metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[(di­chloridozinc)-μ-bis­­(pyridin-3-yl)methanone-κ2N:N′]

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: zhangfcnu@163.com

(Received 21 October 2011; accepted 5 November 2011; online 16 November 2011)

In the title polymer, [ZnCl2(C11H8N2O)]n, the ZnII atom lies on a twofold rotation axis and has a distorted tetra­hedral ZnCl2N2 geometry involving two chloride donors and two N-atom donors from μ2-bridging bis­(pyridin-3-yl)methanone ligands, which also have twofold symmetry. A zigzag chain structure is formed, extending along (001). Each chain is surrounded by three others which are inter­connected through weak C=O⋯πpyrid­yl [O⋯centroid = 2.999 (3) Å] and πpyrid­ylπpyrid­yl inter­actions [minimum ring centroid separation = 4.014 (2) Å], giving a three-dimensional framework.

Related literature

For background to the coordination chemistry of pyridyl­ketone derivatives, see: Huang et al. (2003[Huang, W. L., Lee, J. R., Shi, S. Y. & Tsai, C. Y. (2003). Transition Met. Chem. 28, 381-388.]); Wan et al. (2008[Wan, C. Q., Han, J. & Mak, T. C. W. (2008). CrystEngComm, 10, 475-478.]). For transition metal complexes of bis­(3-pyrid­yl)ketone, see: Chen et al. (2005[Chen, X. D., Guo, J. H., Du, M. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 766-768.], 2009[Chen, X. D., Wan, C. Q., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518-6528.]); Chen & Mak (2005[Chen, X. D. & Mak, T. C. W. (2005). J. Mol. Struct. 743, 1-6.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C11H8N2O)]

  • Mr = 320.46

  • Monoclinic, C 2/c

  • a = 9.9266 (7) Å

  • b = 15.5724 (10) Å

  • c = 7.8963 (6) Å

  • β = 93.878 (4)°

  • V = 1217.82 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 296 K

  • 0.40 × 0.32 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.913, Tmax = 1.000

  • 3481 measured reflections

  • 1076 independent reflections

  • 1041 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.055

  • S = 1.11

  • 1076 reflections

  • 79 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The carbonyl (CO) group in pyridyl ketone derivatives produces versatile angular building blocks for use as ligands for the generation of various coordination supramolecular architectures (Huang et al., 2003). With two pendant pyridyl rings and the rotatable C—C σ bonds, bis(3-pyridyl)methanone functions as an excellent µ2-bridging linker to assemble various transition metal salts into diverse coordination motifs, such as one-dimensional helical and zigzag chains (Chen & Mak, 2005), two-dimensional nets (Chen et al., 2005), as well as honeycomb-like three-dimensional frameworks (Chen et al., 2009).

Reported here is the structure of a new complex of bis(3-pyridyl)methanone with ZnCl2, the title compound [ZnCl2(C5NH4)2]n. In this complex, the Zn2+ lies on a crystallographic twofold rotation axis and adopts a distorted tetrahedral stereochemistry [N1—Zn1—N1i = 96.94 (8)°; Cl1—Zn1—Cl1i = 122.25 (3)°: symmetry code (i) -x+1, -y, -z+1], with two chloride donors and two N donors from separate µ2-bridging bis(3-pyridyl)methanone ligands, in which the CO group also lies on a twofold rotation axis (Fig. 1). This results in a zigzag chain structure extending along (001) (Fig. 2). Each helix is surrounded by three others which are interconnected through weak C6O1···πpyridyl interactions [O1···Cg1iii 2.999 (3) Å] [symmetry code (iii) x+3/2, y+1/2, z+1) and weak πpyridyl···πpyridyl interactions [ring centroid separation Cg1···Cg1iv = 4.014 (2) Å] [symmetry code (iv) -x+3/2, y+1/2, -z+3/2] to form a three-dimensional framework (Fig. 3). For the CO···πpyridyl contact, the O atom is embraced by two symmetry related pyridyl rings, similar to that found in [Cu(L)2(BF4)2] (Wan et al., 2008) (CO···centroid = 2.9–3.1 Å) [L = 2,6-pyridinediyl(bis(3-pyridinyl)methanone)].

Related literature top

For background to the coordination chemistry of pyridylketone derivatives, see: Huang et al. (2003); Wan et al. (2008). For transition metal complexes of bis(3-pyridyl)ketone, see: Chen et al. (2005, 2009); Chen & Mak (2005).

Experimental top

The bis(3-pyridinyl)methanone ligand was obtained using the literature reaction procedure (Chen et al., 2005). Reaction of this compound (19.1 mg, 0.1 mmol) with ZnCl2 (14.0 mg, 0.1 mmol) in methanol gave a colorless solution which after filtration, was allowed to stand in air for two weeks, gave colourless block-like crystals (yield 20.8 mg; 65%).

Refinement top

All H atoms were located in the difference electron density maps but were placed in idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

The carbonyl (CO) group in pyridyl ketone derivatives produces versatile angular building blocks for use as ligands for the generation of various coordination supramolecular architectures (Huang et al., 2003). With two pendant pyridyl rings and the rotatable C—C σ bonds, bis(3-pyridyl)methanone functions as an excellent µ2-bridging linker to assemble various transition metal salts into diverse coordination motifs, such as one-dimensional helical and zigzag chains (Chen & Mak, 2005), two-dimensional nets (Chen et al., 2005), as well as honeycomb-like three-dimensional frameworks (Chen et al., 2009).

Reported here is the structure of a new complex of bis(3-pyridyl)methanone with ZnCl2, the title compound [ZnCl2(C5NH4)2]n. In this complex, the Zn2+ lies on a crystallographic twofold rotation axis and adopts a distorted tetrahedral stereochemistry [N1—Zn1—N1i = 96.94 (8)°; Cl1—Zn1—Cl1i = 122.25 (3)°: symmetry code (i) -x+1, -y, -z+1], with two chloride donors and two N donors from separate µ2-bridging bis(3-pyridyl)methanone ligands, in which the CO group also lies on a twofold rotation axis (Fig. 1). This results in a zigzag chain structure extending along (001) (Fig. 2). Each helix is surrounded by three others which are interconnected through weak C6O1···πpyridyl interactions [O1···Cg1iii 2.999 (3) Å] [symmetry code (iii) x+3/2, y+1/2, z+1) and weak πpyridyl···πpyridyl interactions [ring centroid separation Cg1···Cg1iv = 4.014 (2) Å] [symmetry code (iv) -x+3/2, y+1/2, -z+3/2] to form a three-dimensional framework (Fig. 3). For the CO···πpyridyl contact, the O atom is embraced by two symmetry related pyridyl rings, similar to that found in [Cu(L)2(BF4)2] (Wan et al., 2008) (CO···centroid = 2.9–3.1 Å) [L = 2,6-pyridinediyl(bis(3-pyridinyl)methanone)].

For background to the coordination chemistry of pyridylketone derivatives, see: Huang et al. (2003); Wan et al. (2008). For transition metal complexes of bis(3-pyridyl)ketone, see: Chen et al. (2005, 2009); Chen & Mak (2005).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title complex showing the atom-numbering scheme, with displacement ellipsoids shown at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z.
[Figure 2] Fig. 2. The helical chain structure of the title compound, extending along the c axial direction. All H atoms are omitted.
[Figure 3] Fig. 3. The packing structure of the title compound as viewed down the c axis of the unit cell.
catena-Poly[(dichloridozinc)-µ-bis(pyridin-3-yl)methanone- κ2N:N'] top
Crystal data top
[ZnCl2(C11H8N2O)]F(000) = 640
Mr = 320.46Dx = 1.748 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 254 reflections
a = 9.9266 (7) Åθ = 2.6–25.0°
b = 15.5724 (10) ŵ = 2.44 mm1
c = 7.8963 (6) ÅT = 296 K
β = 93.878 (4)°Block, colorless
V = 1217.82 (15) Å30.40 × 0.32 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1076 independent reflections
Radiation source: fine-focus sealed tube1041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.913, Tmax = 1.000k = 1618
3481 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0332P)2 + 0.7286P] P = (Fo2 + 2Fc2)/3
1076 reflections(Δ/σ)max < 0.001
79 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[ZnCl2(C11H8N2O)]V = 1217.82 (15) Å3
Mr = 320.46Z = 4
Monoclinic, C2/cMo Kα radiation
a = 9.9266 (7) ŵ = 2.44 mm1
b = 15.5724 (10) ÅT = 296 K
c = 7.8963 (6) Å0.40 × 0.32 × 0.22 mm
β = 93.878 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1076 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1041 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 1.000Rint = 0.013
3481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.11Δρmax = 0.19 e Å3
1076 reflectionsΔρmin = 0.32 e Å3
79 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.296457 (17)0.75000.03157 (13)
Cl10.35267 (5)0.36506 (3)0.57611 (6)0.04896 (16)
N10.59607 (15)0.20836 (9)0.60337 (18)0.0307 (3)
C20.77431 (19)0.10656 (14)0.5838 (3)0.0444 (5)
H2A0.85840.08620.62460.053*
C10.71626 (19)0.17586 (13)0.6597 (2)0.0380 (4)
H1A0.76210.20110.75350.046*
C30.7061 (2)0.06820 (13)0.4475 (2)0.0411 (5)
H3A0.74220.02030.39660.049*
C40.58196 (18)0.10157 (11)0.3857 (2)0.0311 (4)
C50.53146 (17)0.17218 (11)0.4663 (2)0.0299 (4)
H5A0.44970.19550.42420.036*
C60.50000.05441 (16)0.25000.0340 (5)
O10.50000.02376 (12)0.25000.0499 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0417 (2)0.02859 (19)0.02354 (17)0.0000.00413 (12)0.000
Cl10.0606 (3)0.0468 (3)0.0376 (3)0.0161 (2)0.0108 (2)0.0043 (2)
N10.0368 (8)0.0304 (8)0.0245 (7)0.0003 (6)0.0006 (6)0.0026 (5)
C20.0372 (10)0.0514 (12)0.0442 (11)0.0107 (9)0.0001 (8)0.0125 (9)
C10.0397 (10)0.0429 (10)0.0307 (9)0.0023 (8)0.0033 (8)0.0076 (8)
C30.0505 (11)0.0366 (10)0.0373 (10)0.0142 (8)0.0112 (8)0.0071 (8)
C40.0428 (10)0.0275 (9)0.0236 (8)0.0026 (7)0.0057 (7)0.0056 (6)
C50.0349 (9)0.0288 (9)0.0257 (8)0.0025 (7)0.0001 (7)0.0037 (7)
C60.0494 (14)0.0271 (13)0.0268 (12)0.0000.0121 (10)0.000
O10.0798 (15)0.0254 (10)0.0452 (11)0.0000.0094 (10)0.000
Geometric parameters (Å, º) top
Zn1—N1i2.0692 (15)C1—H1A0.9300
Zn1—N12.0692 (15)C3—C41.395 (3)
Zn1—Cl1i2.2123 (5)C3—H3A0.9300
Zn1—Cl12.2123 (5)C4—C51.382 (2)
N1—C51.344 (2)C4—C61.494 (2)
N1—C11.344 (2)C5—H5A0.9300
C2—C31.369 (3)C6—O11.217 (3)
C2—C11.379 (3)C6—C4ii1.494 (2)
C2—H2A0.9300
N1i—Zn1—N196.94 (8)C2—C1—H1A118.7
N1i—Zn1—Cl1i106.45 (4)C2—C3—C4119.40 (18)
N1—Zn1—Cl1i110.92 (4)C2—C3—H3A120.3
N1i—Zn1—Cl1110.92 (4)C4—C3—H3A120.3
N1—Zn1—Cl1106.45 (4)C5—C4—C3118.33 (17)
Cl1i—Zn1—Cl1122.25 (3)C5—C4—C6121.66 (15)
C5—N1—C1118.25 (15)C3—C4—C6119.56 (16)
C5—N1—Zn1121.04 (12)N1—C5—C4122.45 (16)
C1—N1—Zn1119.81 (12)N1—C5—H5A118.8
C3—C2—C1118.92 (17)C4—C5—H5A118.8
C3—C2—H2A120.5O1—C6—C4119.45 (10)
C1—C2—H2A120.5O1—C6—C4ii119.45 (10)
N1—C1—C2122.60 (17)C4—C6—C4ii121.1 (2)
N1—C1—H1A118.7
N1i—Zn1—N1—C583.07 (13)C2—C3—C4—C50.7 (3)
Cl1i—Zn1—N1—C5166.32 (11)C2—C3—C4—C6173.16 (16)
Cl1—Zn1—N1—C531.20 (13)C1—N1—C5—C42.2 (2)
N1i—Zn1—N1—C185.85 (13)Zn1—N1—C5—C4166.90 (12)
Cl1i—Zn1—N1—C124.76 (14)C3—C4—C5—N11.4 (2)
Cl1—Zn1—N1—C1159.88 (12)C6—C4—C5—N1170.88 (15)
C5—N1—C1—C20.9 (3)C5—C4—C6—O1136.51 (12)
Zn1—N1—C1—C2168.33 (14)C3—C4—C6—O135.68 (17)
C3—C2—C1—N11.2 (3)C5—C4—C6—C4ii43.49 (12)
C1—C2—C3—C41.9 (3)C3—C4—C6—C4ii144.32 (17)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C11H8N2O)]
Mr320.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)9.9266 (7), 15.5724 (10), 7.8963 (6)
β (°) 93.878 (4)
V3)1217.82 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.44
Crystal size (mm)0.40 × 0.32 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.913, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3481, 1076, 1041
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.055, 1.11
No. of reflections1076
No. of parameters79
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.32

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful for financial support from Beijing Municipal Education Commission.

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. D., Guo, J. H., Du, M. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 766–768.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X. D. & Mak, T. C. W. (2005). J. Mol. Struct. 743, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X. D., Wan, C. Q., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518–6528.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, W. L., Lee, J. R., Shi, S. Y. & Tsai, C. Y. (2003). Transition Met. Chem. 28, 381–388.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, C. Q., Han, J. & Mak, T. C. W. (2008). CrystEngComm, 10, 475–478.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds