metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(2,4,6-tri-2-pyridyl-1,3,5-triazine-κ3N2,N1,N6)manganese(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 26 October 2011; accepted 27 October 2011; online 5 November 2011)

The MnII ion in the title complex, [MnBr2(C18H12N6)], is five-coordinated in a distorted square-pyramidal geometry by three N atoms of the tridentate 2,4,6-tri-2-pyridyl-1,3,5-triazine (tptz) ligand and two bromide anions. In the crystal, the pyridyl rings coordinated to the Mn atom are inclined slightly to their carrier triazine ring [dihedral angles = 8.0 (3) and 7.5 (3)°], whereas the uncoordinated pyridyl ring is located approximately parallel to the triazine ring [dihedral angle = 3.7 (3)°]. The complexes are stacked in columns along the a axis and linked by inter­molecular C—H⋯Br hydrogen bonds, forming chains. In the column, inter­molecular ππ inter­actions between the six-membered rings are present, the shortest centroid–centroid distance being 3.750 (4) Å.

Related literature

For the crystal structure of the related compound [MnBr2(tptz)(H2O)]·H2O, see: Ha (2011[Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 57-58.]).

[Scheme 1]

Experimental

Crystal data
  • [MnBr2(C18H12N6)]

  • Mr = 527.10

  • Triclinic, [P \overline 1]

  • a = 8.7095 (19) Å

  • b = 10.498 (2) Å

  • c = 11.213 (3) Å

  • α = 110.094 (4)°

  • β = 98.471 (4)°

  • γ = 91.820 (5)°

  • V = 948.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.92 mm−1

  • T = 200 K

  • 0.27 × 0.17 × 0.09 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.695, Tmax = 1.000

  • 6897 measured reflections

  • 4548 independent reflections

  • 3124 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.114

  • S = 1.14

  • 4548 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—N1 2.181 (4)
Mn1—N4 2.314 (5)
Mn1—N6 2.331 (4)
Mn1—Br2 2.4884 (11)
Mn1—Br1 2.4957 (11)
N1—Mn1—N4 70.43 (15)
N1—Mn1—N6 71.07 (16)
Br2—Mn1—Br1 111.10 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Br1i 0.95 2.91 3.782 (6) 153
C15—H15⋯Br1ii 0.95 2.91 3.744 (6) 148
Symmetry codes: (i) -x, -y+2, -z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title complex, [MnBr2(tptz)] (tptz = 2,4,6-tri-2-pyridyl-1,3,5-triazine, C18H12N6), the MnII ion is five-coordinated in a distorted square-pyramidal geometry by three N atoms of the tridentate tptz ligand and two bromide anions (Fig. 1). By contrast, in the previously reported analogous complex [MnBr2(tptz)(H2O)].H2O, obtained from a CH3CN solution, the MnII ion is six-coordinated in a distorted octahedral environment by three N atoms, two Br atoms and one O atom from the water ligand (Ha, 2011).

While the Mn—Br bond lengths are almost equal, the Mn—N bond lengths are somewhat different (Table 1). The Mn1—N4/6(pyridyl) bonds are slightly longer than the Mn1—N1(triazine) bond. In the crystal, the pyridyl rings coordinated to the Mn atom are inclined slightly to their carrier triazine ring [dihedral angles = 8.0 (3)° and 7.5 (3)°], whereas the uncoordinated pyridyl ring is located approximately parallel to the triazine ring [dihedral angle = 3.7 (3)°]. The complexes are stacked in columns along the a axis and linked by intermolecular C—H···Br hydrogen bonds, forming one-dimensional chains (Fig. 2 and Table 2). In the column, intermolecular π-π interactions between the six-membered rings are present, the shortest centroid-centroid distance being 3.750 (4) Å.

Related literature top

For the crystal structure of the related compound [MnBr2(tptz)(H2O)].H2O, see: Ha (2011).

Experimental top

To a solution of MnBr2.4H2O (0.2868 g, 1.00 mmol) in MeOH (30 ml) was added 2,4,6-tri-2-pyridyl-1,3,5-triazine (0.1561 g, 0.50 mmol) and stirred for 3 h at room temperature. The formed precipitate was separated by filtration and washed with MeOH and dried under vacuum, to give an orange powder (0.1065 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a dimethyl sulfoxide (DMSO) solution at 90 °C.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (0.90 e Å-3) and the deepest hole (-0.99 e Å-3) in the difference Fourier map are located 1.65 Å and 0.80 Å from the atoms H16 and Br1, respectively.

Structure description top

In the title complex, [MnBr2(tptz)] (tptz = 2,4,6-tri-2-pyridyl-1,3,5-triazine, C18H12N6), the MnII ion is five-coordinated in a distorted square-pyramidal geometry by three N atoms of the tridentate tptz ligand and two bromide anions (Fig. 1). By contrast, in the previously reported analogous complex [MnBr2(tptz)(H2O)].H2O, obtained from a CH3CN solution, the MnII ion is six-coordinated in a distorted octahedral environment by three N atoms, two Br atoms and one O atom from the water ligand (Ha, 2011).

While the Mn—Br bond lengths are almost equal, the Mn—N bond lengths are somewhat different (Table 1). The Mn1—N4/6(pyridyl) bonds are slightly longer than the Mn1—N1(triazine) bond. In the crystal, the pyridyl rings coordinated to the Mn atom are inclined slightly to their carrier triazine ring [dihedral angles = 8.0 (3)° and 7.5 (3)°], whereas the uncoordinated pyridyl ring is located approximately parallel to the triazine ring [dihedral angle = 3.7 (3)°]. The complexes are stacked in columns along the a axis and linked by intermolecular C—H···Br hydrogen bonds, forming one-dimensional chains (Fig. 2 and Table 2). In the column, intermolecular π-π interactions between the six-membered rings are present, the shortest centroid-centroid distance being 3.750 (4) Å.

For the crystal structure of the related compound [MnBr2(tptz)(H2O)].H2O, see: Ha (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level; H atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. Hydrogen-bond interactions are drawn with dashed lines.
Dibromido(2,4,6-tri-2-pyridyl-1,3,5-triazine- κ3N2,N1,N6)manganese(II) top
Crystal data top
[MnBr2(C18H12N6)]Z = 2
Mr = 527.10F(000) = 514
Triclinic, P1Dx = 1.846 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7095 (19) ÅCell parameters from 2967 reflections
b = 10.498 (2) Åθ = 2.3–28.3°
c = 11.213 (3) ŵ = 4.92 mm1
α = 110.094 (4)°T = 200 K
β = 98.471 (4)°Block, orange
γ = 91.820 (5)°0.27 × 0.17 × 0.09 mm
V = 948.5 (4) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
4548 independent reflections
Radiation source: fine-focus sealed tube3124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 116
Tmin = 0.695, Tmax = 1.000k = 1214
6897 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0037P)2 + 4.4503P]
where P = (Fo2 + 2Fc2)/3
4548 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 1.00 e Å3
Crystal data top
[MnBr2(C18H12N6)]γ = 91.820 (5)°
Mr = 527.10V = 948.5 (4) Å3
Triclinic, P1Z = 2
a = 8.7095 (19) ÅMo Kα radiation
b = 10.498 (2) ŵ = 4.92 mm1
c = 11.213 (3) ÅT = 200 K
α = 110.094 (4)°0.27 × 0.17 × 0.09 mm
β = 98.471 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4548 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3124 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 1.000Rint = 0.024
6897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.14Δρmax = 0.90 e Å3
4548 reflectionsΔρmin = 1.00 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.60194 (9)1.09912 (9)0.35103 (8)0.0302 (2)
Br10.69262 (7)1.19838 (8)0.19802 (6)0.04687 (19)
Br20.77379 (7)1.18883 (7)0.56522 (6)0.04513 (19)
N10.3893 (5)0.9697 (4)0.2464 (4)0.0269 (9)
N20.2650 (5)0.7593 (4)0.0981 (4)0.0285 (10)
N30.1203 (5)0.9522 (5)0.1701 (4)0.0302 (10)
N40.6578 (5)0.8741 (5)0.2753 (4)0.0302 (10)
N50.0035 (5)0.6182 (5)0.0683 (5)0.0377 (11)
N60.3875 (5)1.2202 (5)0.4059 (4)0.0314 (10)
C10.3892 (5)0.8368 (6)0.1774 (5)0.0254 (11)
C20.5412 (6)0.7819 (6)0.1970 (5)0.0296 (12)
C30.5601 (6)0.6439 (6)0.1409 (5)0.0352 (13)
H30.47510.58240.08680.042*
C40.7049 (7)0.5973 (7)0.1651 (6)0.0430 (15)
H40.72130.50390.12740.052*
C50.8253 (7)0.6917 (7)0.2461 (6)0.0435 (15)
H50.92560.66350.26540.052*
C60.7969 (6)0.8277 (6)0.2984 (6)0.0369 (14)
H60.88010.89100.35330.044*
C70.1345 (6)0.8229 (5)0.0923 (5)0.0263 (11)
C80.0098 (6)0.7492 (6)0.0026 (5)0.0291 (11)
C90.1432 (6)0.8194 (6)0.0015 (6)0.0358 (13)
H90.14210.91260.05050.043*
C100.2769 (6)0.7486 (7)0.0842 (6)0.0419 (15)
H100.36990.79260.09020.050*
C110.2733 (7)0.6134 (7)0.1577 (6)0.0412 (15)
H110.36300.56290.21560.049*
C120.1355 (7)0.5530 (7)0.1450 (6)0.0465 (16)
H120.13500.45910.19400.056*
C130.2490 (6)1.0202 (5)0.2444 (5)0.0275 (11)
C140.2470 (6)1.1606 (6)0.3374 (5)0.0313 (12)
C150.1094 (7)1.2227 (6)0.3520 (6)0.0456 (16)
H150.01281.17710.30200.055*
C160.1168 (8)1.3530 (7)0.4413 (8)0.060 (2)
H160.02471.39860.45360.071*
C170.2589 (8)1.4160 (7)0.5124 (7)0.0547 (19)
H170.26611.50540.57440.066*
C180.3904 (7)1.3475 (6)0.4924 (6)0.0387 (14)
H180.48781.39190.54170.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0218 (4)0.0322 (5)0.0322 (4)0.0010 (3)0.0009 (3)0.0085 (4)
Br10.0296 (3)0.0690 (5)0.0512 (4)0.0037 (3)0.0040 (3)0.0339 (4)
Br20.0370 (3)0.0562 (4)0.0340 (3)0.0057 (3)0.0062 (2)0.0114 (3)
N10.020 (2)0.024 (2)0.030 (2)0.0003 (17)0.0017 (17)0.0040 (18)
N20.025 (2)0.030 (3)0.029 (2)0.0073 (18)0.0027 (18)0.0082 (19)
N30.020 (2)0.027 (3)0.042 (3)0.0041 (18)0.0024 (19)0.013 (2)
N40.0149 (19)0.037 (3)0.032 (2)0.0013 (18)0.0042 (17)0.008 (2)
N50.027 (2)0.036 (3)0.043 (3)0.001 (2)0.005 (2)0.009 (2)
N60.019 (2)0.031 (3)0.038 (3)0.0010 (18)0.0027 (18)0.006 (2)
C10.008 (2)0.041 (3)0.024 (2)0.0005 (19)0.0005 (17)0.008 (2)
C20.026 (3)0.029 (3)0.028 (3)0.000 (2)0.004 (2)0.003 (2)
C30.030 (3)0.033 (3)0.036 (3)0.002 (2)0.002 (2)0.006 (2)
C40.038 (3)0.039 (4)0.048 (4)0.017 (3)0.005 (3)0.010 (3)
C50.028 (3)0.044 (4)0.052 (4)0.011 (3)0.003 (3)0.012 (3)
C60.020 (3)0.045 (4)0.040 (3)0.004 (2)0.000 (2)0.009 (3)
C70.022 (2)0.026 (3)0.029 (3)0.001 (2)0.000 (2)0.009 (2)
C80.027 (3)0.030 (3)0.030 (3)0.001 (2)0.001 (2)0.012 (2)
C90.028 (3)0.037 (3)0.043 (3)0.006 (2)0.000 (2)0.017 (3)
C100.023 (3)0.058 (4)0.046 (4)0.002 (3)0.004 (2)0.023 (3)
C110.027 (3)0.051 (4)0.039 (3)0.010 (3)0.008 (2)0.012 (3)
C120.040 (4)0.034 (4)0.053 (4)0.006 (3)0.002 (3)0.003 (3)
C130.018 (2)0.028 (3)0.036 (3)0.003 (2)0.000 (2)0.012 (2)
C140.029 (3)0.029 (3)0.036 (3)0.004 (2)0.007 (2)0.010 (2)
C150.022 (3)0.040 (4)0.063 (4)0.005 (2)0.002 (3)0.006 (3)
C160.044 (4)0.030 (4)0.087 (6)0.011 (3)0.013 (4)0.004 (4)
C170.049 (4)0.036 (4)0.065 (5)0.001 (3)0.013 (3)0.001 (3)
C180.034 (3)0.030 (3)0.045 (3)0.004 (2)0.005 (3)0.005 (3)
Geometric parameters (Å, º) top
Mn1—N12.181 (4)C4—H40.9500
Mn1—N42.314 (5)C5—C61.390 (8)
Mn1—N62.331 (4)C5—H50.9500
Mn1—Br22.4884 (11)C6—H60.9500
Mn1—Br12.4957 (11)C7—C81.490 (7)
N1—C11.343 (7)C8—C91.399 (8)
N1—C131.348 (6)C9—C101.387 (8)
N2—C11.337 (6)C9—H90.9500
N2—C71.341 (6)C10—C111.378 (9)
N3—C131.314 (6)C10—H100.9500
N3—C71.359 (7)C11—C121.386 (9)
N4—C61.343 (7)C11—H110.9500
N4—C21.353 (6)C12—H120.9500
N5—C121.335 (7)C13—C141.486 (7)
N5—C81.338 (7)C14—C151.387 (8)
N6—C141.350 (7)C15—C161.383 (9)
N6—C181.352 (7)C15—H150.9500
C1—C21.477 (7)C16—C171.379 (9)
C2—C31.393 (8)C16—H160.9500
C3—C41.390 (8)C17—C181.377 (9)
C3—H30.9500C17—H170.9500
C4—C51.393 (8)C18—H180.9500
N1—Mn1—N470.43 (15)N4—C6—H6118.3
N1—Mn1—N671.07 (16)C5—C6—H6118.3
N4—Mn1—N6137.87 (15)N2—C7—N3123.9 (4)
N1—Mn1—Br2143.00 (12)N2—C7—C8120.3 (5)
N4—Mn1—Br2102.02 (11)N3—C7—C8115.6 (4)
N6—Mn1—Br298.41 (11)N5—C8—C9124.0 (5)
N1—Mn1—Br1105.80 (12)N5—C8—C7117.3 (5)
N4—Mn1—Br1104.49 (12)C9—C8—C7118.6 (5)
N6—Mn1—Br1101.81 (12)C10—C9—C8117.8 (6)
Br2—Mn1—Br1111.10 (4)C10—C9—H9121.1
C1—N1—C13115.7 (4)C8—C9—H9121.1
C1—N1—Mn1122.8 (3)C11—C10—C9119.1 (6)
C13—N1—Mn1121.5 (3)C11—C10—H10120.4
C1—N2—C7115.2 (4)C9—C10—H10120.4
C13—N3—C7115.9 (4)C10—C11—C12118.5 (5)
C6—N4—C2117.2 (5)C10—C11—H11120.8
C6—N4—Mn1125.8 (4)C12—C11—H11120.8
C2—N4—Mn1116.9 (3)N5—C12—C11124.2 (6)
C12—N5—C8116.3 (5)N5—C12—H12117.9
C14—N6—C18116.7 (5)C11—C12—H12117.9
C14—N6—Mn1116.3 (4)N3—C13—N1124.1 (5)
C18—N6—Mn1126.7 (4)N3—C13—C14120.9 (5)
N2—C1—N1124.3 (4)N1—C13—C14114.9 (4)
N2—C1—C2122.1 (5)N6—C14—C15123.6 (5)
N1—C1—C2113.6 (4)N6—C14—C13114.9 (5)
N4—C2—C3123.0 (5)C15—C14—C13121.5 (5)
N4—C2—C1115.3 (5)C16—C15—C14118.1 (6)
C3—C2—C1121.7 (5)C16—C15—H15120.9
C4—C3—C2119.2 (5)C14—C15—H15120.9
C4—C3—H3120.4C17—C16—C15119.3 (6)
C2—C3—H3120.4C17—C16—H16120.3
C3—C4—C5118.0 (6)C15—C16—H16120.3
C3—C4—H4121.0C18—C17—C16119.1 (6)
C5—C4—H4121.0C18—C17—H17120.5
C6—C5—C4119.2 (5)C16—C17—H17120.5
C6—C5—H5120.4N6—C18—C17123.2 (5)
C4—C5—H5120.4N6—C18—H18118.4
N4—C6—C5123.3 (5)C17—C18—H18118.4
N4—Mn1—N1—C19.0 (4)C3—C4—C5—C60.5 (10)
N6—Mn1—N1—C1171.5 (4)C2—N4—C6—C50.1 (9)
Br2—Mn1—N1—C193.0 (4)Mn1—N4—C6—C5177.4 (5)
Br1—Mn1—N1—C191.1 (4)C4—C5—C6—N40.2 (10)
N4—Mn1—N1—C13172.9 (4)C1—N2—C7—N37.0 (8)
N6—Mn1—N1—C1310.3 (4)C1—N2—C7—C8177.1 (5)
Br2—Mn1—N1—C1388.9 (4)C13—N3—C7—N27.4 (8)
Br1—Mn1—N1—C1387.0 (4)C13—N3—C7—C8176.5 (5)
N1—Mn1—N4—C6176.0 (5)C12—N5—C8—C91.3 (9)
N6—Mn1—N4—C6151.0 (4)C12—N5—C8—C7178.0 (5)
Br2—Mn1—N4—C633.8 (5)N2—C7—C8—N51.4 (8)
Br1—Mn1—N4—C682.0 (5)N3—C7—C8—N5174.9 (5)
N1—Mn1—N4—C26.5 (4)N2—C7—C8—C9179.4 (5)
N6—Mn1—N4—C231.5 (5)N3—C7—C8—C94.3 (7)
Br2—Mn1—N4—C2148.8 (4)N5—C8—C9—C100.1 (9)
Br1—Mn1—N4—C295.4 (4)C7—C8—C9—C10179.1 (5)
N1—Mn1—N6—C148.0 (4)C8—C9—C10—C110.2 (9)
N4—Mn1—N6—C1432.9 (5)C9—C10—C11—C120.6 (9)
Br2—Mn1—N6—C14151.4 (4)C8—N5—C12—C112.2 (10)
Br1—Mn1—N6—C1494.9 (4)C10—C11—C12—N51.9 (10)
N1—Mn1—N6—C18177.2 (5)C7—N3—C13—N10.3 (8)
N4—Mn1—N6—C18152.3 (4)C7—N3—C13—C14177.6 (5)
Br2—Mn1—N6—C1833.8 (5)C1—N1—C13—N37.6 (8)
Br1—Mn1—N6—C1879.9 (5)Mn1—N1—C13—N3170.7 (4)
C7—N2—C1—N11.2 (7)C1—N1—C13—C14170.5 (5)
C7—N2—C1—C2178.8 (5)Mn1—N1—C13—C1411.2 (6)
C13—N1—C1—N28.0 (7)C18—N6—C14—C150.2 (9)
Mn1—N1—C1—N2170.2 (4)Mn1—N6—C14—C15175.6 (5)
C13—N1—C1—C2171.9 (5)C18—N6—C14—C13179.4 (5)
Mn1—N1—C1—C29.8 (6)Mn1—N6—C14—C135.3 (6)
C6—N4—C2—C30.0 (8)N3—C13—C14—N6178.6 (5)
Mn1—N4—C2—C3177.7 (4)N1—C13—C14—N63.2 (7)
C6—N4—C2—C1178.3 (5)N3—C13—C14—C152.2 (9)
Mn1—N4—C2—C14.1 (6)N1—C13—C14—C15175.9 (6)
N2—C1—C2—N4176.9 (5)N6—C14—C15—C160.2 (10)
N1—C1—C2—N43.1 (7)C13—C14—C15—C16179.3 (6)
N2—C1—C2—C34.8 (8)C14—C15—C16—C170.2 (11)
N1—C1—C2—C3175.1 (5)C15—C16—C17—C180.1 (12)
N4—C2—C3—C40.4 (9)C14—N6—C18—C170.2 (9)
C1—C2—C3—C4178.5 (5)Mn1—N6—C18—C17175.0 (5)
C2—C3—C4—C50.6 (9)C16—C17—C18—N60.2 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Br1i0.952.913.782 (6)153
C15—H15···Br1ii0.952.913.744 (6)148
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[MnBr2(C18H12N6)]
Mr527.10
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.7095 (19), 10.498 (2), 11.213 (3)
α, β, γ (°)110.094 (4), 98.471 (4), 91.820 (5)
V3)948.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)4.92
Crystal size (mm)0.27 × 0.17 × 0.09
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.695, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6897, 4548, 3124
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.114, 1.14
No. of reflections4548
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 1.00

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Mn1—N12.181 (4)Mn1—Br22.4884 (11)
Mn1—N42.314 (5)Mn1—Br12.4957 (11)
Mn1—N62.331 (4)
N1—Mn1—N470.43 (15)Br2—Mn1—Br1111.10 (4)
N1—Mn1—N671.07 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Br1i0.952.913.782 (6)153.1
C15—H15···Br1ii0.952.913.744 (6)147.6
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 57–58.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds