organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-12H-benzimidazo[2,1-b][1,3]benzo­thia­zin-12-one

aSchool of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
*Correspondence e-mail: wzmmol@hotmail.com

(Received 11 November 2011; accepted 24 November 2011; online 30 November 2011)

In the title compound, C15H10N2OS, prepared by the reaction of 2-iodo-5-methyl­benzoyl chloride with 2-mercaptobenzimidazole, the four-membered fused-ring system is essentially planar [maximum deviation from the least-squares plane = 0.137 (6) Å]. The crystal packing is stabilized by weak inter­molecular ππ inter­actions [minimum ring centroid separation = 3.536 (4) Å] and weak C—H⋯π inter­actions.

Related literature

For general background to imidazo[2,1-b][1,3]thia­zinones, see: van der Helm et al. (1987[Helm, D. van der, Powell, D. R., Berlin, K. D., Spruce, L. W., Shyamasundar, N. & Radhakrishna, A. S. (1987). Acta Cryst. C43, 1723-1726.]); Dolbier et al. (1994[Dolbier, W. R. Jr, Burkholder, C., Abboud, K. A. & Loehle, D. (1994). J. Org. Chem. 59, 7688-7695.]); Sekar et al. (2011[Sekar, R., Srinivasan, M., Marcelis, A. T. M. & Sambandam, A. (2011). Tetrahedron Lett. 52, 3347-3352.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10N2OS

  • Mr = 266.31

  • Orthorhombic, P b c a

  • a = 11.7737 (5) Å

  • b = 8.1122 (3) Å

  • c = 26.0694 (10) Å

  • V = 2489.90 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.38 × 0.35 × 0.32 mm

Data collection
  • Agilent Xcalibur Atlas Gemini Ultra CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Santa Clara, USA.]) Tmin = 0.911, Tmax = 0.924

  • 9905 measured reflections

  • 2277 independent reflections

  • 1826 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.03

  • 2277 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/N2/C9–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg1i 0.93 2.90 3.765 (3) 156
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Santa Clara, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Owing to the promising biological activities as antimicrobial agents against bacteria, yeast and fungi, imidazo[2,1-b][1,3]thiazinones have been studied (van der Helm et al., 1987). In the past decades, most of these investigations were carried out with imidazole derivatives (Dolbier et al., 1994; Sekar et al., 2011). We herein present the structure of the title compound C15H10N2OS, prepared from the reaction of 2-iodo-5-methylbenzoyl chloride with 2-mercaptobenzimidazole.

In the crystal structure, the title compound adopts an essentially planar conformation (Fig. 1), with the maximum atom deviation from the least-squares plane to the four-membered fused-ring system = 0.137 (6) Å]. The dihedral angles between the benzimidazole ring (N1–C15) and the thiazine ring (S1–C9) = 3.18 (5) °, the benzene ring (C2–C7) and the thiazine ring (S1–C9) = 0.38 (6)° and the benzimidazole ring (N1–C15) and the benzene ring (C2–C7) = 3.55 (6)°.

The crystal packing is stabilized by weak intermolecular ππ interactions involving the six-membered aromatic rings: (a) the thiazine ring S1–C9 (ring 1) and the benzene ring C10–C15i (ring 2) of the benzimazole moiety [ring centroid separation = 3.628 (8) Å: symmetry code (i) -x + 1, -y + 1, -z + 1]; (b) between the benzene ring C2–C7 (ring 3) and ring C2–C7i = 3.817 (6) Å; (c) between ring 3···and ring 2i = 3.536 (4) Å. There are also C—H···π interactions present.

Related literature top

For general background to imidazo[2,1-b][1,3]thiazinones, see: van der Helm et al. (1987); Dolbier et al. (1994); Sekar et al. (2011).

Experimental top

An oven-dried Schlenk tube was charged with a magnetic stirring bar, CuI (0.05 mmol), 1,10-phenanthroline (0.10 mmol), Cs2CO3 (0.50 mmol), and 2-mercaptobenzimidazole. The Schlenk tube was capped, and then evacuated and backfilled with N2 (3 times), then under a positive pressure of N2, a solution of 2-iodo-5-methylbenzoyl chloride (0.75 mmol) in toluene (2 ml, freshly distilled from sodium) was added dropwise via syringe, and the mixture was pre-stirred for 1 h at room temperature. The reaction mixture was then stirred at 100 °C. After the reaction was completed, the mixture was cooled to room temperature, passed through Celite and rinsed with 30 ml of CH2Cl2. The combined filtrate was concentrated and purified by flash chromatography to give a yellow solid (93% yield). Single crystals of the title compound suitable for X-ray diffraction were obtained by evaporation of a petroleum ether–chloroform solution.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 (aromatic C) and 0.96 Å (methyl C), with Uiso(H)= 1.2Ueq(aromatic C) or 1.5Ueq(methyl C).

Structure description top

Owing to the promising biological activities as antimicrobial agents against bacteria, yeast and fungi, imidazo[2,1-b][1,3]thiazinones have been studied (van der Helm et al., 1987). In the past decades, most of these investigations were carried out with imidazole derivatives (Dolbier et al., 1994; Sekar et al., 2011). We herein present the structure of the title compound C15H10N2OS, prepared from the reaction of 2-iodo-5-methylbenzoyl chloride with 2-mercaptobenzimidazole.

In the crystal structure, the title compound adopts an essentially planar conformation (Fig. 1), with the maximum atom deviation from the least-squares plane to the four-membered fused-ring system = 0.137 (6) Å]. The dihedral angles between the benzimidazole ring (N1–C15) and the thiazine ring (S1–C9) = 3.18 (5) °, the benzene ring (C2–C7) and the thiazine ring (S1–C9) = 0.38 (6)° and the benzimidazole ring (N1–C15) and the benzene ring (C2–C7) = 3.55 (6)°.

The crystal packing is stabilized by weak intermolecular ππ interactions involving the six-membered aromatic rings: (a) the thiazine ring S1–C9 (ring 1) and the benzene ring C10–C15i (ring 2) of the benzimazole moiety [ring centroid separation = 3.628 (8) Å: symmetry code (i) -x + 1, -y + 1, -z + 1]; (b) between the benzene ring C2–C7 (ring 3) and ring C2–C7i = 3.817 (6) Å; (c) between ring 3···and ring 2i = 3.536 (4) Å. There are also C—H···π interactions present.

For general background to imidazo[2,1-b][1,3]thiazinones, see: van der Helm et al. (1987); Dolbier et al. (1994); Sekar et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound, with displacement ellipsoids drawn at the 40% probability level.
2-Methyl-12H-benzimidazo[2,1-b][1,3]benzothiazin-12-one top
Crystal data top
C15H10N2OSF(000) = 1104
Mr = 266.31Dx = 1.421 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3080 reflections
a = 11.7737 (5) Åθ = 3.0–29.4°
b = 8.1122 (3) ŵ = 0.25 mm1
c = 26.0694 (10) ÅT = 293 K
V = 2489.90 (17) Å3Block, yellow
Z = 80.38 × 0.35 × 0.32 mm
Data collection top
Agilent Xcalibur Atlas Gemini Ultra CCD
diffractometer
2277 independent reflections
Radiation source: fine-focus sealed tube1826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.3592 pixels mm-1θmax = 25.3°, θmin = 3.1°
ω scansh = 1114
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 98
Tmin = 0.911, Tmax = 0.924l = 2331
9905 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.3827P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2277 reflectionsΔρmax = 0.20 e Å3
174 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (6)
Crystal data top
C15H10N2OSV = 2489.90 (17) Å3
Mr = 266.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.7737 (5) ŵ = 0.25 mm1
b = 8.1122 (3) ÅT = 293 K
c = 26.0694 (10) Å0.38 × 0.35 × 0.32 mm
Data collection top
Agilent Xcalibur Atlas Gemini Ultra CCD
diffractometer
2277 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1826 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.924Rint = 0.029
9905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2277 reflectionsΔρmin = 0.28 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45576 (4)0.18140 (6)0.52857 (2)0.04458 (19)
O10.75080 (13)0.5194 (2)0.54191 (6)0.0570 (4)
N10.61252 (13)0.36927 (19)0.58004 (6)0.0374 (4)
N20.48456 (15)0.2302 (2)0.62773 (7)0.0481 (4)
C10.7132 (2)0.4616 (3)0.34806 (9)0.0636 (7)
H1A0.79110.42710.34970.095*
H1B0.70960.57980.34820.095*
H1C0.67920.42020.31720.095*
C20.64986 (18)0.3952 (3)0.39380 (8)0.0466 (5)
C30.55839 (19)0.2897 (3)0.38835 (8)0.0503 (6)
H30.53510.26010.35550.060*
C40.50108 (19)0.2273 (3)0.42974 (8)0.0462 (5)
H40.43960.15710.42480.055*
C50.53490 (16)0.2692 (2)0.47915 (7)0.0379 (5)
C60.62652 (15)0.3757 (2)0.48622 (7)0.0364 (4)
C70.68198 (17)0.4383 (2)0.44302 (8)0.0438 (5)
H70.74220.51090.44750.053*
C80.66993 (16)0.4285 (2)0.53662 (7)0.0398 (5)
C90.52023 (16)0.2624 (2)0.58172 (8)0.0386 (5)
C100.55487 (18)0.3226 (3)0.65964 (8)0.0461 (5)
C110.63516 (17)0.4092 (2)0.63143 (8)0.0438 (5)
C120.7143 (2)0.5112 (3)0.65415 (10)0.0635 (7)
H120.76890.56690.63510.076*
C130.7076 (3)0.5259 (4)0.70691 (10)0.0807 (9)
H130.75900.59400.72380.097*
C140.6269 (3)0.4423 (4)0.73537 (10)0.0780 (8)
H140.62480.45650.77080.094*
C150.5500 (2)0.3393 (3)0.71257 (9)0.0635 (7)
H150.49640.28230.73190.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0453 (3)0.0446 (3)0.0439 (3)0.0113 (2)0.0033 (2)0.0054 (2)
O10.0457 (8)0.0675 (10)0.0579 (9)0.0228 (8)0.0004 (7)0.0013 (8)
N10.0372 (9)0.0359 (8)0.0390 (9)0.0022 (7)0.0023 (7)0.0007 (7)
N20.0501 (10)0.0510 (10)0.0430 (10)0.0068 (9)0.0010 (8)0.0020 (8)
C10.0615 (15)0.0777 (17)0.0516 (14)0.0096 (13)0.0139 (11)0.0128 (12)
C20.0450 (12)0.0503 (12)0.0446 (12)0.0131 (11)0.0070 (9)0.0055 (10)
C30.0571 (13)0.0532 (13)0.0405 (12)0.0106 (11)0.0017 (10)0.0021 (10)
C40.0462 (11)0.0455 (11)0.0469 (12)0.0013 (10)0.0028 (10)0.0043 (10)
C50.0373 (10)0.0337 (10)0.0426 (11)0.0062 (9)0.0029 (8)0.0004 (8)
C60.0332 (9)0.0359 (10)0.0402 (10)0.0072 (8)0.0000 (8)0.0007 (8)
C70.0367 (10)0.0436 (11)0.0511 (13)0.0063 (9)0.0046 (9)0.0070 (9)
C80.0348 (10)0.0390 (10)0.0458 (12)0.0023 (9)0.0017 (9)0.0023 (9)
C90.0388 (11)0.0334 (10)0.0437 (11)0.0009 (9)0.0002 (9)0.0007 (8)
C100.0506 (12)0.0453 (12)0.0425 (12)0.0023 (10)0.0040 (10)0.0003 (9)
C110.0474 (11)0.0414 (11)0.0426 (11)0.0025 (10)0.0076 (9)0.0007 (9)
C120.0667 (16)0.0666 (15)0.0572 (15)0.0181 (13)0.0133 (12)0.0018 (12)
C130.097 (2)0.089 (2)0.0560 (16)0.0283 (18)0.0232 (15)0.0049 (14)
C140.099 (2)0.091 (2)0.0431 (14)0.0121 (18)0.0148 (14)0.0053 (13)
C150.0733 (16)0.0757 (17)0.0416 (13)0.0061 (14)0.0016 (11)0.0042 (11)
Geometric parameters (Å, º) top
S1—C91.711 (2)C4—C51.390 (3)
S1—C51.742 (2)C4—H40.9300
O1—C81.212 (2)C5—C61.394 (3)
N1—C91.391 (2)C6—C71.397 (3)
N1—C81.403 (2)C6—C81.473 (3)
N1—C111.404 (2)C7—H70.9300
N2—C91.297 (3)C10—C151.388 (3)
N2—C101.392 (3)C10—C111.388 (3)
C1—C21.506 (3)C11—C121.380 (3)
C1—H1A0.9600C12—C131.383 (3)
C1—H1B0.9600C12—H120.9300
C1—H1C0.9600C13—C141.383 (4)
C2—C71.382 (3)C13—H130.9300
C2—C31.383 (3)C14—C151.368 (4)
C3—C41.370 (3)C14—H140.9300
C3—H30.9300C15—H150.9300
C9—S1—C5101.80 (10)C2—C7—H7119.0
C9—N1—C8127.96 (16)C6—C7—H7119.0
C9—N1—C11105.20 (16)O1—C8—N1119.66 (18)
C8—N1—C11126.82 (16)O1—C8—C6123.41 (18)
C9—N2—C10104.57 (17)N1—C8—C6116.93 (17)
C2—C1—H1A109.5N2—C9—N1114.04 (17)
C2—C1—H1B109.5N2—C9—S1121.86 (16)
H1A—C1—H1B109.5N1—C9—S1124.09 (14)
C2—C1—H1C109.5C15—C10—C11120.4 (2)
H1A—C1—H1C109.5C15—C10—N2128.4 (2)
H1B—C1—H1C109.5C11—C10—N2111.14 (18)
C7—C2—C3117.69 (19)C12—C11—C10122.4 (2)
C7—C2—C1120.6 (2)C12—C11—N1132.6 (2)
C3—C2—C1121.7 (2)C10—C11—N1105.04 (17)
C4—C3—C2122.1 (2)C11—C12—C13116.1 (2)
C4—C3—H3119.0C11—C12—H12121.9
C2—C3—H3119.0C13—C12—H12121.9
C3—C4—C5119.9 (2)C12—C13—C14122.0 (2)
C3—C4—H4120.0C12—C13—H13119.0
C5—C4—H4120.0C14—C13—H13119.0
C4—C5—C6119.70 (18)C15—C14—C13121.4 (2)
C4—C5—S1115.59 (15)C15—C14—H14119.3
C6—C5—S1124.71 (15)C13—C14—H14119.3
C5—C6—C7118.68 (18)C14—C15—C10117.6 (2)
C5—C6—C8124.49 (17)C14—C15—H15121.2
C7—C6—C8116.83 (18)C10—C15—H15121.2
C2—C7—C6121.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C9–C11 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.932.903.765 (3)156
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H10N2OS
Mr266.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)11.7737 (5), 8.1122 (3), 26.0694 (10)
V3)2489.90 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.38 × 0.35 × 0.32
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini Ultra CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.911, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
9905, 2277, 1826
Rint0.029
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.03
No. of reflections2277
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.28

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C9–C11 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.932.903.765 (3)156
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

This work was supported financially by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Santa Clara, USA.  Google Scholar
First citationDolbier, W. R. Jr, Burkholder, C., Abboud, K. A. & Loehle, D. (1994). J. Org. Chem. 59, 7688–7695.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHelm, D. van der, Powell, D. R., Berlin, K. D., Spruce, L. W., Shyamasundar, N. & Radhakrishna, A. S. (1987). Acta Cryst. C43, 1723–1726.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSekar, R., Srinivasan, M., Marcelis, A. T. M. & Sambandam, A. (2011). Tetrahedron Lett. 52, 3347–3352.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds