metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Nitrato-κO)bis­­[5-(pyridin-2-yl)pyrazine-2-carbo­nitrile-κ2N4,N5]silver(I)

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: zhangfcnu@163.com

(Received 4 November 2011; accepted 18 November 2011; online 30 November 2011)

In the mononuclear title complex, [Ag(NO3)(C10H6N4)2], two κ2N:N′-chelating 5-(pyridin-2-yl)pyrazine-2-carbonitrile ligands surround the AgI atom, forming an N4O square-pyramidal coordination geometry with one nitrate anion bonding at the apical site. The two heterocyclic rings of the 5-(2-pyridin-2-­yl)pyrazine-2-carbonitrile ligand are almost coplanar [dihedral angle = 5.63 (8)°], and the two chelating ligands are in an anti relationship. The mononuclear units are inter­connected along [010] through C—H⋯O(nitrate) and C—H⋯N(cyano) inter­actions, forming an infinite chain. The mononuclear units are stacked along the a axis and inter­connected via inter­molecular ππ stacking inter­actions between adjacent pyridine and pyrazine rings [centroid–centroid distances = 3.984 (2) and 3.595 (3) Å], thus forming a three-dimensional supra­molecular structure.

Related literature

For coordination complexes with pyridyl-based ligands, see: Dunne et al. (1997[Dunne, S. J., Summers, L. A. & von Nagy-Felsobuki, E. I. (1997). Coord. Chem. Rev. 165, 1-92.]); Wang et al. (2009[Wang, Y., Zhao, X. Q., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2009). Cryst. Growth Des. 9, 2137-2145.]). For a related complex with 5-(2-pyridin-2-­yl)pyrazine-2-carbonitrile, see: Wang et al. (2010[Wang, Z.-J., Zhang, F. & Wan, C.-Q. (2010). Acta Cryst. E66, m1232-m1233.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NO3)(C10H6N4)2]

  • Mr = 534.26

  • Orthorhombic, P b c a

  • a = 14.000 (3) Å

  • b = 12.133 (2) Å

  • c = 23.832 (4) Å

  • V = 4048.4 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 293 K

  • 0.44 × 0.35 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.631, Tmax = 1.000

  • 27695 measured reflections

  • 5029 independent reflections

  • 3255 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.099

  • S = 1.03

  • 5029 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯O1i 0.93 2.35 3.233 (3) 157
C11—H11A⋯O2ii 0.93 2.54 3.232 (5) 132
C13—H13A⋯N8iii 0.93 2.73 3.319 (3) 122
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridyl based ligands have attracted increasing attention because of their versatile linkage behavior and their artificial and controllable synthesis (Dunne et al., 1997; Wang et al., 2009). Recently, we reported a silver(I) complex derived from 5-(2-pyridyl)pyrazine-2-carbonitrile (Wang et al., 2010). To make a further insight into the coordination chemistry of such a ligand featuring a 2-cyanopyrazinyl group at the 2-pyridyl carbon atom (Scheme 1), herein we present the structure of the new complex [Ag(C10H6N4)2(NO3)].

As shown in Fig. 1, in the mononuclear title complex two κ2 N:N chelating 5-(2-pyridyl)pyrazine-2-carbonitrile ligands surround the AgI center to form a N4O-pyramidal coordination geometry with one nitrate bonding at the axial site. The Ag—N bond lengths lie within the range of 2.301 (2) - 2.579 (3) Å, with Ag1—N1 and Ag1—N4 slighty shorter than Ag1—N2 and Ag1—N5. These bond distances are comparable to those in [Ag(C10H6N4)2]BF4 (2.196 (2) - 2.685 (2) Å) reported by us recently (Wang et al. 2010). Furthermore, in the present case, the nitrate binds to the silver center with Ag1—O1 = 2.547 (3) Å. It is worth to note that a second O atom of the nitrate interacts with the silver center as shown by the Ag1—O2 distance of 2.800 (2) Å. Along the b axis, the mononuclear moieties are arranged with two adjacent ones around an inversion center. Indeed, C—H···O(nitrate) and C—H···N(cyano) interactions (Table 1) are found to link the mononuclear units together to form an infinite chain structure along the b axis (Fig. 2). Along the a direction, intermolecular ππ stacking interactions between adjacent pyridyl rings and pyrazinyl rings connect the mononuclear units together, forming a three-dimensional framework (Fig. 3). The distance between Cg1 (N4-N11-C12-C13-C14-C15) and Cg2i (N5-N16-C17-N6-C18-C19) is 3.984 (2) Å, while that between Cg3 (N1-N5-C6-N7-C8-C9) and Cg4ii (N2-C1-C2-N3-C3-C4) equals to 3.595 (3) Å (symmetry codes: i = –x, –y-1, –z+1; ii = –x+0.5, –y+1, z+1.5).

Related literature top

For coordination complexes with pyridyl-based ligands, see: Dunne et al. (1997); Wang et al. (2009). For a related complex with 5-(2-pyridyl)pyrazine-2-carbonitrile, see: Wang et al. (2010).

Experimental top

The 5-(2-pyridyl)-2-cyanopyrazine ligand was obtained commercially. The ligand (18.1 mg, 0.1 mmol) and AgNO3 (17 mg, 0.1mmol) were mixed and dissolved in 3 ml methanol, and then 1 ml acetonitrile was subsequently added to make the solution clear. After stirring at room temperature for 3 hours, the resulted solution was filtrated, and the clear solution was kept in air for about one week at room temperature to yield yellow block-like crystals (21.1.0 mg, 79% yield).

Refinement top

All H atoms were discernible in the difference electron density maps. Nevertheless, they were placed into idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Pyridyl based ligands have attracted increasing attention because of their versatile linkage behavior and their artificial and controllable synthesis (Dunne et al., 1997; Wang et al., 2009). Recently, we reported a silver(I) complex derived from 5-(2-pyridyl)pyrazine-2-carbonitrile (Wang et al., 2010). To make a further insight into the coordination chemistry of such a ligand featuring a 2-cyanopyrazinyl group at the 2-pyridyl carbon atom (Scheme 1), herein we present the structure of the new complex [Ag(C10H6N4)2(NO3)].

As shown in Fig. 1, in the mononuclear title complex two κ2 N:N chelating 5-(2-pyridyl)pyrazine-2-carbonitrile ligands surround the AgI center to form a N4O-pyramidal coordination geometry with one nitrate bonding at the axial site. The Ag—N bond lengths lie within the range of 2.301 (2) - 2.579 (3) Å, with Ag1—N1 and Ag1—N4 slighty shorter than Ag1—N2 and Ag1—N5. These bond distances are comparable to those in [Ag(C10H6N4)2]BF4 (2.196 (2) - 2.685 (2) Å) reported by us recently (Wang et al. 2010). Furthermore, in the present case, the nitrate binds to the silver center with Ag1—O1 = 2.547 (3) Å. It is worth to note that a second O atom of the nitrate interacts with the silver center as shown by the Ag1—O2 distance of 2.800 (2) Å. Along the b axis, the mononuclear moieties are arranged with two adjacent ones around an inversion center. Indeed, C—H···O(nitrate) and C—H···N(cyano) interactions (Table 1) are found to link the mononuclear units together to form an infinite chain structure along the b axis (Fig. 2). Along the a direction, intermolecular ππ stacking interactions between adjacent pyridyl rings and pyrazinyl rings connect the mononuclear units together, forming a three-dimensional framework (Fig. 3). The distance between Cg1 (N4-N11-C12-C13-C14-C15) and Cg2i (N5-N16-C17-N6-C18-C19) is 3.984 (2) Å, while that between Cg3 (N1-N5-C6-N7-C8-C9) and Cg4ii (N2-C1-C2-N3-C3-C4) equals to 3.595 (3) Å (symmetry codes: i = –x, –y-1, –z+1; ii = –x+0.5, –y+1, z+1.5).

For coordination complexes with pyridyl-based ligands, see: Dunne et al. (1997); Wang et al. (2009). For a related complex with 5-(2-pyridyl)pyrazine-2-carbonitrile, see: Wang et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The infinite chain structure with C—H···O(nitrate) and C—H···N(cyano) interactions between the mononuclear units.The nitrate are shown as thick bonds for clarity.
[Figure 3] Fig. 3. View down the b axis of the packing structure of the title complex. All non-covalent interactions are omitted for clarity.
(Nitrato-κO)bis[5-(pyridin-2-yl)pyrazine-2-carbonitrile- κ2N4,N5]silver(I) top
Crystal data top
[Ag(NO3)(C10H6N4)2]Z = 8
Mr = 534.26F(000) = 2128
Orthorhombic, PbcaDx = 1.753 Mg m3
Hall symbol: -P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 14.000 (3) ŵ = 1.04 mm1
b = 12.133 (2) ÅT = 293 K
c = 23.832 (4) ÅBlock, yellow
V = 4048.4 (13) Å30.44 × 0.35 × 0.25 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5029 independent reflections
Radiation source: fine-focus sealed tube3255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1816
Tmin = 0.631, Tmax = 1.000k = 1216
27695 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0413P)2 + 2.5136P] P = (Fo2 + 2Fc2)/3
5029 reflections(Δ/σ)max = 0.002
298 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Ag(NO3)(C10H6N4)2]V = 4048.4 (13) Å3
Mr = 534.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.000 (3) ŵ = 1.04 mm1
b = 12.133 (2) ÅT = 293 K
c = 23.832 (4) Å0.44 × 0.35 × 0.25 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5029 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3255 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 1.000Rint = 0.037
27695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.03Δρmax = 0.46 e Å3
5029 reflectionsΔρmin = 0.28 e Å3
298 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.15007 (2)0.51787 (2)0.601301 (9)0.06172 (11)
N50.1257 (2)0.6243 (2)0.69391 (10)0.0614 (7)
N20.14122 (18)0.4141 (2)0.50864 (9)0.0578 (6)
C190.1326 (3)0.7327 (3)0.70324 (12)0.0667 (9)
H19A0.13530.78070.67290.080*
C160.1216 (2)0.5589 (2)0.73859 (11)0.0483 (6)
N60.1332 (2)0.7114 (2)0.80173 (10)0.0705 (8)
C150.1147 (2)0.4379 (2)0.72912 (11)0.0462 (6)
C200.1401 (3)0.8922 (3)0.76683 (13)0.0628 (8)
C180.1356 (2)0.7745 (2)0.75668 (12)0.0539 (7)
C10.1550 (2)0.3072 (3)0.49880 (13)0.0640 (8)
H1A0.16960.26080.52860.077*
N40.11379 (19)0.4031 (2)0.67615 (9)0.0540 (6)
N30.1261 (3)0.3264 (3)0.40160 (11)0.0812 (9)
C40.1200 (2)0.4781 (3)0.46515 (11)0.0538 (7)
C50.1057 (2)0.5976 (3)0.47527 (11)0.0522 (7)
N80.1425 (3)0.9830 (3)0.77670 (15)0.0860 (11)
C20.1481 (2)0.2638 (3)0.44573 (13)0.0618 (8)
C130.1112 (3)0.2529 (3)0.76347 (13)0.0649 (9)
H13A0.11020.20270.79300.078*
N10.1064 (2)0.6321 (2)0.52862 (9)0.0609 (7)
C17B0.1266 (3)0.6037 (3)0.79202 (12)0.0690 (10)
H17A0.12520.55610.82260.083*
C110.1116 (3)0.2943 (3)0.66699 (12)0.0643 (9)
H11A0.11000.26940.63010.077*
C60.0916 (3)0.6712 (3)0.43157 (12)0.0668 (9)
H6A0.09070.64610.39470.080*
C140.1122 (3)0.3652 (3)0.77357 (12)0.0606 (8)
H14A0.11120.39150.81020.073*
C120.1117 (3)0.2179 (3)0.70918 (13)0.0637 (8)
H12A0.11200.14300.70090.076*
C100.1610 (3)0.1471 (4)0.43460 (15)0.0709 (9)
C90.0938 (3)0.7393 (3)0.53821 (13)0.0724 (10)
H9A0.09410.76310.57530.087*
C70.0789 (3)0.7812 (3)0.44284 (13)0.0761 (11)
H7A0.06930.83110.41370.091*
C80.0805 (3)0.8168 (3)0.49718 (14)0.0752 (10)
H8A0.07280.89090.50600.090*
N70.1715 (3)0.0567 (3)0.42452 (16)0.0910 (10)
C30.1130 (3)0.4318 (3)0.41204 (13)0.0793 (11)
H3A0.09810.47800.38210.095*
N90.3705 (3)0.5055 (3)0.60786 (12)0.0663 (8)
O10.3136 (2)0.4333 (3)0.61980 (14)0.0984 (9)
O20.3387 (3)0.5884 (3)0.58609 (14)0.1118 (11)
O30.4546 (3)0.4916 (3)0.61817 (18)0.1278 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0916 (2)0.06265 (17)0.03086 (12)0.00339 (13)0.00402 (10)0.01006 (10)
N50.105 (2)0.0443 (14)0.0350 (12)0.0033 (13)0.0086 (12)0.0042 (10)
N20.0754 (17)0.0645 (17)0.0334 (11)0.0054 (13)0.0044 (11)0.0051 (11)
C190.114 (3)0.0477 (18)0.0387 (14)0.0044 (17)0.0097 (16)0.0058 (13)
C160.0663 (18)0.0449 (15)0.0339 (13)0.0023 (13)0.0041 (11)0.0039 (11)
N60.124 (3)0.0491 (15)0.0385 (12)0.0014 (15)0.0042 (14)0.0024 (12)
C150.0623 (17)0.0428 (15)0.0334 (12)0.0014 (13)0.0018 (11)0.0008 (11)
C200.090 (2)0.050 (2)0.0479 (16)0.0007 (17)0.0101 (16)0.0005 (14)
C180.072 (2)0.0433 (16)0.0464 (15)0.0000 (14)0.0079 (13)0.0014 (13)
C10.080 (2)0.069 (2)0.0432 (16)0.0067 (17)0.0080 (15)0.0051 (15)
N40.0842 (17)0.0446 (14)0.0332 (11)0.0018 (12)0.0021 (11)0.0007 (10)
N30.127 (3)0.077 (2)0.0402 (14)0.0038 (19)0.0035 (15)0.0020 (14)
C40.0628 (18)0.066 (2)0.0320 (13)0.0044 (15)0.0005 (12)0.0074 (13)
C50.0596 (17)0.0646 (19)0.0322 (12)0.0027 (15)0.0009 (12)0.0089 (12)
N80.139 (3)0.0503 (18)0.069 (2)0.0001 (18)0.0090 (19)0.0048 (15)
C20.068 (2)0.068 (2)0.0493 (16)0.0040 (17)0.0014 (14)0.0036 (15)
C130.104 (3)0.0476 (18)0.0434 (15)0.0059 (17)0.0042 (16)0.0107 (13)
N10.0833 (18)0.0636 (17)0.0358 (12)0.0005 (14)0.0047 (12)0.0078 (12)
C17B0.128 (3)0.0420 (17)0.0372 (15)0.0015 (18)0.0034 (16)0.0044 (13)
C110.108 (3)0.0482 (18)0.0373 (15)0.0021 (17)0.0001 (15)0.0038 (13)
C60.087 (2)0.078 (2)0.0353 (14)0.0091 (19)0.0002 (14)0.0127 (15)
C140.097 (2)0.0517 (18)0.0330 (14)0.0058 (17)0.0010 (14)0.0045 (13)
C120.097 (2)0.0418 (17)0.0527 (17)0.0037 (16)0.0004 (16)0.0017 (14)
C100.074 (2)0.080 (3)0.059 (2)0.000 (2)0.0075 (16)0.0096 (19)
C90.106 (3)0.068 (2)0.0438 (16)0.003 (2)0.0050 (17)0.0031 (16)
C70.104 (3)0.075 (3)0.0491 (18)0.014 (2)0.0014 (18)0.0234 (17)
C80.102 (3)0.066 (2)0.0574 (19)0.0054 (19)0.0033 (18)0.0120 (17)
N70.097 (3)0.078 (2)0.098 (3)0.004 (2)0.022 (2)0.021 (2)
C30.134 (3)0.069 (2)0.0357 (15)0.003 (2)0.0082 (18)0.0084 (16)
N90.083 (2)0.065 (2)0.0509 (16)0.0066 (15)0.0031 (14)0.0043 (13)
O10.093 (2)0.084 (2)0.118 (2)0.0032 (17)0.0003 (17)0.0475 (18)
O20.175 (3)0.0582 (17)0.102 (2)0.0110 (18)0.027 (2)0.0188 (17)
O30.078 (2)0.156 (3)0.150 (3)0.005 (2)0.008 (2)0.026 (2)
Geometric parameters (Å, º) top
Ag1—N12.301 (2)C4—C51.483 (4)
Ag1—N42.319 (2)C5—N11.338 (4)
Ag1—N22.545 (3)C5—C61.386 (4)
Ag1—O12.547 (3)C2—C101.453 (6)
Ag1—N52.579 (2)C13—C121.362 (4)
N5—C161.329 (3)C13—C141.383 (4)
N5—C191.338 (4)C13—H13A0.9300
N2—C41.329 (4)N1—C91.333 (4)
N2—C11.332 (4)C17B—H17A0.9300
C19—C181.371 (4)C11—C121.368 (4)
C19—H19A0.9300C11—H11A0.9300
C16—C17B1.386 (4)C6—C71.374 (5)
C16—C151.489 (4)C6—H6A0.9300
N6—C181.319 (4)C14—H14A0.9300
N6—C17B1.331 (4)C12—H12A0.9300
C15—N41.331 (3)C10—N71.132 (5)
C15—C141.379 (4)C9—C81.369 (4)
C20—N81.128 (4)C9—H9A0.9300
C20—C181.450 (4)C7—C81.365 (5)
C1—C21.373 (4)C7—H7A0.9300
C1—H1A0.9300C8—H8A0.9300
N4—C111.338 (4)C3—H3A0.9300
N3—C31.317 (5)N9—O31.215 (5)
N3—C21.333 (4)N9—O21.216 (4)
C4—C31.388 (4)N9—O11.218 (4)
N1—Ag1—N4151.94 (10)C6—C5—C4121.8 (3)
N1—Ag1—N268.39 (9)N3—C2—C1121.7 (3)
N4—Ag1—N2111.09 (9)N3—C2—C10116.1 (3)
N1—Ag1—O1127.70 (10)C1—C2—C10122.2 (3)
N4—Ag1—O179.74 (9)C12—C13—C14118.2 (3)
N2—Ag1—O189.70 (10)C12—C13—H13A120.9
N1—Ag1—N5107.92 (9)C14—C13—H13A120.9
N4—Ag1—N567.26 (8)C9—N1—C5117.8 (3)
N2—Ag1—N5169.60 (9)C9—N1—Ag1119.6 (2)
O1—Ag1—N599.92 (10)C5—N1—Ag1121.9 (2)
C16—N5—C19117.2 (3)N6—C17B—C16123.2 (3)
C16—N5—Ag1113.13 (18)N6—C17B—H17A118.4
C19—N5—Ag1128.68 (19)C16—C17B—H17A118.4
C4—N2—C1117.6 (3)N4—C11—C12123.3 (3)
C4—N2—Ag1113.5 (2)N4—C11—H11A118.4
C1—N2—Ag1128.9 (2)C12—C11—H11A118.4
N5—C19—C18121.4 (3)C7—C6—C5119.8 (3)
N5—C19—H19A119.3C7—C6—H6A120.1
C18—C19—H19A119.3C5—C6—H6A120.1
N5—C16—C17B120.0 (3)C15—C14—C13119.8 (3)
N5—C16—C15118.0 (2)C15—C14—H14A120.1
C17B—C16—C15121.9 (2)C13—C14—H14A120.1
C18—N6—C17B115.5 (3)C13—C12—C11119.1 (3)
N4—C15—C14121.7 (3)C13—C12—H12A120.4
N4—C15—C16117.2 (2)C11—C12—H12A120.4
C14—C15—C16121.1 (2)N7—C10—C2178.2 (4)
N8—C20—C18177.4 (4)N1—C9—C8124.5 (3)
N6—C18—C19122.7 (3)N1—C9—H9A117.8
N6—C18—C20115.9 (3)C8—C9—H9A117.8
C19—C18—C20121.4 (3)C8—C7—C6119.4 (3)
N2—C1—C2121.7 (3)C8—C7—H7A120.3
N2—C1—H1A119.2C6—C7—H7A120.3
C2—C1—H1A119.2C7—C8—C9117.5 (3)
C15—N4—C11117.9 (2)C7—C8—H8A121.2
C15—N4—Ag1122.46 (19)C9—C8—H8A121.2
C11—N4—Ag1118.15 (19)N3—C3—C4123.7 (3)
C3—N3—C2115.9 (3)N3—C3—H3A118.1
N2—C4—C3119.4 (3)C4—C3—H3A118.1
N2—C4—C5118.3 (2)O3—N9—O2123.7 (4)
C3—C4—C5122.3 (3)O3—N9—O1119.2 (4)
N1—C5—C6120.9 (3)O2—N9—O1117.0 (4)
N1—C5—C4117.3 (2)N9—O1—Ag1105.0 (2)
N1—Ag1—N5—C16161.6 (2)Ag1—N2—C4—C50.6 (3)
N4—Ag1—N5—C1611.1 (2)N2—C4—C5—N15.9 (4)
N2—Ag1—N5—C1694.1 (5)C3—C4—C5—N1174.7 (3)
O1—Ag1—N5—C1663.2 (2)N2—C4—C5—C6174.4 (3)
N1—Ag1—N5—C1930.4 (3)C3—C4—C5—C65.0 (5)
N4—Ag1—N5—C19179.1 (3)C3—N3—C2—C10.9 (6)
N2—Ag1—N5—C1998.0 (5)C3—N3—C2—C10179.0 (4)
O1—Ag1—N5—C19104.7 (3)N2—C1—C2—N30.8 (5)
N1—Ag1—N2—C42.6 (2)N2—C1—C2—C10178.8 (3)
N4—Ag1—N2—C4152.4 (2)C6—C5—N1—C90.5 (5)
O1—Ag1—N2—C4128.7 (2)C4—C5—N1—C9179.8 (3)
N5—Ag1—N2—C473.6 (5)C6—C5—N1—Ag1171.4 (2)
N1—Ag1—N2—C1177.5 (3)C4—C5—N1—Ag18.9 (4)
N4—Ag1—N2—C127.7 (3)N4—Ag1—N1—C988.5 (3)
O1—Ag1—N2—C151.2 (3)N2—Ag1—N1—C9176.9 (3)
N5—Ag1—N2—C1106.5 (5)O1—Ag1—N1—C9105.2 (3)
C16—N5—C19—C180.2 (5)N5—Ag1—N1—C913.4 (3)
Ag1—N5—C19—C18167.3 (3)N4—Ag1—N1—C5100.8 (3)
C19—N5—C16—C17B1.4 (5)N2—Ag1—N1—C56.2 (2)
Ag1—N5—C16—C17B168.0 (3)O1—Ag1—N1—C565.5 (3)
C19—N5—C16—C15179.5 (3)N5—Ag1—N1—C5175.9 (2)
Ag1—N5—C16—C1510.1 (3)C18—N6—C17B—C160.6 (6)
N5—C16—C15—N40.4 (4)N5—C16—C17B—N61.7 (6)
C17B—C16—C15—N4177.7 (3)C15—C16—C17B—N6179.7 (3)
N5—C16—C15—C14178.7 (3)C15—N4—C11—C120.9 (5)
C17B—C16—C15—C140.6 (5)Ag1—N4—C11—C12165.4 (3)
C17B—N6—C18—C190.7 (5)N1—C5—C6—C70.5 (5)
C17B—N6—C18—C20178.4 (3)C4—C5—C6—C7179.8 (3)
N5—C19—C18—N60.9 (6)N4—C15—C14—C131.8 (5)
N5—C19—C18—C20178.1 (3)C16—C15—C14—C13176.4 (3)
C4—N2—C1—C20.3 (5)C12—C13—C14—C150.7 (6)
Ag1—N2—C1—C2179.6 (2)C14—C13—C12—C111.0 (6)
C14—C15—N4—C110.9 (5)N4—C11—C12—C131.9 (6)
C16—C15—N4—C11177.3 (3)C5—N1—C9—C80.2 (6)
C14—C15—N4—Ag1166.7 (2)Ag1—N1—C9—C8170.9 (3)
C16—C15—N4—Ag111.5 (4)C5—C6—C7—C80.1 (6)
N1—Ag1—N4—C1597.5 (3)C6—C7—C8—C90.7 (6)
N2—Ag1—N4—C15179.1 (2)N1—C9—C8—C70.8 (6)
O1—Ag1—N4—C1593.5 (3)C2—N3—C3—C40.5 (6)
N5—Ag1—N4—C1511.9 (2)N2—C4—C3—N30.0 (6)
N1—Ag1—N4—C1196.8 (3)C5—C4—C3—N3179.4 (4)
N2—Ag1—N4—C1113.4 (3)O3—N9—O1—Ag1172.5 (3)
O1—Ag1—N4—C1172.3 (3)O2—N9—O1—Ag17.3 (4)
N5—Ag1—N4—C11177.7 (3)N1—Ag1—O1—N939.1 (3)
C1—N2—C4—C30.1 (5)N4—Ag1—O1—N9147.4 (3)
Ag1—N2—C4—C3180.0 (3)N2—Ag1—O1—N9101.1 (2)
C1—N2—C4—C5179.3 (3)N5—Ag1—O1—N982.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···O1i0.932.353.233 (3)157
C11—H11A···O2ii0.932.543.232 (5)132
C13—H13A···N8iii0.932.733.319 (3)122
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ag(NO3)(C10H6N4)2]
Mr534.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.000 (3), 12.133 (2), 23.832 (4)
V3)4048.4 (13)
Z8
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.44 × 0.35 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.631, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27695, 5029, 3255
Rint0.037
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.03
No. of reflections5029
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···O1i0.932.353.233 (3)157
C11—H11A···O2ii0.932.543.232 (5)132
C13—H13A···N8iii0.932.733.319 (3)122
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x, y1, z.
 

Acknowledgements

The authors are grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDunne, S. J., Summers, L. A. & von Nagy-Felsobuki, E. I. (1997). Coord. Chem. Rev. 165, 1–92.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-J., Zhang, F. & Wan, C.-Q. (2010). Acta Cryst. E66, m1232–m1233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y., Zhao, X. Q., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2009). Cryst. Growth Des. 9, 2137–2145.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds