organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Fluoro­phen­yl)-2-(1H-1,2,4-triazol-1-yl)ethanone hemihydrate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: taoxiao@njut.edu.cn

(Received 26 October 2011; accepted 29 October 2011; online 5 November 2011)

In the title compound, C10H8FN3O·0.5H2O, the dihedral angle between the mean planes of the rings is 99.80 (4)°. The water mol­ecule lies on a twofold axis. Weak inter­molecular O—H⋯N and C—H⋯O hydrogen bonds link one water mol­ecule with four phenyl­ethanone mol­ecules, while inter­molecular C—H⋯O hydrogen bonds involving the ketone group link phenyl­ethanone mol­ecules into layers parallel to (100).

Related literature

For related compounds containing a 2-(1H-1,2,4-triazol-1-yl)-1-phenyl­ethanone fragment, see: Akira et al. (1985[Akira, S., Hideo, S., Noboru, H., Yukio, M., Akira, N. & Kenichi, I. (1985). JP Patent No. JP60260562.]); Yoshimi et al. (2000[Yoshimi, N., Tetsuto, O., Akira, S., Hiroki, K. & Kazuo, K. (2000). Antimicrob. Agents Chemother. 4, 81-102.]); Yuan et al. (2007[Yuan, L., Tao, X., Xu, B., Wu, W.-Y. & Wang, J.-T. (2007). Acta Cryst. E63, o1640-o1641.]); Tao et al. (2007[Tao, X., Yuan, L., Zhang, X.-Q., Jing, C. & Wang, J.-T. (2007). Acta Cryst. E63, o1330-o1331.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8FN3O·0.5H2O

  • Mr = 214.2

  • Orthorhombic, P b c n

  • a = 24.419 (5) Å

  • b = 10.147 (2) Å

  • c = 8.2410 (16) Å

  • V = 2042.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.968, Tmax = 0.978

  • 3626 measured reflections

  • 1844 independent reflections

  • 1087 reflections with I > 2σ(I)

  • Rint = 0.057

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.160

  • S = 1.00

  • 1844 reflections

  • 145 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWA⋯N1 0.80 (4) 2.18 (4) 2.957 (3) 166 (4)
C2—H2B⋯Oi 0.93 2.54 3.309 (3) 140
C3—H3B⋯Oii 0.97 2.51 3.459 (3) 166
C7—H7A⋯OWiii 0.93 2.49 3.407 (4) 169
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound is the key intermediate in the synthesis of a new kind of antifungal drug (Yoshimi et al., 2000; Akira et al., 1985). The crystal structure determination has been carried out in order to elucidate the molecular conformation.

The molecular structure of the title compound is reported in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angle between the mean planes of the N1/N2/C9–C11 and C1–C6 rings is 99.80 (4)°. The solvent molecules of water lie on two-fold axes. The second position of the hydrogen atom is reproduced by the symmetry operation (-x, y, 0.5-z). Weak intermolecular O—H···N (Fig. 2) and C—H···O hydrogen bonds link one isolated water molecule with four phenylethanone molecules while intermolecular C—H···O hydrogen bonds involving the ketone group link phenylethanone molecules together into layers parallel to (100).

Related literature top

For related compounds containing a 2-(1H-1,2,4-triazol-1-yl)-1-phenylethanone fragment, see: Akira et al. (1985); Yoshimi et al. (2000); Yuan et al. (2007); Tao et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Sodium hydride (4.8 g, 120 mmol) was suspended in dimethylformamide (DMF, 30 ml). Triazole (8.28 g, 120 mmol) dissolved in DMF (30 ml) was slowly added dropwise at 273 K, and reacted at room temperature for 30 min. 2-Chloro-1-(4-fluorophenyl)ethanone (15.48 g, 90 mmol) dissolved in DMF (30 ml) was then slowly added dropwise, and reacted at room temperature for 4 h. The mixture was placed in ice-water (300 ml), and 1 mol hydrochloric acid (50 ml) was then added. After filtration, the filtrate was neutralized with sodium bicarbonate to pH = 6, and a yellow deposit was obtained. Recrystallization with ethanol yielded a white deposit (m.p. 397–400 K). Crystals suitable for a X-ray analysis study were obtained by dissolving the crude product (1.0 g) in 95% ethanol (30 ml) and then allowing the solution to evaporate slowly at room temperature for about 7 days.

Refinement top

The water H atom (the second position being obtained by a symmetry operation) was located in a Fourier difference map and freely refined with Uiso(H) = 1.2Ueq(O). The other H atoms were positioned geometrically with C—H = 0.93 Å (aromatic) and 0.97 Å (methylene) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound is the key intermediate in the synthesis of a new kind of antifungal drug (Yoshimi et al., 2000; Akira et al., 1985). The crystal structure determination has been carried out in order to elucidate the molecular conformation.

The molecular structure of the title compound is reported in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angle between the mean planes of the N1/N2/C9–C11 and C1–C6 rings is 99.80 (4)°. The solvent molecules of water lie on two-fold axes. The second position of the hydrogen atom is reproduced by the symmetry operation (-x, y, 0.5-z). Weak intermolecular O—H···N (Fig. 2) and C—H···O hydrogen bonds link one isolated water molecule with four phenylethanone molecules while intermolecular C—H···O hydrogen bonds involving the ketone group link phenylethanone molecules together into layers parallel to (100).

For related compounds containing a 2-(1H-1,2,4-triazol-1-yl)-1-phenylethanone fragment, see: Akira et al. (1985); Yoshimi et al. (2000); Yuan et al. (2007); Tao et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound showing the intermolecular O—H···N hydrogen bonds (dashed lines).
1-(4-Fluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone hemihydrate top
Crystal data top
C10H8FN3O·0.5H2ODx = 1.394 Mg m3
Mr = 214.2Melting point: 397 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 25 reflections
a = 24.419 (5) Åθ = 9–13°
b = 10.147 (2) ŵ = 0.11 mm1
c = 8.2410 (16) ÅT = 293 K
V = 2042.0 (7) Å3Prism, yellow
Z = 80.3 × 0.2 × 0.2 mm
F(000) = 888
Data collection top
Enraf–Nonius CAD-4
diffractometer
1087 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 2929
Absorption correction: ψ scan
(North et al., 1968)
k = 120
Tmin = 0.968, Tmax = 0.978l = 09
3626 measured reflections3 standard reflections every 200 reflections
1844 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.084P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1844 reflectionsΔρmax = 0.17 e Å3
145 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.062 (7)
Crystal data top
C10H8FN3O·0.5H2OV = 2042.0 (7) Å3
Mr = 214.2Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 24.419 (5) ŵ = 0.11 mm1
b = 10.147 (2) ÅT = 293 K
c = 8.2410 (16) Å0.3 × 0.2 × 0.2 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1087 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.057
Tmin = 0.968, Tmax = 0.9783 standard reflections every 200 reflections
3626 measured reflections intensity decay: 1%
1844 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.17 e Å3
1844 reflectionsΔρmin = 0.15 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.25394 (7)0.00400 (18)0.0459 (2)0.0749 (6)
F0.50013 (8)0.1731 (3)0.0667 (3)0.1359 (10)
N10.10453 (9)0.0848 (3)0.1516 (3)0.0769 (8)
C10.10833 (13)0.1521 (3)0.0121 (4)0.0774 (9)
H1B0.07870.16260.05750.093*
N20.15669 (10)0.2021 (3)0.0199 (3)0.0722 (7)
C20.15429 (11)0.0941 (3)0.2103 (3)0.0640 (7)
H2B0.16580.05690.30760.077*
N30.18595 (8)0.16374 (19)0.1122 (2)0.0546 (6)
C30.24381 (10)0.1914 (2)0.1215 (3)0.0539 (7)
H3A0.25580.18370.23330.065*
H3B0.25040.28120.08640.065*
C40.27685 (10)0.0978 (2)0.0168 (3)0.0492 (6)
C50.33581 (10)0.1223 (2)0.0041 (3)0.0496 (7)
C60.36302 (11)0.2249 (3)0.0712 (3)0.0608 (7)
H6A0.34360.28310.13670.073*
C70.41853 (13)0.2421 (3)0.0504 (4)0.0759 (9)
H7A0.43700.31030.10240.091*
C80.44541 (13)0.1573 (4)0.0475 (4)0.0867 (10)
C90.42071 (14)0.0552 (3)0.1240 (4)0.1019 (12)
H9A0.44070.00140.19010.122*
C100.36552 (12)0.0370 (3)0.1017 (3)0.0778 (9)
H10A0.34790.03300.15250.093*
OW0.00000.0387 (3)0.25000.1023 (13)
HWA0.0248 (15)0.006 (4)0.220 (5)0.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0593 (11)0.0603 (11)0.1051 (14)0.0056 (10)0.0064 (11)0.0288 (11)
F0.0577 (12)0.172 (2)0.178 (2)0.0314 (14)0.0201 (13)0.0477 (18)
N10.0560 (16)0.0907 (18)0.0842 (17)0.0002 (13)0.0055 (13)0.0031 (15)
C10.0541 (19)0.099 (2)0.079 (2)0.0195 (17)0.0088 (15)0.0097 (19)
N20.0639 (16)0.0880 (17)0.0647 (15)0.0182 (13)0.0064 (12)0.0102 (12)
C20.0618 (18)0.0686 (17)0.0616 (16)0.0001 (14)0.0035 (14)0.0044 (14)
N30.0553 (13)0.0557 (12)0.0528 (12)0.0055 (10)0.0002 (10)0.0006 (10)
C30.0585 (16)0.0502 (13)0.0530 (13)0.0014 (11)0.0003 (12)0.0006 (12)
C40.0551 (15)0.0431 (12)0.0495 (14)0.0019 (11)0.0063 (11)0.0005 (11)
C50.0520 (15)0.0504 (14)0.0465 (13)0.0037 (11)0.0024 (11)0.0004 (11)
C60.0620 (17)0.0580 (15)0.0623 (15)0.0105 (13)0.0025 (13)0.0093 (13)
C70.069 (2)0.080 (2)0.0786 (19)0.0229 (16)0.0005 (16)0.0123 (16)
C80.057 (2)0.107 (3)0.096 (2)0.0199 (18)0.0096 (17)0.015 (2)
C90.066 (2)0.113 (3)0.126 (3)0.0109 (19)0.027 (2)0.053 (2)
C100.0627 (19)0.082 (2)0.088 (2)0.0122 (15)0.0084 (16)0.0342 (17)
OW0.071 (2)0.085 (2)0.150 (3)0.0000.034 (2)0.000
Geometric parameters (Å, º) top
O—C41.219 (3)C4—C51.471 (3)
F—C81.355 (3)C5—C61.382 (3)
N1—C21.311 (3)C5—C101.387 (3)
N1—C11.341 (4)C6—C71.377 (4)
C1—N21.312 (4)C6—H6A0.9300
C1—H1B0.9300C7—C81.350 (4)
N2—N31.359 (3)C7—H7A0.9300
C2—N31.323 (3)C8—C91.354 (4)
C2—H2B0.9300C9—C101.372 (4)
N3—C31.443 (3)C9—H9A0.9300
C3—C41.516 (3)C10—H10A0.9300
C3—H3A0.9700OW—HWA0.79 (4)
C3—H3B0.9700
C2—N1—C1102.4 (2)C5—C4—C3118.8 (2)
N2—C1—N1115.6 (3)C6—C5—C10118.6 (2)
N2—C1—H1B122.2C6—C5—C4123.1 (2)
N1—C1—H1B122.2C10—C5—C4118.3 (2)
C1—N2—N3101.6 (2)C7—C6—C5120.9 (3)
N1—C2—N3110.8 (2)C7—C6—H6A119.6
N1—C2—H2B124.6C5—C6—H6A119.6
N3—C2—H2B124.6C8—C7—C6118.1 (3)
C2—N3—N2109.6 (2)C8—C7—H7A120.9
C2—N3—C3130.1 (2)C6—C7—H7A120.9
N2—N3—C3120.1 (2)C7—C8—C9123.3 (3)
N3—C3—C4111.66 (19)C7—C8—F118.3 (3)
N3—C3—H3A109.3C9—C8—F118.4 (3)
C4—C3—H3A109.3C8—C9—C10118.6 (3)
N3—C3—H3B109.3C8—C9—H9A120.7
C4—C3—H3B109.3C10—C9—H9A120.7
H3A—C3—H3B107.9C9—C10—C5120.5 (3)
O—C4—C5122.1 (2)C9—C10—H10A119.8
O—C4—C3119.1 (2)C5—C10—H10A119.8
C2—N1—C1—N20.1 (3)O—C4—C5—C101.6 (4)
N1—C1—N2—N30.5 (3)C3—C4—C5—C10179.2 (2)
C1—N1—C2—N30.4 (3)C10—C5—C6—C70.2 (4)
N1—C2—N3—N20.8 (3)C4—C5—C6—C7178.6 (2)
N1—C2—N3—C3175.2 (2)C5—C6—C7—C81.0 (4)
C1—N2—N3—C20.7 (3)C6—C7—C8—C91.1 (5)
C1—N2—N3—C3175.8 (2)C6—C7—C8—F179.2 (3)
C2—N3—C3—C497.0 (3)C7—C8—C9—C100.3 (6)
N2—N3—C3—C476.9 (3)F—C8—C9—C10178.5 (3)
N3—C3—C4—O8.4 (3)C8—C9—C10—C50.5 (5)
N3—C3—C4—C5172.43 (19)C6—C5—C10—C90.6 (4)
O—C4—C5—C6177.3 (2)C4—C5—C10—C9179.5 (3)
C3—C4—C5—C61.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWA···N10.80 (4)2.18 (4)2.957 (3)166 (4)
C2—H2B···Oi0.932.543.309 (3)140
C3—H3B···Oii0.972.513.459 (3)166
C7—H7A···OWiii0.932.493.407 (4)169
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H8FN3O·0.5H2O
Mr214.2
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)24.419 (5), 10.147 (2), 8.2410 (16)
V3)2042.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.968, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
3626, 1844, 1087
Rint0.057
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.160, 1.00
No. of reflections1844
No. of parameters145
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWA···N10.80 (4)2.18 (4)2.957 (3)166 (4)
C2—H2B···Oi0.93002.54003.309 (3)140.00
C3—H3B···Oii0.97002.51003.459 (3)166.00
C7—H7A···OWiii0.93002.49003.407 (4)169.00
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAkira, S., Hideo, S., Noboru, H., Yukio, M., Akira, N. & Kenichi, I. (1985). JP Patent No. JP60260562.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationYuan, L., Tao, X., Xu, B., Wu, W.-Y. & Wang, J.-T. (2007). Acta Cryst. E63, o1640–o1641.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, X., Yuan, L., Zhang, X.-Q., Jing, C. & Wang, J.-T. (2007). Acta Cryst. E63, o1330–o1331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYoshimi, N., Tetsuto, O., Akira, S., Hiroki, K. & Kazuo, K. (2000). Antimicrob. Agents Chemother. 4, 81–102.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds