organic compounds
1,2-Bis(dibromomethyl)benzene
aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw
In the title compound, C8H6Br4, intramolecular C—H⋯Br hydrogen bonds generate two S(6) rings. The two geminal bromine-atom substituents point to opposite sides of the aromatic ring system. In the crystal, molecules are linked by intermolecular π–π interactions with centroid–centroid distances of 3.727 (9) and 3.858 (9) Å.
Related literature
For the preparation of the title compound, see: Ghorbani-Vaghei et al. (2009). For its applications, see: Chen et al. (2002, 2006, 2007); Chow et al. (2005); Jansen et al. (2010); Pandithavidana et al. (2009); Swartz et al. (2005). For related structures, see: Kuś & Jones (2003); Qin et al. (2005); Sim et al. (2001). For graph-set theory, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811050616/aa2031sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811050616/aa2031Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811050616/aa2031Isup3.cml
The title compound was synthesized by bromination of o-xylene with N,N,N',N'- tetrabromobenzene-1,3-disulfonamide in CCl4, according to the literature method (Ghorbani-Vaghei et al., 2009). Colorless crystals suitable for the crystallographic studies were isolated over a period of four weeks by slow evaporation from the chloroform solution.
H atoms were positioned geometrically (C—H = 0.93 and 0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C)].
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C8H6Br4 | Z = 2 |
Mr = 421.77 | F(000) = 388 |
Triclinic, P1 | Dx = 2.591 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0222 (8) Å | Cell parameters from 1856 reflections |
b = 7.7313 (9) Å | θ = 2.8–29.1° |
c = 10.5927 (12) Å | µ = 14.83 mm−1 |
α = 108.473 (10)° | T = 297 K |
β = 97.108 (9)° | Parallelepiped, colorless |
γ = 90.394 (9)° | 0.58 × 0.48 × 0.36 mm |
V = 540.61 (11) Å3 |
Bruker SMART CCD area-detector diffractometer | 2469 independent reflections |
Radiation source: fine-focus sealed tube | 1297 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.073 |
ω scans | θmax = 29.2°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −9→8 |
Tmin = 0.122, Tmax = 1.000 | k = −10→10 |
4575 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.091 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.258 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0875P)2 + 18.1246P] where P = (Fo2 + 2Fc2)/3 |
2469 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 1.62 e Å−3 |
0 restraints | Δρmin = −1.27 e Å−3 |
C8H6Br4 | γ = 90.394 (9)° |
Mr = 421.77 | V = 540.61 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.0222 (8) Å | Mo Kα radiation |
b = 7.7313 (9) Å | µ = 14.83 mm−1 |
c = 10.5927 (12) Å | T = 297 K |
α = 108.473 (10)° | 0.58 × 0.48 × 0.36 mm |
β = 97.108 (9)° |
Bruker SMART CCD area-detector diffractometer | 2469 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1297 reflections with I > 2σ(I) |
Tmin = 0.122, Tmax = 1.000 | Rint = 0.073 |
4575 measured reflections |
R[F2 > 2σ(F2)] = 0.091 | 0 restraints |
wR(F2) = 0.258 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0875P)2 + 18.1246P] where P = (Fo2 + 2Fc2)/3 |
2469 reflections | Δρmax = 1.62 e Å−3 |
109 parameters | Δρmin = −1.27 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 1.0868 (3) | 0.1807 (3) | 0.90582 (19) | 0.0434 (6) | |
Br2 | 0.6361 (3) | 0.1787 (3) | 0.9231 (2) | 0.0492 (6) | |
Br3 | 0.5867 (3) | 0.5842 (3) | 0.7641 (2) | 0.0488 (6) | |
Br4 | 1.0292 (3) | 0.5783 (3) | 0.7275 (2) | 0.0478 (6) | |
C1 | 0.832 (3) | 0.078 (3) | 0.8116 (17) | 0.036 (4) | |
H1A | 0.8311 | −0.0533 | 0.8003 | 0.043* | |
C2 | 0.796 (2) | 0.094 (2) | 0.6741 (16) | 0.030 (4) | |
C3 | 0.769 (2) | −0.070 (3) | 0.5681 (18) | 0.035 (4) | |
H3A | 0.7804 | −0.1803 | 0.5862 | 0.042* | |
C4 | 0.725 (2) | −0.073 (2) | 0.4342 (17) | 0.033 (4) | |
H4A | 0.7044 | −0.1821 | 0.3639 | 0.040* | |
C5 | 0.714 (2) | 0.097 (3) | 0.4101 (16) | 0.032 (4) | |
H5A | 0.6924 | 0.1004 | 0.3224 | 0.039* | |
C6 | 0.735 (2) | 0.255 (2) | 0.5136 (16) | 0.031 (4) | |
H6A | 0.7183 | 0.3644 | 0.4954 | 0.037* | |
C7 | 0.781 (2) | 0.261 (2) | 0.6455 (15) | 0.024 (3) | |
C8 | 0.821 (2) | 0.436 (2) | 0.7532 (17) | 0.033 (4) | |
H8A | 0.8533 | 0.4123 | 0.8387 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0330 (10) | 0.0605 (15) | 0.0388 (10) | 0.0108 (9) | −0.0006 (8) | 0.0207 (10) |
Br2 | 0.0364 (11) | 0.0769 (17) | 0.0443 (11) | 0.0028 (10) | 0.0117 (9) | 0.0313 (11) |
Br3 | 0.0386 (11) | 0.0406 (13) | 0.0671 (14) | 0.0169 (9) | 0.0072 (9) | 0.0165 (11) |
Br4 | 0.0406 (11) | 0.0372 (13) | 0.0653 (14) | −0.0084 (8) | 0.0102 (9) | 0.0148 (10) |
C1 | 0.047 (10) | 0.027 (10) | 0.041 (10) | −0.009 (8) | 0.002 (8) | 0.024 (8) |
C2 | 0.019 (7) | 0.033 (11) | 0.033 (9) | 0.003 (7) | 0.000 (6) | 0.008 (8) |
C3 | 0.016 (8) | 0.038 (11) | 0.051 (11) | 0.004 (7) | 0.006 (7) | 0.014 (9) |
C4 | 0.040 (10) | 0.026 (10) | 0.033 (9) | 0.005 (7) | 0.017 (8) | 0.003 (8) |
C5 | 0.024 (8) | 0.042 (11) | 0.025 (8) | 0.015 (7) | 0.008 (7) | −0.001 (8) |
C6 | 0.042 (10) | 0.015 (9) | 0.029 (8) | 0.006 (7) | 0.009 (7) | −0.003 (7) |
C7 | 0.019 (7) | 0.026 (9) | 0.032 (8) | 0.003 (6) | 0.007 (6) | 0.013 (7) |
C8 | 0.032 (9) | 0.030 (11) | 0.038 (9) | −0.011 (7) | 0.003 (7) | 0.014 (8) |
Br1—C1 | 1.965 (17) | C3—H3A | 0.9300 |
Br2—C1 | 1.932 (19) | C4—C5 | 1.42 (3) |
Br3—C8 | 2.003 (18) | C4—H4A | 0.9300 |
Br4—C8 | 1.922 (15) | C5—C6 | 1.35 (2) |
C1—C2 | 1.49 (2) | C5—H5A | 0.9300 |
C1—H1A | 0.9800 | C6—C7 | 1.38 (2) |
C2—C7 | 1.42 (2) | C6—H6A | 0.9300 |
C2—C3 | 1.40 (2) | C7—C8 | 1.47 (2) |
C3—C4 | 1.41 (2) | C8—H8A | 0.9800 |
C2—C1—Br2 | 113.8 (12) | C6—C5—C4 | 120.4 (16) |
C2—C1—Br1 | 112.7 (11) | C6—C5—H5A | 119.8 |
Br2—C1—Br1 | 110.0 (9) | C4—C5—H5A | 119.8 |
C2—C1—H1A | 106.6 | C5—C6—C7 | 122.7 (17) |
Br2—C1—H1A | 106.6 | C5—C6—H6A | 118.6 |
Br1—C1—H1A | 106.6 | C7—C6—H6A | 118.6 |
C7—C2—C3 | 119.0 (16) | C6—C7—C2 | 118.7 (15) |
C7—C2—C1 | 124.9 (15) | C6—C7—C8 | 120.6 (15) |
C3—C2—C1 | 116.0 (16) | C2—C7—C8 | 120.7 (14) |
C4—C3—C2 | 121.2 (17) | C7—C8—Br4 | 112.8 (11) |
C4—C3—H3A | 119.4 | C7—C8—Br3 | 110.0 (11) |
C2—C3—H3A | 119.4 | Br4—C8—Br3 | 108.1 (9) |
C5—C4—C3 | 117.9 (16) | C7—C8—H8A | 108.6 |
C5—C4—H4A | 121.1 | Br4—C8—H8A | 108.6 |
C3—C4—H4A | 121.1 | Br3—C8—H8A | 108.6 |
Br2—C1—C2—C7 | 61.2 (18) | C5—C6—C7—C8 | 174.1 (15) |
Br1—C1—C2—C7 | −65.0 (19) | C3—C2—C7—C6 | 2 (2) |
Br2—C1—C2—C3 | −117.0 (14) | C1—C2—C7—C6 | −176.1 (15) |
Br1—C1—C2—C3 | 116.9 (14) | C3—C2—C7—C8 | −175.9 (14) |
C7—C2—C3—C4 | −1 (2) | C1—C2—C7—C8 | 6 (2) |
C1—C2—C3—C4 | 177.2 (14) | C6—C7—C8—Br4 | −58.1 (18) |
C2—C3—C4—C5 | 2 (2) | C2—C7—C8—Br4 | 119.7 (14) |
C3—C4—C5—C6 | −3 (2) | C6—C7—C8—Br3 | 62.6 (16) |
C4—C5—C6—C7 | 5 (3) | C2—C7—C8—Br3 | −119.6 (13) |
C5—C6—C7—C2 | −4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···Br1 | 0.98 | 2.64 | 3.364 (16) | 131 |
C8—H8A···Br2 | 0.98 | 2.78 | 3.420 (16) | 124 |
Experimental details
Crystal data | |
Chemical formula | C8H6Br4 |
Mr | 421.77 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 297 |
a, b, c (Å) | 7.0222 (8), 7.7313 (9), 10.5927 (12) |
α, β, γ (°) | 108.473 (10), 97.108 (9), 90.394 (9) |
V (Å3) | 540.61 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 14.83 |
Crystal size (mm) | 0.58 × 0.48 × 0.36 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.122, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4575, 2469, 1297 |
Rint | 0.073 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.091, 0.258, 1.04 |
No. of reflections | 2469 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0875P)2 + 18.1246P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.62, −1.27 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···Br1 | 0.98 | 2.64 | 3.364 (16) | 131 |
C8—H8A···Br2 | 0.98 | 2.78 | 3.420 (16) | 124 |
Acknowledgements
This work was supported by the National Science Council (NSC 99–2113-M-035–001-MY2) and Feng Chia University in Taiwan.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115–8119. Web of Science CrossRef CAS Google Scholar
Chen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136–12144. Web of Science CrossRef PubMed CAS Google Scholar
Chen, K.-Y., Hsing, H.-H., Wu, C.-C., Hwang, J.-J. & Chow, T. J. (2007). Chem. Commun. 10, 1065–1067. Web of Science CrossRef Google Scholar
Chow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967–6975. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ghorbani-Vaghei, R., Chegini, M., Veisi, H. & Karimi-Tabar, M. (2009). Tetrahedron Lett. 50, 1861–1865. CAS Google Scholar
Jansen, G., Kahlert, B., Klärner, F.-G., Boese, R. & Bläser, D. (2010). J. Am. Chem. Soc., 132, 8581–8592. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kuś, P. & Jones, P. G. (2003). Acta Cryst. E59, o899–o900. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pandithavidana, D. R., Poloukhtine, A. & Popik, V. V. (2009). J. Am. Chem. Soc. 131, 351–356. Web of Science CrossRef PubMed CAS Google Scholar
Qin, S., Yin, G. & Zhou, B. (2005). Acta Cryst. E61, o3257–o3258. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sim, W., Lee, J. Y., Kim, J. S., Kim, J.-G. & Suh, I.-H. (2001). Acta Cryst. C57, 293–294. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Swartz, C. R., Parkin, S. R., Bullock, J. E., Anthony, J. E., Mayer, A. C. & Malliaras, G. G. (2005). Org. Lett. 7, 3163–3166. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound and its derivatives are useful reagents to build a naphthalene ring (Chen et al., 2002, 2006, 2007; Chow et al., 2005; Jansen et al., 2010; Pandithavidana et al., 2009). In addition, they have been prepared as potential precursors to pentacene derivatives (Swartz et al., 2005).
The ORTEP diagram of the title compound is shown in Fig. 1. Two intramolecular C—H···Br hydrogen bonds (see Table 1) generate two S(6) ring motifs (Bernstein et al., 1995). The two geminal bromine substituents point to opposite sides of the aromatic ring system. In the crystal structure (Fig. 2), the molecules are stabilized by intermolecular π–π interactions. Cg1···Cg1i distance is 3.727 (9)Å, symmetry code: (i) -1 - x, -y, 1 - z; Cg1···Cg1ii distance is 3.858 (9)Å, symmetry code: (ii) -x, -y, 1 - z; Cg1 is the centroid of the C2/C7 ring).