organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Nitro-4-(propyl­amino)­benzo­nitrile

aDepartment of Biological and Chemical Engineering, Chien-shiung Institute of Technology, Taicang 215411, Suzhou, People's Republic of China
*Correspondence e-mail: ntfenger@163.com

(Received 11 October 2011; accepted 30 October 2011; online 12 November 2011)

In the title compound, C10H11N3O2, the nitro group is essentially coplanar with the aromatic ring [dihedral angle = 1.3 (3)°] and forms an intra­molecular amine–nitro N—H⋯O hydrogen bond. In the crystal, weak inter­molecular aromatic C—H⋯Onitro hydrogen bonds link the mol­ecules. Weak aromatic ring ππ inter­actions [minimum ring centroid separation = 3.7744 (13) Å] are also present.

Related literature

For the synthesis of the title compound, see: Ates-Alagoz & Buyukbingol (2001[Ates-Alagoz, Z. & Buyukbingol, E. (2001). Heterocycl. Commun. 7, 455-460.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N3O2

  • Mr = 205.22

  • Triclinic, [P \overline 1]

  • a = 7.6320 (15) Å

  • b = 7.9200 (16) Å

  • c = 9.2440 (18) Å

  • α = 109.30 (3)°

  • β = 91.28 (3)°

  • γ = 93.00 (3)°

  • V = 526.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 four-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.982

  • 2073 measured reflections

  • 1918 independent reflections

  • 1321 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.165

  • S = 1.04

  • 1918 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 2.00 2.641 (2) 131
C9—H9A⋯O1i 0.93 2.42 3.331 (2) 165
Symmetry code: (i) x, y+1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We report herein the crystal structure of the title compound C10H11N3O2. In this molecule (Fig. 1), the bond lengths and angles (Allen et al., 1987) are within normal ranges. The nitro group is essentially coplanar with the aromatic ring forming a dihedral angle of 1.3 (3)° with the ring. The amine H atom forms an intramolecular hydrogen bond with a nitro O-acceptor (O2) (Table 1). In the crystal structure, a weak intermolecular aromatic C—H···Onitro hydrogen bond links the molecules (Fig. 2) while also present are weak aromatic ring ππ interactions [minimum ring centroid separation, 3.7744 (13) Å].

Related literature top

For the synthesis of the title compound, see: Ates-Alagoz & Buyukbingol (2001). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized using the procedure of (Ates-Alagoz & Buyukbingol, 2001). 4-Chloro-3-nitrobenzonitrile (4.2 g, 0.023 mol) was refluxed in 25 ml of n-propylamine and 50 ml of tetrahydrofuran for 4 h. Then solvents were evaporated, water was added to give a precipitate which was collected by filtration and washed with cold ethanol (2 x 15 ml) to afford the yellow solid (4.2 g, 89%). The pure title compound was obtained by recrystallizing from ethanol, with crystals suitable for X-ray diffraction obtained by slow room-temperature evaporation of an ethanol solution.

Refinement top

Hydrogen atoms were positioned geometrically, with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.96 Å (methyl) and N—H = 0.86 Å, and were allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N, aromatic C or methylene C) or 1.5Ueq(methyl C).

Structure description top

We report herein the crystal structure of the title compound C10H11N3O2. In this molecule (Fig. 1), the bond lengths and angles (Allen et al., 1987) are within normal ranges. The nitro group is essentially coplanar with the aromatic ring forming a dihedral angle of 1.3 (3)° with the ring. The amine H atom forms an intramolecular hydrogen bond with a nitro O-acceptor (O2) (Table 1). In the crystal structure, a weak intermolecular aromatic C—H···Onitro hydrogen bond links the molecules (Fig. 2) while also present are weak aromatic ring ππ interactions [minimum ring centroid separation, 3.7744 (13) Å].

For the synthesis of the title compound, see: Ates-Alagoz & Buyukbingol (2001). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1994); cell refinement: CAD-4 Software (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, with intermolecular hydrogen bonds shown as dashed lines.
3-Nitro-4-(propylamino)benzonitrile top
Crystal data top
C10H11N3O2Z = 2
Mr = 205.22F(000) = 216
Triclinic, P1Dx = 1.295 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6320 (15) ÅCell parameters from 25 reflections
b = 7.9200 (16) Åθ = 9–13°
c = 9.2440 (18) ŵ = 0.09 mm1
α = 109.30 (3)°T = 293 K
β = 91.28 (3)°Block, yellow
γ = 93.00 (3)°0.30 × 0.20 × 0.20 mm
V = 526.2 (2) Å3
Data collection top
Enraf–Nonius CAD-4 four-circle
diffractometer
1321 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.3°, θmin = 2.3°
ω–2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.973, Tmax = 0.982l = 1111
2073 measured reflections3 standard reflections every 200 reflections
1918 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.10P)20.002P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1918 reflectionsΔρmax = 0.18 e Å3
137 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.22 (3)
Crystal data top
C10H11N3O2γ = 93.00 (3)°
Mr = 205.22V = 526.2 (2) Å3
Triclinic, P1Z = 2
a = 7.6320 (15) ÅMo Kα radiation
b = 7.9200 (16) ŵ = 0.09 mm1
c = 9.2440 (18) ÅT = 293 K
α = 109.30 (3)°0.30 × 0.20 × 0.20 mm
β = 91.28 (3)°
Data collection top
Enraf–Nonius CAD-4 four-circle
diffractometer
1321 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.973, Tmax = 0.9823 standard reflections every 200 reflections
2073 measured reflections intensity decay: 1%
1918 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
1918 reflectionsΔρmin = 0.17 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3192 (2)0.1104 (2)0.86877 (17)0.0589 (5)
H1A0.35580.00760.81750.071*
O10.2437 (2)0.30919 (19)1.04167 (18)0.0847 (6)
C10.4572 (4)0.3339 (4)0.5821 (3)0.0877 (8)
H1B0.51090.28530.48530.132*
H1C0.53410.42770.65020.132*
H1D0.34790.38160.56680.132*
O20.3393 (2)0.22529 (19)0.85827 (19)0.0779 (5)
N20.2712 (2)0.1930 (2)0.98294 (19)0.0586 (5)
C20.4237 (3)0.1875 (3)0.6512 (2)0.0720 (7)
H2A0.34770.09210.58110.086*
H2B0.53420.13780.66410.086*
C30.3404 (3)0.2542 (3)0.8029 (2)0.0631 (6)
H3A0.41320.35330.87220.076*
H3B0.22660.29750.78980.076*
N30.0667 (3)0.2255 (3)1.5411 (2)0.0880 (7)
C40.2472 (2)0.1269 (2)1.0023 (2)0.0490 (5)
C50.2198 (2)0.0143 (2)1.0637 (2)0.0489 (5)
C60.1414 (2)0.0104 (2)1.2017 (2)0.0539 (5)
H6A0.12640.08531.23840.065*
C70.0851 (3)0.1755 (3)1.2854 (2)0.0547 (5)
C80.1124 (3)0.3178 (3)1.2288 (2)0.0599 (6)
H8A0.07700.43041.28530.072*
C90.1890 (3)0.2953 (2)1.0940 (2)0.0581 (5)
H9A0.20430.39311.06000.070*
C100.0000 (3)0.2015 (3)1.4274 (3)0.0661 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0739 (11)0.0428 (9)0.0594 (10)0.0047 (8)0.0125 (8)0.0154 (7)
O10.1188 (14)0.0447 (8)0.0985 (12)0.0147 (8)0.0172 (10)0.0322 (8)
C10.105 (2)0.0872 (17)0.0765 (16)0.0142 (15)0.0120 (14)0.0368 (13)
O20.0994 (12)0.0541 (9)0.0783 (10)0.0199 (8)0.0273 (9)0.0154 (7)
N20.0659 (11)0.0401 (9)0.0698 (11)0.0078 (7)0.0042 (8)0.0175 (8)
C20.0830 (15)0.0691 (14)0.0656 (13)0.0024 (12)0.0124 (11)0.0243 (11)
C30.0749 (14)0.0539 (11)0.0626 (13)0.0001 (10)0.0083 (10)0.0222 (9)
N30.1119 (17)0.0745 (13)0.0812 (13)0.0188 (12)0.0356 (12)0.0267 (10)
C40.0508 (11)0.0416 (10)0.0536 (11)0.0000 (8)0.0018 (8)0.0149 (8)
C50.0497 (10)0.0378 (10)0.0575 (11)0.0030 (8)0.0001 (8)0.0136 (8)
C60.0583 (12)0.0445 (10)0.0620 (12)0.0004 (9)0.0001 (9)0.0226 (8)
C70.0566 (11)0.0497 (11)0.0566 (11)0.0017 (9)0.0055 (9)0.0158 (8)
C80.0719 (13)0.0414 (10)0.0614 (12)0.0063 (9)0.0092 (10)0.0098 (8)
C90.0702 (13)0.0380 (10)0.0669 (12)0.0009 (9)0.0059 (10)0.0186 (9)
C100.0762 (14)0.0556 (12)0.0660 (14)0.0056 (11)0.0113 (11)0.0186 (10)
Geometric parameters (Å, º) top
N1—C41.332 (2)C3—H3A0.9700
N1—C31.463 (2)C3—H3B0.9700
N1—H1A0.8600N3—C101.141 (2)
O1—N21.225 (2)C4—C51.419 (2)
C1—C21.511 (3)C4—C91.424 (3)
C1—H1B0.9600C5—C61.381 (2)
C1—H1C0.9600C6—C71.378 (3)
C1—H1D0.9600C6—H6A0.9300
O2—N21.229 (2)C7—C81.399 (3)
N2—C51.445 (2)C7—C101.436 (3)
C2—C31.495 (3)C8—C91.350 (3)
C2—H2A0.9700C8—H8A0.9300
C2—H2B0.9700C9—H9A0.9300
C4—N1—C3124.78 (15)C2—C3—H3B109.6
C4—N1—H1A117.6H3A—C3—H3B108.1
C3—N1—H1A117.6N1—C4—C5124.93 (16)
C2—C1—H1B109.5N1—C4—C9119.98 (16)
C2—C1—H1C109.5C5—C4—C9115.09 (16)
H1B—C1—H1C109.5C6—C5—C4122.25 (15)
C2—C1—H1D109.5C6—C5—N2116.43 (15)
H1B—C1—H1D109.5C4—C5—N2121.32 (16)
H1C—C1—H1D109.5C7—C6—C5120.56 (16)
O1—N2—O2121.83 (16)C7—C6—H6A119.7
O1—N2—C5118.22 (16)C5—C6—H6A119.7
O2—N2—C5119.95 (15)C6—C7—C8118.46 (17)
C3—C2—C1112.3 (2)C6—C7—C10120.97 (17)
C3—C2—H2A109.1C8—C7—C10120.57 (17)
C1—C2—H2A109.1C9—C8—C7121.52 (17)
C3—C2—H2B109.1C9—C8—H8A119.2
C1—C2—H2B109.1C7—C8—H8A119.2
H2A—C2—H2B107.9C8—C9—C4122.11 (17)
N1—C3—C2110.26 (17)C8—C9—H9A118.9
N1—C3—H3A109.6C4—C9—H9A118.9
C2—C3—H3A109.6N3—C10—C7178.7 (2)
N1—C3—H3B109.6
C4—N1—C3—C2179.22 (17)O2—N2—C5—C40.4 (3)
C1—C2—C3—N1177.02 (18)C4—C5—C6—C70.4 (3)
C3—N1—C4—C5177.27 (18)N2—C5—C6—C7178.84 (17)
C3—N1—C4—C91.8 (3)C5—C6—C7—C81.2 (3)
N1—C4—C5—C6178.73 (16)C5—C6—C7—C10178.64 (17)
C9—C4—C5—C60.4 (3)C6—C7—C8—C91.2 (3)
N1—C4—C5—N20.5 (3)C10—C7—C8—C9178.65 (18)
C9—C4—C5—N2179.62 (16)C7—C8—C9—C40.4 (3)
O1—N2—C5—C60.5 (3)N1—C4—C9—C8178.75 (17)
O2—N2—C5—C6178.87 (16)C5—C4—C9—C80.4 (3)
O1—N2—C5—C4179.81 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.002.641 (2)131
N1—H1A···N20.862.612.937 (2)104
C6—H6A···O10.932.322.644 (2)100
C9—H9A···O1i0.932.423.331 (2)165
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H11N3O2
Mr205.22
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6320 (15), 7.9200 (16), 9.2440 (18)
α, β, γ (°)109.30 (3), 91.28 (3), 93.00 (3)
V3)526.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4 four-circle
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
2073, 1918, 1321
Rint0.017
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.165, 1.04
No. of reflections1918
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: CAD-4 Software (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.002.641 (2)131
C9—H9A···O1i0.932.423.331 (2)165
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Liu Bo Nian from Nanjing University of Technology for useful discussions and the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19  CrossRef Google Scholar
First citationAtes-Alagoz, Z. & Buyukbingol, E. (2001). Heterocycl. Commun. 7, 455–460.  CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds