organic compounds
Hexyl (E)-3-(3,4-dihydroxyphenyl)acrylate
aSchool of Biological and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, People's Republic of China, and bSericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, People's Republic of China
*Correspondence e-mail: fuword@163.com
The title molecule, C15H20O4, has an E conformation about its C=C bond and is almost planar (r.m.s. deviation of all non-H atoms = 0.04 Å). The crystal structurere features O—H⋯O and C—H⋯O hydrogen bonds.
Related literature
For general background to caffeic acid and its derivatives, see: Buzzi et al. (2009); Uwai et al. (2008). For details of the synthesis, see: Feng et al. (2011); Son et al. (2011). For related structures, see: Xia et al. (2004, 2006). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811051671/aa2034sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811051671/aa2034Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811051671/aa2034Isup3.cml
Esterification of caffeic acid with hexyl alcohol was performed in a column (inner diameter = 15 mm, length = 200 mm).
resin CD-552 particles (5 g), molecular sieve (5 g) and glass beads of 2 mm in diameter were packed into the middle of the reactor. In a reaction mixture tank, caffeic acid (8.95 g) was mixed with 100 ml of hexyl alcohol. The reaction mixture was supplied to the reaction column at 10.0 ml/h. The reaction continued at 90°C for 24 h. The mixture was evaporated to dryness and followed by the addition of ethanol and extracted with dichloromethane three times. The dichloromethane extract was evaporated to give a solid residue. The residue was recrystallized from ethanol/petroleum ether (1:1) to give the title compound as brown crystals (4.9 g, 54.7%).The H atoms were placed in calculated positions (O—H = 0.82 A ° and C—H = 0.93–0.97 A °) and constrained to ride on their parent atoms, with Uiso(H) = 1.2 or 1.5Ueq(C, O).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).C15H20O4 | Z = 2 |
Mr = 264.31 | F(000) = 284 |
Triclinic, P1 | Dx = 1.235 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.2920 (11) Å | Cell parameters from 25 reflections |
b = 10.689 (2) Å | θ = 9–13° |
c = 12.732 (3) Å | µ = 0.09 mm−1 |
α = 95.45 (3)° | T = 293 K |
β = 92.76 (3)° | Block, brown |
γ = 96.84 (3)° | 0.20 × 0.10 × 0.10 mm |
V = 710.6 (2) Å3 |
Enraf–Nonius CAD-4 diffractometer | 1515 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.022 |
Graphite monochromator | θmax = 25.4°, θmin = 1.6° |
ω/2θ scans | h = 0→6 |
Absorption correction: ψ scan (North et al., 1968) | k = −12→12 |
Tmin = 0.983, Tmax = 0.991 | l = −15→15 |
2912 measured reflections | 3 standard reflections every 200 reflections |
2608 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.178 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.085P)2 + 0.096P] where P = (Fo2 + 2Fc2)/3 |
2608 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C15H20O4 | γ = 96.84 (3)° |
Mr = 264.31 | V = 710.6 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.2920 (11) Å | Mo Kα radiation |
b = 10.689 (2) Å | µ = 0.09 mm−1 |
c = 12.732 (3) Å | T = 293 K |
α = 95.45 (3)° | 0.20 × 0.10 × 0.10 mm |
β = 92.76 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1515 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.022 |
Tmin = 0.983, Tmax = 0.991 | 3 standard reflections every 200 reflections |
2912 measured reflections | intensity decay: 1% |
2608 independent reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.178 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.19 e Å−3 |
2608 reflections | Δρmin = −0.28 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7392 (4) | 0.09426 (17) | 0.38828 (16) | 0.0649 (6) | |
H1A | 0.6881 | 0.0408 | 0.4304 | 0.078* | |
C1 | 0.5906 (5) | 0.3938 (2) | 0.3065 (2) | 0.0504 (7) | |
H1B | 0.6496 | 0.4508 | 0.2597 | 0.060* | |
O2 | 0.3463 (4) | 0.13532 (16) | 0.51361 (14) | 0.0564 (6) | |
H2A | 0.2394 | 0.1617 | 0.5516 | 0.085* | |
C2 | 0.7038 (5) | 0.2853 (2) | 0.3144 (2) | 0.0528 (8) | |
H2B | 0.8390 | 0.2700 | 0.2730 | 0.063* | |
C3 | 0.6192 (5) | 0.1991 (2) | 0.3832 (2) | 0.0463 (7) | |
O3 | 0.0120 (4) | 0.75695 (18) | 0.36537 (16) | 0.0685 (7) | |
O4 | 0.2768 (4) | 0.81988 (16) | 0.24479 (15) | 0.0571 (6) | |
C4 | 0.4190 (5) | 0.2232 (2) | 0.4456 (2) | 0.0434 (7) | |
C5 | 0.3053 (5) | 0.3312 (2) | 0.43703 (19) | 0.0440 (7) | |
H5A | 0.1696 | 0.3462 | 0.4783 | 0.053* | |
C6 | 0.3883 (5) | 0.4188 (2) | 0.36794 (19) | 0.0420 (6) | |
C7 | 0.2635 (5) | 0.5329 (2) | 0.36356 (19) | 0.0443 (7) | |
H7A | 0.1264 | 0.5394 | 0.4059 | 0.053* | |
C8 | 0.3218 (5) | 0.6278 (2) | 0.3067 (2) | 0.0505 (7) | |
H8A | 0.4555 | 0.6237 | 0.2622 | 0.061* | |
C9 | 0.1864 (5) | 0.7388 (2) | 0.3105 (2) | 0.0466 (7) | |
C10 | 0.1571 (6) | 0.9344 (2) | 0.2397 (2) | 0.0518 (7) | |
H10A | 0.1845 | 0.9868 | 0.3067 | 0.062* | |
H10B | −0.0249 | 0.9137 | 0.2235 | 0.062* | |
C11 | 0.2783 (6) | 1.0026 (2) | 0.1537 (2) | 0.0525 (7) | |
H11A | 0.2586 | 0.9468 | 0.0884 | 0.063* | |
H11B | 0.4594 | 1.0242 | 0.1720 | 0.063* | |
C12 | 0.1614 (5) | 1.1224 (2) | 0.1367 (2) | 0.0506 (7) | |
H12A | −0.0210 | 1.1008 | 0.1222 | 0.061* | |
H12B | 0.1877 | 1.1792 | 0.2015 | 0.061* | |
C13 | 0.2692 (6) | 1.1911 (3) | 0.0477 (2) | 0.0584 (8) | |
H13A | 0.2456 | 1.1339 | −0.0168 | 0.070* | |
H13B | 0.4512 | 1.2140 | 0.0629 | 0.070* | |
C14 | 0.1498 (7) | 1.3098 (3) | 0.0292 (3) | 0.0744 (10) | |
H14A | −0.0338 | 1.2884 | 0.0198 | 0.089* | |
H14B | 0.1860 | 1.3702 | 0.0915 | 0.089* | |
C15 | 0.2443 (8) | 1.3718 (3) | −0.0660 (3) | 0.0952 (13) | |
H15A | 0.1629 | 1.4464 | −0.0732 | 0.143* | |
H15B | 0.2044 | 1.3136 | −0.1284 | 0.143* | |
H15C | 0.4256 | 1.3947 | −0.0569 | 0.143* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0696 (14) | 0.0486 (12) | 0.0879 (15) | 0.0312 (10) | 0.0301 (12) | 0.0239 (10) |
C1 | 0.0538 (17) | 0.0444 (15) | 0.0573 (17) | 0.0095 (13) | 0.0182 (14) | 0.0156 (13) |
O2 | 0.0697 (13) | 0.0446 (11) | 0.0651 (12) | 0.0252 (10) | 0.0277 (10) | 0.0239 (9) |
C2 | 0.0500 (17) | 0.0478 (16) | 0.0664 (19) | 0.0191 (14) | 0.0213 (15) | 0.0108 (14) |
C3 | 0.0475 (16) | 0.0373 (14) | 0.0569 (17) | 0.0139 (12) | 0.0091 (13) | 0.0056 (12) |
O3 | 0.0834 (16) | 0.0585 (13) | 0.0778 (14) | 0.0343 (11) | 0.0419 (12) | 0.0294 (11) |
O4 | 0.0708 (13) | 0.0429 (11) | 0.0678 (13) | 0.0232 (10) | 0.0280 (11) | 0.0254 (10) |
C4 | 0.0489 (16) | 0.0362 (14) | 0.0478 (15) | 0.0100 (12) | 0.0100 (13) | 0.0085 (12) |
C5 | 0.0484 (16) | 0.0406 (15) | 0.0470 (15) | 0.0153 (12) | 0.0148 (13) | 0.0077 (12) |
C6 | 0.0485 (16) | 0.0359 (14) | 0.0441 (14) | 0.0104 (12) | 0.0083 (12) | 0.0084 (11) |
C7 | 0.0486 (17) | 0.0403 (15) | 0.0477 (16) | 0.0126 (13) | 0.0137 (13) | 0.0083 (12) |
C8 | 0.0581 (18) | 0.0464 (16) | 0.0533 (17) | 0.0174 (14) | 0.0213 (14) | 0.0150 (13) |
C9 | 0.0539 (17) | 0.0393 (15) | 0.0509 (16) | 0.0126 (13) | 0.0110 (14) | 0.0134 (12) |
C10 | 0.0632 (19) | 0.0366 (14) | 0.0618 (18) | 0.0199 (13) | 0.0177 (15) | 0.0136 (13) |
C11 | 0.0647 (19) | 0.0437 (15) | 0.0538 (16) | 0.0150 (14) | 0.0165 (14) | 0.0133 (13) |
C12 | 0.0589 (18) | 0.0412 (15) | 0.0556 (17) | 0.0119 (13) | 0.0149 (14) | 0.0124 (13) |
C13 | 0.072 (2) | 0.0495 (17) | 0.0578 (18) | 0.0131 (15) | 0.0152 (16) | 0.0156 (14) |
C14 | 0.098 (3) | 0.0557 (19) | 0.077 (2) | 0.0170 (18) | 0.018 (2) | 0.0281 (17) |
C15 | 0.134 (4) | 0.072 (2) | 0.083 (3) | 0.002 (2) | 0.007 (2) | 0.037 (2) |
O1—C3 | 1.357 (3) | C8—H8A | 0.9300 |
O1—H1A | 0.8500 | C10—C11 | 1.499 (3) |
C1—C2 | 1.377 (4) | C10—H10A | 0.9700 |
C1—C6 | 1.392 (3) | C10—H10B | 0.9700 |
C1—H1B | 0.9300 | C11—C12 | 1.516 (3) |
O2—C4 | 1.371 (3) | C11—H11A | 0.9700 |
O2—H2A | 0.8200 | C11—H11B | 0.9700 |
C2—C3 | 1.382 (3) | C12—C13 | 1.507 (3) |
C2—H2B | 0.9300 | C12—H12A | 0.9700 |
C3—C4 | 1.389 (3) | C12—H12B | 0.9700 |
O3—C9 | 1.207 (3) | C13—C14 | 1.516 (4) |
O4—C9 | 1.326 (3) | C13—H13A | 0.9700 |
O4—C10 | 1.449 (3) | C13—H13B | 0.9700 |
C4—C5 | 1.375 (3) | C14—C15 | 1.514 (4) |
C5—C6 | 1.392 (3) | C14—H14A | 0.9700 |
C5—H5A | 0.9300 | C14—H14B | 0.9700 |
C6—C7 | 1.459 (3) | C15—H15A | 0.9600 |
C7—C8 | 1.317 (3) | C15—H15B | 0.9600 |
C7—H7A | 0.9300 | C15—H15C | 0.9600 |
C8—C9 | 1.455 (3) | ||
C3—O1—H1A | 118.8 | O4—C10—H10B | 110.4 |
C2—C1—C6 | 120.5 (2) | C11—C10—H10B | 110.4 |
C2—C1—H1B | 119.8 | H10A—C10—H10B | 108.6 |
C6—C1—H1B | 119.8 | C10—C11—C12 | 112.0 (2) |
C4—O2—H2A | 109.5 | C10—C11—H11A | 109.2 |
C1—C2—C3 | 120.9 (2) | C12—C11—H11A | 109.2 |
C1—C2—H2B | 119.6 | C10—C11—H11B | 109.2 |
C3—C2—H2B | 119.6 | C12—C11—H11B | 109.2 |
O1—C3—C2 | 118.3 (2) | H11A—C11—H11B | 107.9 |
O1—C3—C4 | 122.3 (2) | C13—C12—C11 | 113.9 (2) |
C2—C3—C4 | 119.3 (2) | C13—C12—H12A | 108.8 |
C9—O4—C10 | 117.5 (2) | C11—C12—H12A | 108.8 |
O2—C4—C5 | 123.6 (2) | C13—C12—H12B | 108.8 |
O2—C4—C3 | 116.7 (2) | C11—C12—H12B | 108.8 |
C5—C4—C3 | 119.7 (2) | H12A—C12—H12B | 107.7 |
C4—C5—C6 | 121.6 (2) | C12—C13—C14 | 114.1 (3) |
C4—C5—H5A | 119.2 | C12—C13—H13A | 108.7 |
C6—C5—H5A | 119.2 | C14—C13—H13A | 108.7 |
C5—C6—C1 | 118.1 (2) | C12—C13—H13B | 108.7 |
C5—C6—C7 | 119.2 (2) | C14—C13—H13B | 108.7 |
C1—C6—C7 | 122.7 (2) | H13A—C13—H13B | 107.6 |
C8—C7—C6 | 127.7 (2) | C15—C14—C13 | 113.5 (3) |
C8—C7—H7A | 116.1 | C15—C14—H14A | 108.9 |
C6—C7—H7A | 116.1 | C13—C14—H14A | 108.9 |
C7—C8—C9 | 122.9 (2) | C15—C14—H14B | 108.9 |
C7—C8—H8A | 118.5 | C13—C14—H14B | 108.9 |
C9—C8—H8A | 118.5 | H14A—C14—H14B | 107.7 |
O3—C9—O4 | 122.9 (2) | C14—C15—H15A | 109.5 |
O3—C9—C8 | 125.4 (2) | C14—C15—H15B | 109.5 |
O4—C9—C8 | 111.7 (2) | H15A—C15—H15B | 109.5 |
O4—C10—C11 | 106.6 (2) | C14—C15—H15C | 109.5 |
O4—C10—H10A | 110.4 | H15A—C15—H15C | 109.5 |
C11—C10—H10A | 110.4 | H15B—C15—H15C | 109.5 |
C6—C1—C2—C3 | 0.1 (4) | C5—C6—C7—C8 | 177.1 (3) |
C1—C2—C3—O1 | −179.5 (3) | C1—C6—C7—C8 | −2.1 (5) |
C1—C2—C3—C4 | −0.7 (4) | C6—C7—C8—C9 | −178.6 (3) |
O1—C3—C4—O2 | −0.1 (4) | C10—O4—C9—O3 | −0.3 (4) |
C2—C3—C4—O2 | −178.9 (2) | C10—O4—C9—C8 | 179.3 (2) |
O1—C3—C4—C5 | 179.9 (3) | C7—C8—C9—O3 | 0.9 (5) |
C2—C3—C4—C5 | 1.1 (4) | C7—C8—C9—O4 | −178.8 (3) |
O2—C4—C5—C6 | 179.0 (2) | C9—O4—C10—C11 | −175.1 (2) |
C3—C4—C5—C6 | −0.9 (4) | O4—C10—C11—C12 | 177.5 (2) |
C4—C5—C6—C1 | 0.4 (4) | C10—C11—C12—C13 | −177.4 (2) |
C4—C5—C6—C7 | −178.9 (2) | C11—C12—C13—C14 | 179.0 (3) |
C2—C1—C6—C5 | 0.0 (4) | C12—C13—C14—C15 | −175.2 (3) |
C2—C1—C6—C7 | 179.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2 | 0.85 | 2.41 | 2.733 (2) | 103 |
O1—H1A···O2i | 0.85 | 2.07 | 2.857 (2) | 154 |
O2—H2A···O3ii | 0.82 | 1.97 | 2.786 (3) | 173 |
C5—H5A···O3ii | 0.93 | 2.54 | 3.243 (3) | 133 |
C7—H7A···O3 | 0.93 | 2.56 | 2.874 (3) | 100 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C15H20O4 |
Mr | 264.31 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 5.2920 (11), 10.689 (2), 12.732 (3) |
α, β, γ (°) | 95.45 (3), 92.76 (3), 96.84 (3) |
V (Å3) | 710.6 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.20 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.983, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2912, 2608, 1515 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.178, 1.00 |
No. of reflections | 2608 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.28 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2i | 0.85 | 2.07 | 2.857 (2) | 154 |
O2—H2A···O3ii | 0.82 | 1.97 | 2.786 (3) | 173 |
C5—H5A···O3ii | 0.93 | 2.54 | 3.243 (3) | 133 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1. |
Acknowledgements
This work was sponsored by the Qing Lan Project of Jiangsu Province, the Natural Science Foundation of Jiangsu Province (BK2009213), the College Natural Science Research Project of Jiangsu Province (08KJB530002), the Science and Technology Support Program of Jiangsu Province (BE2010419), the Start Project for Introducing Talent of Jiangsu University of Science and Technology (35211002), the Pre-research for NSFC Project of Jiangsu University of Science and Technology (33201002), and the earmarked fund for Modern Agro-industry Technology Research System (CARS-22).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Buzzi, F. de C., Franzoi, C. L., Antonini, G., Fracasso, M., Filho, V. C., Yunes, R. A. & Niero, R. (2009). Eur. J. Med. Chem. 44, 4596–4602. PubMed CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Feng, Y., Zhang, A., Li, J. & He, B. (2011). Bioresource Technol. 102, 3607–3609. Web of Science CrossRef CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Son, S. M., Kimura, H. & Kusakabe, K. (2011). Bioresource Technol. 102, 2130–2132. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uwai, K., Osanai, Y., Imaizumi, T., Kanno, S., Takeshita, M. & Ishikawa, M. (2008). Bioorg. Med. Chem. 16, 7795–7803. Web of Science CrossRef PubMed CAS Google Scholar
Xia, C.-N., Hu, W.-X. & Rao, G.-W. (2004). Acta Cryst. E60, o913–o914. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Xia, C.-N., Hu, W.-X. & Zhou, W. (2006). Acta Cryst. E62, o3900–o3901. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Caffeic acid and its derivatives are widely distributed in medicinal plants and are therefore present in human plasma in a diet dependent concentration. These compounds are known to show a variety of biological effects such as anti-tumor, anti-oxidant, and anti-inflammatory activities (Uwai et al., 2008; Buzzi et al., 2009). In order to investigate their properties better, we synthesize a series of caffeic acid esters. The title compound, hexyl (E)-3-(3,4-dihydroxyphenyl)acrylate (I) was obtained earlier (Feng et al., 2011; Son et al., 2011). We report herein the crystal structure of the title compound.
The molecule of (I) has an E configuration (Fig. 1). All non-H atoms of (I) are almost coplanar, with a root mean square deviation from the least-squares plane of 0.04 A°. The bond lengths and angles are within normal ranges (Allen et al., 1987), they are in very good agreement with those found in similar caffeic acid structures (Xia et al., 2004; Xia et al., 2006)
In the crystal structure, intermolecular O—H···O interactions (Table 1) link the molecules into ribbons parallel to the (112) plane (Fig. 2), this may be effective in the stabilization of the structure. On the other hand, the intramolecular O—H···O H-bond also contribute to the stability of the molecular configuration (Table 1).