organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of 2,4′-methyl­ene­diphenol

aKey Laboratory of Fine Petrochemical Technology, Changzhou University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: chenqunjpu@yahoo.com

(Received 23 October 2011; accepted 27 October 2011; online 2 November 2011)

In the previous determination [Finn & Musti (1950[Finn, S. R. & Musti, J. W. G. (1950). J. Soc. Chem. Ind. (London) 69, s849.]). J. Soc. Chem. Ind. (London), 69, S849] of the title compound, C13H12O2, the three-dimensional coordinates and displacement parameters were not reported. This redetermination at room temperature reveals that the dihedral angle between the benzene rings is 79.73 (6)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds between adjacent mol­ecules result in two-dimensional wave-like supra­molecular motifs parallel to the ab plane.

Related literature

For the previous determination, see: Finn & Musti (1950[Finn, S. R. & Musti, J. W. G. (1950). J. Soc. Chem. Ind. (London) 69, s849.]). For the importance of bis­phenol in industry, see: Patel & Patel (2009[Patel, H. S. & Patel, B. K. (2009). Int. J. Polym. Mater. 59, 109-117.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12O2

  • Mr = 200.23

  • Monoclinic, P 21 /c

  • a = 5.0923 (5) Å

  • b = 15.3743 (14) Å

  • c = 13.2321 (12) Å

  • β = 96.660 (2)°

  • V = 1028.96 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.26 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.978

  • 5900 measured reflections

  • 1904 independent reflections

  • 1404 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.144

  • S = 1.04

  • 1904 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 2.04 2.859 (2) 175
O2—H2A⋯O1ii 0.82 2.00 2.811 (2) 173
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,4'-Dihydroxydiphenylmethane is one isomer of bisphenol F which is an important chemical and/or intermediate for the preparation of useful epoxy resins, phenolic resins, and polycarbonates in the plastic and rubber industries (Patel & Patel, 2009). This structure has been solved previously but with no available three-dimensional coordinates (Finn & Musti, 1950; CSD refcode: ZZZGWU). Herein, we present a redetermination at room temperature of the crystal structure of the title compound (Fig. 1). The bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angle between the benzene rings is 79.73 (6)°. Intermolecular O—H···O hydrogen bonds between adjacent molecules result in two-dimensional wave-like supramolecular motifs along the ab plane (Fig. 2).

Related literature top

For the previous determination, see: Finn & Musti (1950). For the importance of bisphenol in industry, see: Patel & Patel (2009). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A 37% aqueous formaldehyde (20.31 g, 0.25 mol) solution was added to phenol (47.05 g, 0.50 mol) and oxalic acid (0.18 g, 1.40 mmol) at 70 °C with stirring for 4 h. Then the reaction mixture was condensed by vacuum distillation, affording a mixture of 4,4'-methylenebisphenol, 2,4'-methylenebisphenol and 2,2'-methylenebisphenol. By dissolving the resulting mixture (0.50 g) in the mixed solution of 2-propanol (20.0 ml) and water (10.0 ml), the needle colourless single crystals suitable for X-ray analysis were obtained after a slow evaporation of the solvents at room temperature for a period of about two weeks.

Refinement top

All H atoms bound to C atoms were assigned to calculated positions, with C—H = 0.97 Å (methylene) and 0.93 Å (aromatic), and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The H atoms of the hydroxyl groups were firstly located in a difference Fourier map and then refined with the distance restraint O—H = 0.820 (1) Å, and finally constrained to ride on the O atom with Uiso(H) = 1.5Ueq(O).

Structure description top

2,4'-Dihydroxydiphenylmethane is one isomer of bisphenol F which is an important chemical and/or intermediate for the preparation of useful epoxy resins, phenolic resins, and polycarbonates in the plastic and rubber industries (Patel & Patel, 2009). This structure has been solved previously but with no available three-dimensional coordinates (Finn & Musti, 1950; CSD refcode: ZZZGWU). Herein, we present a redetermination at room temperature of the crystal structure of the title compound (Fig. 1). The bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angle between the benzene rings is 79.73 (6)°. Intermolecular O—H···O hydrogen bonds between adjacent molecules result in two-dimensional wave-like supramolecular motifs along the ab plane (Fig. 2).

For the previous determination, see: Finn & Musti (1950). For the importance of bisphenol in industry, see: Patel & Patel (2009). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The two-dimensional structure of the title compound. Hydrogen atoms are omitted for clarity.
2,4'-methylenediphenol top
Crystal data top
C13H12O2F(000) = 424
Mr = 200.23Dx = 1.293 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1692 reflections
a = 5.0923 (5) Åθ = 3.1–24.9°
b = 15.3743 (14) ŵ = 0.09 mm1
c = 13.2321 (12) ÅT = 296 K
β = 96.660 (2)°Block, colourless
V = 1028.96 (17) Å30.30 × 0.28 × 0.26 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1904 independent reflections
Radiation source: fine-focus sealed tube1404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 66
Tmin = 0.975, Tmax = 0.978k = 1618
5900 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.2818P]
where P = (Fo2 + 2Fc2)/3
1904 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H12O2V = 1028.96 (17) Å3
Mr = 200.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0923 (5) ŵ = 0.09 mm1
b = 15.3743 (14) ÅT = 296 K
c = 13.2321 (12) Å0.30 × 0.28 × 0.26 mm
β = 96.660 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1904 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1404 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.978Rint = 0.025
5900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
1904 reflectionsΔρmin = 0.20 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4293 (4)1.00937 (12)0.83972 (14)0.0379 (5)
C20.2466 (4)0.94424 (14)0.84369 (15)0.0441 (5)
H20.12970.94540.89270.053*
C30.2377 (4)0.87678 (13)0.77407 (15)0.0441 (5)
H30.11380.83270.77690.053*
C40.4087 (4)0.87356 (12)0.70047 (14)0.0393 (5)
C50.5900 (4)0.94019 (14)0.69828 (15)0.0455 (5)
H50.70770.93920.64950.055*
C60.6006 (4)1.00814 (13)0.76676 (15)0.0438 (5)
H60.72271.05280.76360.053*
C70.3999 (4)0.79840 (14)0.62684 (17)0.0548 (6)
H7A0.38550.74470.66440.066*
H7B0.56560.79660.59740.066*
C80.1742 (4)0.80219 (12)0.54106 (14)0.0384 (5)
C90.0121 (4)0.73108 (12)0.51658 (14)0.0381 (5)
C100.1909 (4)0.73465 (14)0.43729 (15)0.0469 (5)
H100.29670.68610.42140.056*
C110.2353 (4)0.81017 (15)0.38226 (16)0.0538 (6)
H110.37200.81280.32920.065*
C120.0785 (5)0.88160 (15)0.40538 (16)0.0563 (6)
H120.10870.93270.36820.068*
C130.1238 (4)0.87742 (14)0.48385 (17)0.0514 (6)
H130.22940.92610.49900.062*
O10.4294 (3)1.07617 (10)0.90993 (12)0.0556 (4)
H10.57651.09850.91850.083*
O20.0601 (3)0.65582 (10)0.57267 (12)0.0551 (4)
H2A0.07870.62910.57420.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0381 (10)0.0335 (10)0.0397 (10)0.0055 (8)0.0058 (8)0.0021 (8)
C20.0392 (10)0.0521 (12)0.0416 (11)0.0007 (9)0.0075 (8)0.0011 (9)
C30.0379 (11)0.0413 (11)0.0516 (12)0.0055 (8)0.0012 (9)0.0010 (9)
C40.0345 (10)0.0409 (11)0.0396 (10)0.0086 (8)0.0083 (8)0.0030 (8)
C50.0349 (10)0.0595 (13)0.0421 (11)0.0011 (9)0.0046 (8)0.0029 (9)
C60.0379 (10)0.0425 (11)0.0498 (12)0.0069 (8)0.0008 (9)0.0003 (9)
C70.0519 (13)0.0518 (13)0.0559 (13)0.0186 (10)0.0146 (10)0.0147 (10)
C80.0382 (10)0.0401 (11)0.0358 (10)0.0070 (8)0.0005 (8)0.0064 (8)
C90.0383 (10)0.0390 (11)0.0376 (10)0.0056 (8)0.0071 (8)0.0017 (8)
C100.0421 (11)0.0485 (13)0.0480 (12)0.0038 (9)0.0031 (9)0.0053 (9)
C110.0525 (13)0.0639 (15)0.0409 (11)0.0062 (11)0.0118 (9)0.0020 (10)
C120.0654 (15)0.0503 (14)0.0503 (13)0.0064 (11)0.0054 (11)0.0125 (10)
C130.0530 (13)0.0403 (12)0.0584 (13)0.0035 (10)0.0038 (10)0.0025 (10)
O10.0550 (9)0.0489 (9)0.0616 (10)0.0010 (7)0.0004 (8)0.0201 (7)
O20.0504 (9)0.0460 (9)0.0671 (10)0.0005 (7)0.0008 (7)0.0169 (7)
Geometric parameters (Å, º) top
C1—C21.372 (3)C7—H7B0.9700
C1—C61.374 (3)C8—C91.386 (3)
C1—O11.385 (2)C8—C131.390 (3)
C2—C31.384 (3)C9—O21.381 (2)
C2—H20.9300C9—C101.386 (3)
C3—C41.381 (3)C10—C111.375 (3)
C3—H30.9300C10—H100.9300
C4—C51.382 (3)C11—C121.371 (3)
C4—C71.509 (3)C11—H110.9300
C5—C61.380 (3)C12—C131.377 (3)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—H130.9300
C7—C81.520 (3)O1—H10.8200
C7—H7A0.9700O2—H2A0.8200
C2—C1—C6120.35 (18)C8—C7—H7B108.6
C2—C1—O1117.60 (18)H7A—C7—H7B107.6
C6—C1—O1122.04 (18)C9—C8—C13117.51 (17)
C1—C2—C3119.42 (19)C9—C8—C7121.52 (18)
C1—C2—H2120.3C13—C8—C7120.97 (18)
C3—C2—H2120.3O2—C9—C8118.16 (17)
C4—C3—C2121.45 (19)O2—C9—C10120.67 (18)
C4—C3—H3119.3C8—C9—C10121.17 (18)
C2—C3—H3119.3C11—C10—C9119.79 (19)
C3—C4—C5117.77 (18)C11—C10—H10120.1
C3—C4—C7120.60 (19)C9—C10—H10120.1
C5—C4—C7121.62 (19)C12—C11—C10120.15 (19)
C6—C5—C4121.51 (19)C12—C11—H11119.9
C6—C5—H5119.2C10—C11—H11119.9
C4—C5—H5119.2C11—C12—C13119.8 (2)
C1—C6—C5119.49 (19)C11—C12—H12120.1
C1—C6—H6120.3C13—C12—H12120.1
C5—C6—H6120.3C12—C13—C8121.6 (2)
C4—C7—C8114.59 (16)C12—C13—H13119.2
C4—C7—H7A108.6C8—C13—H13119.2
C8—C7—H7A108.6C1—O1—H1109.5
C4—C7—H7B108.6C9—O2—H2A109.5
C6—C1—C2—C30.6 (3)C4—C7—C8—C1349.1 (3)
O1—C1—C2—C3179.23 (16)C13—C8—C9—O2179.89 (18)
C1—C2—C3—C40.1 (3)C7—C8—C9—O20.2 (3)
C2—C3—C4—C50.1 (3)C13—C8—C9—C100.7 (3)
C2—C3—C4—C7178.59 (17)C7—C8—C9—C10179.05 (18)
C3—C4—C5—C60.3 (3)O2—C9—C10—C11179.92 (19)
C7—C4—C5—C6178.93 (18)C8—C9—C10—C110.7 (3)
C2—C1—C6—C50.9 (3)C9—C10—C11—C120.3 (3)
O1—C1—C6—C5179.51 (17)C10—C11—C12—C130.1 (4)
C4—C5—C6—C10.8 (3)C11—C12—C13—C80.1 (4)
C3—C4—C7—C877.4 (3)C9—C8—C13—C120.3 (3)
C5—C4—C7—C8104.0 (2)C7—C8—C13—C12179.5 (2)
C4—C7—C8—C9131.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.042.859 (2)175
O2—H2A···O1ii0.822.002.811 (2)173
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H12O2
Mr200.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.0923 (5), 15.3743 (14), 13.2321 (12)
β (°) 96.660 (2)
V3)1028.96 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.28 × 0.26
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.975, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
5900, 1904, 1404
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.144, 1.04
No. of reflections1904
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.042.859 (2)175
O2—H2A···O1ii0.822.002.811 (2)173
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1/2, z+3/2.
 

Acknowledgements

We gratefully acknowledge financial support from the Open Foundation of Jiangsu Province Key Laboratory of Fine Petrochemical Technology (KF1005) and the Analysis Center of Changzhou University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFinn, S. R. & Musti, J. W. G. (1950). J. Soc. Chem. Ind. (London) 69, s849.  Google Scholar
First citationPatel, H. S. & Patel, B. K. (2009). Int. J. Polym. Mater. 59, 109–117.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds