π-conjugated systems and fluorinated rings, see: Coates et al. (1998); Adamson et al. (1994); Li et al. (1994); Ponzini et al. (2000); Allaway et al. (2002); Collings et al. (2004); Papagni et al. (2010). For structures of related benzylidine aniline oligomers, see: Collas, De Borger et al. (2011); Collas, Zeller & Blockhuys (2011). For a description of the Cambridge Structural Database, see: Allen (2002).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: DREAR (Blessing, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. : Molecular structure of the title compound showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; hydrogen atoms are represented by spheres with an arbitrary radius. | |
Fig. 2. : The CH···F interactions responsible for the formation of the planar ribbons and the CH···O interactions responsible for the formation of layers. See Table 1 for details. | |
Fig. 3. : The CH···π interactions responsible for the stacking of the layers. See Table 1 for details. | |
Fig. 4. : The CF···π interactions responsible for the stacking of the layers. See Table 1 for details. |
C23H17F5N2O3 | Z = 2 |
Mr = 464.39 | F(000) = 476 |
Triclinic, P1 | Dx = 1.474 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.131 (2) Å | Cell parameters from 25 reflections |
b = 11.749 (3) Å | θ = 5.8–20.8° |
c = 12.654 (3) Å | µ = 0.13 mm−1 |
α = 83.85 (2)° | T = 298 K |
β = 83.12 (2)° | Prism, orange |
γ = 89.50 (2)° | 0.3 × 0.2 × 0.2 mm |
V = 1046.5 (5) Å3 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.012 |
Radiation source: fine-focus sealed tube | θmax = 25.3°, θmin = 1.6° |
Graphite monochromator | h = −8→8 |
θ/2ω scans | k = −14→14 |
7650 measured reflections | l = −15→15 |
3831 independent reflections | 3 standard reflections every 60 min |
2077 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.078 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.240 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.1397P)2 + 0.0922P] where P = (Fo2 + 2Fc2)/3 |
3831 reflections | (Δ/σ)max < 0.001 |
301 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C23H17F5N2O3 | γ = 89.50 (2)° |
Mr = 464.39 | V = 1046.5 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.131 (2) Å | Mo Kα radiation |
b = 11.749 (3) Å | µ = 0.13 mm−1 |
c = 12.654 (3) Å | T = 298 K |
α = 83.85 (2)° | 0.3 × 0.2 × 0.2 mm |
β = 83.12 (2)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.012 |
7650 measured reflections | 3 standard reflections every 60 min |
3831 independent reflections | intensity decay: none |
2077 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.078 | 0 restraints |
wR(F2) = 0.240 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.25 e Å−3 |
3831 reflections | Δρmin = −0.32 e Å−3 |
301 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. Reflection -1 1 3 was omitted. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4594 (4) | 0.8471 (3) | 0.3807 (2) | 0.0644 (8) | |
C2 | 0.4713 (5) | 0.9623 (3) | 0.3488 (3) | 0.0699 (9) | |
C3 | 0.3407 (6) | 1.0190 (3) | 0.2900 (3) | 0.0826 (10) | |
C4 | 0.1929 (5) | 0.9579 (4) | 0.2629 (3) | 0.0885 (12) | |
C5 | 0.1764 (5) | 0.8446 (4) | 0.2928 (3) | 0.0822 (10) | |
C6 | 0.3086 (5) | 0.7896 (3) | 0.3501 (3) | 0.0706 (9) | |
C31 | 0.8512 (5) | 0.7527 (3) | 0.5358 (3) | 0.0736 (9) | |
C32 | 0.8325 (6) | 0.6361 (3) | 0.5613 (4) | 0.1033 (15) | |
H32 | 0.7300 | 0.5986 | 0.5415 | 0.124* | |
C33 | 0.9613 (6) | 0.5748 (3) | 0.6149 (3) | 0.0974 (14) | |
H33 | 0.9463 | 0.4960 | 0.6304 | 0.117* | |
C34 | 1.1146 (4) | 0.6285 (3) | 0.6469 (2) | 0.0632 (8) | |
C35 | 1.1320 (4) | 0.7443 (3) | 0.6226 (2) | 0.0675 (8) | |
H35 | 1.2336 | 0.7818 | 0.6435 | 0.081* | |
C36 | 1.0026 (4) | 0.8074 (3) | 0.5677 (3) | 0.0692 (9) | |
H36 | 1.0173 | 0.8862 | 0.5523 | 0.083* | |
F2 | 0.6128 (3) | 1.02449 (18) | 0.3725 (2) | 0.1006 (8) | |
F3 | 0.3585 (4) | 1.1305 (2) | 0.2600 (2) | 0.1206 (9) | |
F4 | 0.0656 (4) | 1.0128 (3) | 0.2066 (2) | 0.1289 (10) | |
F5 | 0.0318 (3) | 0.7845 (3) | 0.26703 (19) | 0.1193 (9) | |
F6 | 0.2870 (3) | 0.67739 (19) | 0.37783 (18) | 0.0951 (7) | |
C11 | 0.5942 (5) | 0.7820 (3) | 0.4420 (3) | 0.0742 (9) | |
H11 | 0.5780 | 0.7030 | 0.4540 | 0.089* | |
C41 | 1.2322 (5) | 0.4731 (3) | 0.7473 (3) | 0.0667 (8) | |
H41 | 1.1210 | 0.4351 | 0.7408 | 0.080* | |
C51 | 1.3720 (4) | 0.4127 (3) | 0.8089 (2) | 0.0631 (8) | |
C52 | 1.3406 (5) | 0.2992 (3) | 0.8467 (3) | 0.0691 (9) | |
H52 | 1.2324 | 0.2625 | 0.8330 | 0.083* | |
C53 | 1.4695 (5) | 0.2393 (3) | 0.9049 (3) | 0.0684 (8) | |
C54 | 1.6325 (4) | 0.2948 (3) | 0.9237 (3) | 0.0691 (9) | |
C55 | 1.6611 (4) | 0.4107 (3) | 0.8878 (3) | 0.0660 (8) | |
C56 | 1.5323 (4) | 0.4700 (3) | 0.8289 (2) | 0.0666 (8) | |
H56 | 1.5525 | 0.5466 | 0.8033 | 0.080* | |
C531 | 1.2776 (6) | 0.0728 (3) | 0.9403 (4) | 0.1006 (13) | |
H53A | 1.1758 | 0.1170 | 0.9717 | 0.151* | |
H53B | 1.2771 | −0.0021 | 0.9790 | 0.151* | |
H53C | 1.2618 | 0.0662 | 0.8670 | 0.151* | |
C541 | 1.7388 (6) | 0.2398 (4) | 1.0885 (3) | 0.0918 (11) | |
H54A | 1.7360 | 0.3182 | 1.1034 | 0.138* | |
H54B | 1.8407 | 0.2010 | 1.1203 | 0.138* | |
H54C | 1.6214 | 0.2033 | 1.1179 | 0.138* | |
C551 | 1.8259 (5) | 0.5788 (4) | 0.9087 (3) | 0.0869 (11) | |
H55A | 1.8477 | 0.6104 | 0.8351 | 0.130* | |
H55B | 1.9264 | 0.6015 | 0.9461 | 0.130* | |
H55C | 1.7079 | 0.6066 | 0.9409 | 0.130* | |
N11 | 0.7261 (4) | 0.8232 (3) | 0.4786 (2) | 0.0855 (9) | |
N41 | 1.2556 (4) | 0.5735 (2) | 0.7032 (2) | 0.0688 (7) | |
O53 | 1.4518 (4) | 0.1280 (2) | 0.9453 (2) | 0.0898 (8) | |
O54 | 1.7660 (3) | 0.2351 (2) | 0.97682 (19) | 0.0817 (7) | |
O55 | 1.8193 (3) | 0.4583 (2) | 0.9145 (2) | 0.0844 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0601 (18) | 0.075 (2) | 0.0590 (17) | −0.0068 (16) | −0.0117 (14) | −0.0037 (15) |
C2 | 0.0618 (19) | 0.074 (2) | 0.072 (2) | −0.0107 (16) | −0.0097 (16) | 0.0037 (16) |
C3 | 0.082 (2) | 0.088 (3) | 0.072 (2) | 0.004 (2) | −0.0062 (19) | 0.0133 (19) |
C4 | 0.070 (2) | 0.132 (4) | 0.062 (2) | 0.012 (2) | −0.0185 (17) | 0.002 (2) |
C5 | 0.067 (2) | 0.118 (3) | 0.066 (2) | −0.005 (2) | −0.0178 (17) | −0.016 (2) |
C6 | 0.067 (2) | 0.081 (2) | 0.0649 (19) | −0.0119 (17) | −0.0087 (16) | −0.0101 (16) |
C31 | 0.078 (2) | 0.071 (2) | 0.074 (2) | −0.0098 (17) | −0.0294 (17) | 0.0077 (16) |
C32 | 0.108 (3) | 0.072 (2) | 0.139 (3) | −0.032 (2) | −0.076 (3) | 0.018 (2) |
C33 | 0.115 (3) | 0.064 (2) | 0.121 (3) | −0.022 (2) | −0.069 (3) | 0.018 (2) |
C34 | 0.0668 (19) | 0.0662 (19) | 0.0578 (17) | −0.0078 (15) | −0.0177 (14) | −0.0004 (14) |
C35 | 0.0650 (19) | 0.071 (2) | 0.0672 (18) | −0.0177 (16) | −0.0186 (15) | 0.0032 (15) |
C36 | 0.072 (2) | 0.0628 (18) | 0.072 (2) | −0.0137 (16) | −0.0174 (16) | 0.0068 (15) |
F2 | 0.0859 (14) | 0.0770 (13) | 0.1376 (19) | −0.0243 (11) | −0.0311 (13) | 0.0158 (12) |
F3 | 0.121 (2) | 0.0973 (17) | 0.131 (2) | 0.0054 (14) | −0.0103 (16) | 0.0430 (15) |
F4 | 0.1015 (18) | 0.188 (3) | 0.0967 (16) | 0.0282 (17) | −0.0426 (14) | 0.0170 (16) |
F5 | 0.0858 (15) | 0.172 (3) | 0.1109 (17) | −0.0216 (16) | −0.0427 (13) | −0.0292 (16) |
F6 | 0.0956 (15) | 0.0853 (15) | 0.1084 (16) | −0.0248 (12) | −0.0244 (12) | −0.0126 (12) |
C11 | 0.075 (2) | 0.067 (2) | 0.082 (2) | −0.0064 (17) | −0.0232 (18) | 0.0049 (16) |
C41 | 0.0615 (19) | 0.067 (2) | 0.073 (2) | −0.0038 (16) | −0.0170 (15) | −0.0019 (16) |
C51 | 0.0565 (18) | 0.070 (2) | 0.0637 (18) | 0.0001 (15) | −0.0139 (14) | −0.0060 (15) |
C52 | 0.068 (2) | 0.070 (2) | 0.074 (2) | −0.0008 (16) | −0.0261 (16) | −0.0082 (16) |
C53 | 0.073 (2) | 0.0602 (19) | 0.076 (2) | 0.0048 (16) | −0.0223 (17) | −0.0072 (16) |
C54 | 0.0604 (19) | 0.079 (2) | 0.0696 (19) | 0.0111 (17) | −0.0157 (15) | −0.0082 (16) |
C55 | 0.0497 (17) | 0.080 (2) | 0.0693 (19) | −0.0018 (15) | −0.0116 (14) | −0.0077 (16) |
C56 | 0.0579 (19) | 0.071 (2) | 0.070 (2) | −0.0019 (15) | −0.0103 (15) | −0.0008 (15) |
C531 | 0.105 (3) | 0.074 (2) | 0.124 (3) | −0.016 (2) | −0.041 (3) | 0.013 (2) |
C541 | 0.092 (3) | 0.104 (3) | 0.082 (3) | −0.005 (2) | −0.034 (2) | 0.004 (2) |
C551 | 0.068 (2) | 0.101 (3) | 0.093 (3) | −0.019 (2) | −0.0210 (19) | −0.008 (2) |
N11 | 0.086 (2) | 0.0748 (18) | 0.100 (2) | −0.0144 (16) | −0.0445 (18) | 0.0129 (15) |
N41 | 0.0686 (16) | 0.0697 (17) | 0.0693 (16) | −0.0082 (13) | −0.0220 (13) | 0.0030 (13) |
O53 | 0.0953 (18) | 0.0672 (15) | 0.112 (2) | −0.0011 (13) | −0.0462 (15) | 0.0038 (13) |
O54 | 0.0683 (15) | 0.0948 (17) | 0.0846 (16) | 0.0174 (12) | −0.0264 (12) | −0.0040 (13) |
O55 | 0.0548 (13) | 0.0951 (18) | 0.1049 (18) | −0.0099 (12) | −0.0239 (12) | −0.0016 (14) |
C1—C2 | 1.371 (4) | C41—N41 | 1.253 (4) |
C1—C6 | 1.390 (4) | C41—C51 | 1.470 (4) |
C1—C11 | 1.466 (4) | C41—H41 | 0.9300 |
C2—F2 | 1.332 (4) | C51—C52 | 1.378 (4) |
C2—C3 | 1.383 (5) | C51—C56 | 1.394 (4) |
C3—F3 | 1.327 (4) | C52—C53 | 1.386 (4) |
C3—C4 | 1.377 (6) | C52—H52 | 0.9300 |
C4—F4 | 1.339 (4) | C53—O53 | 1.353 (4) |
C4—C5 | 1.347 (6) | C53—C54 | 1.395 (5) |
C5—F5 | 1.346 (4) | C54—O54 | 1.375 (4) |
C5—C6 | 1.372 (5) | C54—C55 | 1.397 (5) |
C6—F6 | 1.333 (4) | C55—O55 | 1.358 (4) |
C31—C32 | 1.376 (5) | C55—C56 | 1.388 (4) |
C31—C36 | 1.384 (4) | C56—H56 | 0.9300 |
C31—N11 | 1.421 (4) | C531—O53 | 1.418 (4) |
C32—C33 | 1.363 (5) | C531—H53A | 0.9600 |
C32—H32 | 0.9300 | C531—H53B | 0.9600 |
C33—C34 | 1.389 (5) | C531—H53C | 0.9600 |
C33—H33 | 0.9300 | C541—O54 | 1.410 (4) |
C34—C35 | 1.366 (4) | C541—H54A | 0.9600 |
C34—N41 | 1.414 (4) | C541—H54B | 0.9600 |
C35—C36 | 1.383 (4) | C541—H54C | 0.9600 |
C35—H35 | 0.9300 | C551—O55 | 1.411 (5) |
C36—H36 | 0.9300 | C551—H55A | 0.9600 |
C11—N11 | 1.223 (4) | C551—H55B | 0.9600 |
C11—H11 | 0.9300 | C551—H55C | 0.9600 |
C2—C1—C6 | 116.2 (3) | C52—C51—C56 | 121.0 (3) |
C2—C1—C11 | 124.9 (3) | C52—C51—C41 | 118.8 (3) |
C6—C1—C11 | 118.9 (3) | C56—C51—C41 | 120.2 (3) |
F2—C2—C1 | 120.7 (3) | C51—C52—C53 | 120.4 (3) |
F2—C2—C3 | 117.0 (3) | C51—C52—H52 | 119.8 |
C1—C2—C3 | 122.3 (3) | C53—C52—H52 | 119.8 |
F3—C3—C4 | 120.7 (3) | O53—C53—C52 | 124.9 (3) |
F3—C3—C2 | 120.3 (4) | O53—C53—C54 | 115.8 (3) |
C4—C3—C2 | 119.0 (4) | C52—C53—C54 | 119.3 (3) |
F4—C4—C5 | 120.5 (4) | O54—C54—C53 | 120.0 (3) |
F4—C4—C3 | 119.1 (4) | O54—C54—C55 | 120.0 (3) |
C5—C4—C3 | 120.4 (3) | C53—C54—C55 | 120.1 (3) |
F5—C5—C4 | 120.7 (3) | O55—C55—C56 | 124.0 (3) |
F5—C5—C6 | 119.5 (4) | O55—C55—C54 | 115.6 (3) |
C4—C5—C6 | 119.7 (3) | C56—C55—C54 | 120.4 (3) |
F6—C6—C5 | 117.7 (3) | C55—C56—C51 | 118.8 (3) |
F6—C6—C1 | 119.9 (3) | C55—C56—H56 | 120.6 |
C5—C6—C1 | 122.4 (3) | C51—C56—H56 | 120.6 |
C32—C31—C36 | 118.5 (3) | O53—C531—H53A | 109.5 |
C32—C31—N11 | 125.2 (3) | O53—C531—H53B | 109.5 |
C36—C31—N11 | 116.3 (3) | H53A—C531—H53B | 109.5 |
C33—C32—C31 | 121.3 (3) | O53—C531—H53C | 109.5 |
C33—C32—H32 | 119.4 | H53A—C531—H53C | 109.5 |
C31—C32—H32 | 119.4 | H53B—C531—H53C | 109.5 |
C32—C33—C34 | 120.8 (3) | O54—C541—H54A | 109.5 |
C32—C33—H33 | 119.6 | O54—C541—H54B | 109.5 |
C34—C33—H33 | 119.6 | H54A—C541—H54B | 109.5 |
C35—C34—C33 | 117.9 (3) | O54—C541—H54C | 109.5 |
C35—C34—N41 | 116.6 (3) | H54A—C541—H54C | 109.5 |
C33—C34—N41 | 125.5 (3) | H54B—C541—H54C | 109.5 |
C34—C35—C36 | 121.8 (3) | O55—C551—H55A | 109.5 |
C34—C35—H35 | 119.1 | O55—C551—H55B | 109.5 |
C36—C35—H35 | 119.1 | H55A—C551—H55B | 109.5 |
C35—C36—C31 | 119.7 (3) | O55—C551—H55C | 109.5 |
C35—C36—H36 | 120.1 | H55A—C551—H55C | 109.5 |
C31—C36—H36 | 120.1 | H55B—C551—H55C | 109.5 |
N11—C11—C1 | 125.2 (3) | C11—N11—C31 | 121.1 (3) |
N11—C11—H11 | 117.4 | C41—N41—C34 | 120.8 (3) |
C1—C11—H11 | 117.4 | C53—O53—C531 | 117.5 (3) |
N41—C41—C51 | 123.2 (3) | C54—O54—C541 | 113.5 (3) |
N41—C41—H41 | 118.4 | C55—O55—C551 | 117.1 (3) |
C51—C41—H41 | 118.4 | ||
C6—C1—C2—F2 | −178.8 (3) | N11—C31—C36—C35 | −179.2 (3) |
C11—C1—C2—F2 | 0.1 (5) | C2—C1—C11—N11 | 5.4 (6) |
C6—C1—C2—C3 | 0.4 (5) | C6—C1—C11—N11 | −175.7 (3) |
C11—C1—C2—C3 | 179.3 (3) | N41—C41—C51—C52 | −174.5 (3) |
F2—C2—C3—F3 | −0.3 (5) | N41—C41—C51—C56 | 5.9 (5) |
C1—C2—C3—F3 | −179.5 (3) | C56—C51—C52—C53 | −0.5 (5) |
F2—C2—C3—C4 | 179.5 (3) | C41—C51—C52—C53 | 179.9 (3) |
C1—C2—C3—C4 | 0.3 (6) | C51—C52—C53—O53 | −180.0 (3) |
F3—C3—C4—F4 | −0.6 (6) | C51—C52—C53—C54 | −0.8 (5) |
C2—C3—C4—F4 | 179.6 (3) | O53—C53—C54—O54 | 2.4 (5) |
F3—C3—C4—C5 | 179.5 (3) | C52—C53—C54—O54 | −176.9 (3) |
C2—C3—C4—C5 | −0.3 (6) | O53—C53—C54—C55 | −178.2 (3) |
F4—C4—C5—F5 | −0.2 (6) | C52—C53—C54—C55 | 2.6 (5) |
C3—C4—C5—F5 | 179.7 (3) | O54—C54—C55—O55 | −3.7 (4) |
F4—C4—C5—C6 | 179.7 (3) | C53—C54—C55—O55 | 176.9 (3) |
C3—C4—C5—C6 | −0.4 (6) | O54—C54—C55—C56 | 176.4 (3) |
F5—C5—C6—F6 | 0.0 (5) | C53—C54—C55—C56 | −3.0 (5) |
C4—C5—C6—F6 | −179.8 (3) | O55—C55—C56—C51 | −178.2 (3) |
F5—C5—C6—C1 | −178.9 (3) | C54—C55—C56—C51 | 1.7 (5) |
C4—C5—C6—C1 | 1.2 (5) | C52—C51—C56—C55 | 0.1 (5) |
C2—C1—C6—F6 | 179.9 (3) | C41—C51—C56—C55 | 179.7 (3) |
C11—C1—C6—F6 | 0.9 (5) | C1—C11—N11—C31 | −179.0 (3) |
C2—C1—C6—C5 | −1.1 (5) | C32—C31—N11—C11 | −4.2 (6) |
C11—C1—C6—C5 | 179.9 (3) | C36—C31—N11—C11 | 176.0 (3) |
C36—C31—C32—C33 | −1.3 (7) | C51—C41—N41—C34 | −178.6 (3) |
N11—C31—C32—C33 | 178.9 (4) | C35—C34—N41—C41 | 165.6 (3) |
C31—C32—C33—C34 | 0.9 (8) | C33—C34—N41—C41 | −14.3 (6) |
C32—C33—C34—C35 | −0.2 (6) | C52—C53—O53—C531 | −9.0 (5) |
C32—C33—C34—N41 | 179.7 (4) | C54—C53—O53—C531 | 171.9 (3) |
C33—C34—C35—C36 | −0.1 (5) | C53—C54—O54—C541 | −91.7 (4) |
N41—C34—C35—C36 | 180.0 (3) | C55—C54—O54—C541 | 88.9 (4) |
C34—C35—C36—C31 | −0.3 (5) | C56—C55—O55—C551 | 18.3 (5) |
C32—C31—C36—C35 | 0.9 (6) | C54—C55—O55—C551 | −161.6 (3) |
Experimental details
Crystal data | |
Chemical formula | C23H17F5N2O3 |
Mr | 464.39 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.131 (2), 11.749 (3), 12.654 (3) |
α, β, γ (°) | 83.85 (2), 83.12 (2), 89.50 (2) |
V (Å3) | 1046.5 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.3 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7650, 3831, 2077 |
Rint | 0.012 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.078, 0.240, 1.06 |
No. of reflections | 3831 |
No. of parameters | 301 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.32 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), DREAR (Blessing, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Entry | D | X | A | X···A | D–X···A |
1 | C33 | H33 | F6i | 2.66 | 144 |
2 | C35 | H35 | F2ii | 2.51 | 142 |
3 | C52 | H52 | F5i | 2.49 | 158 |
4 | C531 | H53b | O53iii | 2.63 | 132 |
5 | C551 | H55b | O55iv | 2.72 | 148 |
6 | C551 | H55c | Cg(5)v | 2.78 | 145 |
7 | C6 | F6 | Cg(3)vi | 3.276 (3) | 97.71 (19) |
8 | C6 | F6 | Cg(5)vii | 3.335 (3) | 86.15 (19) |
9 | C541 | H54c | F3viii | 2.52 | 188 |
Symmetry codes: (i) 1 – x, 1 – y, 1– z; (ii) 2 – x, 2 – y, 1 – z; (iii) 3 – x, – y, 2 – z; (iv) 4 – x, 1 – y, 2 – z; (v) –3 – x, 1 – y, 2 – z; (vi) –1 + x, y, z; (vii) 2 – x, 1 – y, 1 – z; (viii) 1 + x, –1 + y, 1 + z. |
Acknowledgements
AC wishes to thank the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) for a predoctoral grant. Financial support by the University of Antwerp under grant No. GOA-2404 is gratefully acknowledged.
References
Adamson, A. J., Archambeau, Y., Banks, R. E., Beagley, B., Helliwell, M., Pritchard, R. G. & Tipping, A. E. (1994). Acta Cryst. C50, 967–971. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Allaway, C. L., Daly, M., Nieuwenhuizen, M. & Saunder, G. C. (2002). J. Fluorine Chem. 115, 91–99. Web of Science CSD CrossRef CAS Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bartholomew, G. P., Baza, G. C., Bu, X. H. & Lachicotte, R. J. (2000). Chem. Mater. 12, 1422–1430. Web of Science CSD CrossRef CAS Google Scholar
Blessing, R. (1987). Crystallogr. Rev. 1, 3–58. CrossRef Google Scholar
Coates, G., Dunn, A., Henling, L., Ziller, J., Lobkovsky, E. & Grubbs, R. (1998). J. Am. Chem. Soc. 120, 3641–3649. Web of Science CSD CrossRef CAS Google Scholar
Collas, A., De Borger, R., Amanova, T. & Blockhuys, F. (2011). CrystEngComm, 13, 702–710. Web of Science CSD CrossRef CAS Google Scholar
Collas, A., Zeller, M. & Blockhuys, F. (2011). Acta Cryst. C67, o171–o174. Web of Science CSD CrossRef IUCr Journals Google Scholar
Collings, J. C., Smith, P. S., Yufit, D. S., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2004). CrystEngComm, 6, 25–28. Web of Science CSD CrossRef CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Li, A. W., Bin, X., Zhu, S. Z., Huang, Q. C. & Liu, J. S. (1994). J. Fluorine Chem. 68, 145–148. CSD CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Papagni, A., Del Buttero, P., Bertarelli, C., Miozzo, L., Moret, M., Pryce, M. T. & Rizzato, S. (2010). New J. Chem. 34, 2612–2621. Web of Science CSD CrossRef CAS Google Scholar
Ponzini, F., Zagha, R., Hardcastle, K. & Siegel, J. S. (2000). Angew. Chem. Int. Ed. 39, 2323–2325. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Even though a perfluorinated aromatic ring is an excellent acceptor moiety for inclusion in asymmetrically substituted push-pull distyrylbenzene derivatives of the A-π-D type, only one such compound (CSD refcode REFKUI), with a tert-butyl group as a rather poor electron donor (D) (Bartholomew et al., 2000), is found in the CSD (Allen, 2002). Eight other A-π-D structures containing perfluorinated rings are known, but all of these have π-systems limited to two peripheral rings connected by a spacer: JALLAK, JALKUD and JALKOX have a –C≡C– spacer (Collings et al., 2004), SERQEL (Coates et al., 1998) and NUZVAG (Papagni et al., 2010) are stilbenes, and YOVWUB (Li et al., 1994), WERXEW (Adamson et al., 1994), HUTXUP and BANGOM (Allaway et al., 2002) are benzylidene anilines. Also, the structure of one octupolar star-shaped compound with a benzene ring as the central moiety and –C≡C– spacers (WEVYOL) has been determined (Ponzini et al., 2000). Here, we present the first solid-state structure of an asymmetrically substituted push-pull benzylidene aniline derivative with a more extended conjugated system.
The title compound, (I), can be easily obtained from the condensation of 3,4,5-trimethoxybenzaldehyde with E-N-pentafluorobenzylidene-1,4-phenylenediamine, (II), which can be prepared from pentafluorobenzaldehyde and 1,4-phenylenediamine, but only at lower temperatures, considering that the extreme activation of the carbonyl group in the latter benzaldehyde would otherwise lead to the symmetrical bis(benzylidene aniline). (I) crystallizes as quasi-planar molecules in the centrosymmetric space group P1: the dihedral angle between the l.s. planes of rings 1 and 3 (Fig. 1) is 2.58 (17)°, while the one between rings 3 and 5 is 7.81 (17)°. Molecules of (I) are found in the syn conformation in which both imine spacers point in the same direction.
The crystal packing features relatively flat ribbons of oligomers held together by three CH···F interactions (Fig. 2 and Table 1, entries 1–3). These ribbons are then fused by two mutual methoxy···methoxy (CH···O) interactions to form layers (Fig. 2 and Table 1, entries 4 and 5). Finally, the layers of quasi-planar molecules are stacked by dint of three interactions involving the π-systems of the electron-rich aromatic rings, i.e., the central and the methoxy-substituted rings [with centroids Cg(3) and Cg(5), respectively]. First, a mutual OCH3···π interaction initiated by the methoxy groups in the 5-position exists between the layers (Fig. 3 and Table 1, entry 6). Then, the weakly polarizable fluorine atom F6 simultaneously contacts both above mentioned centroids (Fig. 4 and Table 1, entries 7 and 8). Finally, the methoxy group in the 4-position (located out of the plane of the rest of the molecule) participates in a CH···F weak hydrogen bond (Table 1, entry 9; not given in the Figures). Thus, all methoxy groups and all fluorine atoms except F4 are used in the supramolecular arrangement.
The nitrogen atoms in the imine spacers and the activated azomethine hydrogen atoms H21 and H41 do not participate in any intermolecular contacts. This may be linked to the absence of the typical twist of the central phenylenediamine ring of about 40° out of the planes of the spacers and the peripheral rings [for recent examples, see: Collas, De Borger, Amanova & Blockhuys (2011) and Collas, Zeller & Blockhuys (2011)], as the availability of the nitrogen atom in (I) is reduced. On the other hand, the resulting planar conformation leads to an improved stacking of molecules, notwithstanding the modest packing efficiency of only 68.3%.