organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(3-Chloro­phen­ylsulfan­yl)-1-methyl-3-tri­fluoro­methyl-1H-pyrazole-4-carbaldehyde O-[(2-chloro-1,3-thia­zol-5-yl)meth­yl]oxime

aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China, and bState Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: daihong_2001@yahoo.com.cn

(Received 17 October 2011; accepted 12 December 2011; online 17 December 2011)

In the title compound, C16H11Cl2F3N4OS2, the benzene ring and the thia­zole ring make dihedral angles of 83.2 (3) and 78.3 (3)°, respectively, with the pyrazole ring. The crystal packing shows S⋯N contacts of 3.309 (2) Å.

Related literature

For the bioactivity of pyrazole oxime derivatives, see: Takao et al. (1994[Takao, H., Wakisaka, S. & Murai, K. (1994). Jpn Patent No. 06329633.]); Watanabe et al. (2001[Watanabe, M., Kuwata, T., Okada, T., Ohita, S., Asahara, T., Noritake, T. & Fukuda, Y. (2001). Jpn Patent No. 2001233861.]). For the biological activity of thia­zole derivatives, see: Fahmy & Bekhit (2002[Fahmy, H. Y. T. & Bekhit, A. A. (2002). Pharmazie, 57, 800-803.]); Sidoova et al. (1999[Sidoova, E., Kralova, K. & Loos, D. (1999). Molecules, 4, 73-80.]); Zhang et al. (2000[Zhang, A. G., Kayser, H., Maienfisch, P. & Casida, J. E. (2000). J. Neurochem. 75, 1294-1303.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11Cl2F3N4OS2

  • Mr = 467.31

  • Monoclinic, P 21 /n

  • a = 12.328 (3) Å

  • b = 12.787 (3) Å

  • c = 13.139 (3) Å

  • β = 110.16 (3)°

  • V = 1944.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 113 K

  • 0.20 × 0.16 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]) Tmin = 0.891, Tmax = 0.943

  • 9881 measured reflections

  • 3309 independent reflections

  • 2725 reflections with I > 2σ(I)

  • Rint = 0.116

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.273

  • S = 1.10

  • 3309 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.94 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, pyrazole oximes are reported to possess diverse biological activities, such as fungicidal, insecticidal, and acaricidal activities (Takao et al., 1994; Watanabe et al., 2001). On the other hand, many thiazole derivatives have been found to show insecticidal, herbicidal, and anticancer activities (Sidoova et al., 1999; Zhang et al., 2000; Fahmy & Bekhit, 2002). In search of novel pyrazole oxime derivatives with good bioactivities, we have sought to synthesize new pyrazole oxime ethers containing thiazole units. We report here the crystal structure of the target compound, (I). It contains three planes, the pyrazole ring (C2/C3/C4/N1/N2), the substituted phenyl ring (C6/C7/C8/C9/C10/C11) and the thiazole ring (C15/C14/S2/C16/N4) (Fig. 1). The dihedral angles between the the phenyl ring and the pyrazole ring and between the thiazole ring and the pyrazole ring are 83.2 (3)° and 78.3 (3)°, respectively. The crystal structure of (I) is stabilized by S···N contacts.

Related literature top

For the bioactivity of pyrazole oxime derivatives, see: Takao et al. (1994); Watanabe et al. (2001). For the biological activity of thiazole derivatives, see: Fahmy & Bekhit (2002); Sidoova et al. (1999); Zhang et al. (2000).

Experimental top

To a violently stirred solution of 1-methyl-3-trifluoromethyl-5- (3-chlorophenylthio)-1H-pyrazole-4-carbaldehyde oxime (3 mmol) and potassium carbonate (9 mmol) in 20 ml of anhydrous N,N-dimethylformamide, was added dropwise a solution of 2-chloro-5-chloromethylthiazole (3.6 mmol) in 10 ml of anhydrous N,N-dimethylformamide. Then, to the above mixture was added a catalytic amount of caesium chloride at room temperature. The resulting solution was heated to 373 K for 6 h. After cooling to room temperature, the mixture was poured into water (200 ml) and extracted with ethyl acetate (3 × 50 ml). The organic layer was washed with 10% sodium carbonate solution (3 × 30 ml) and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was separated by column chromatography on silica gel using a mixture of petroleum ether/ethyl acetate to obtain colourless crystals.

Refinement top

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions and included in the final refinement in the riding-model approximation with C—H distances of 0.93–0.97 ° A, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 30% probability level.
5-(3-Chlorophenylsulfanyl)-1-methyl-3-trifluoromethyl-1H-pyrazole-4- carbaldehyde O-[(2-chloro-1,3-thiazol-5-yl)methyl]oxime top
Crystal data top
C16H11Cl2F3N4OS2F(000) = 944
Mr = 467.31Dx = 1.597 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5433 reflections
a = 12.328 (3) Åθ = 1.6–27.2°
b = 12.787 (3) ŵ = 0.59 mm1
c = 13.139 (3) ÅT = 113 K
β = 110.16 (3)°Prism, colourless
V = 1944.3 (9) Å30.20 × 0.16 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
3309 independent reflections
Radiation source: rotating anode2725 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.116
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 1114
Tmin = 0.891, Tmax = 0.943k = 1514
9881 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.273H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
3309 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
C16H11Cl2F3N4OS2V = 1944.3 (9) Å3
Mr = 467.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.328 (3) ŵ = 0.59 mm1
b = 12.787 (3) ÅT = 113 K
c = 13.139 (3) Å0.20 × 0.16 × 0.10 mm
β = 110.16 (3)°
Data collection top
Rigaku Saturn
diffractometer
3309 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2725 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.943Rint = 0.116
9881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.273H-atom parameters constrained
S = 1.10Δρmax = 0.81 e Å3
3309 reflectionsΔρmin = 0.94 e Å3
254 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01343 (10)0.94499 (10)0.66778 (11)0.0519 (5)
Cl20.57227 (10)0.80206 (10)0.00569 (10)0.0483 (4)
S10.36532 (9)1.11017 (8)0.55348 (9)0.0348 (4)
S20.38132 (9)0.80301 (8)0.09658 (8)0.0334 (4)
F10.2428 (2)0.69627 (18)0.3650 (2)0.0403 (7)
F20.3861 (2)0.62954 (18)0.49260 (18)0.0396 (7)
F30.4134 (2)0.70073 (18)0.3550 (2)0.0388 (7)
O10.1746 (3)0.9511 (2)0.1630 (2)0.0351 (7)
N10.4428 (3)0.9119 (3)0.6202 (2)0.0280 (7)
N20.4393 (3)0.8114 (2)0.5871 (3)0.0293 (8)
N30.2447 (3)0.8956 (2)0.2545 (3)0.0312 (8)
N40.3842 (3)0.9182 (3)0.0643 (3)0.0402 (9)
C10.3548 (3)0.7100 (3)0.4235 (3)0.0305 (9)
C20.3752 (3)0.8122 (3)0.4828 (3)0.0283 (9)
C30.3354 (3)0.9140 (3)0.4454 (3)0.0279 (8)
C40.3791 (3)0.9760 (3)0.5370 (3)0.0285 (8)
C50.5030 (4)0.9391 (3)0.7338 (3)0.0381 (10)
H5A0.44870.94100.77140.057*
H5B0.53861.00650.73790.057*
H5C0.56130.88760.76660.057*
C60.2689 (3)1.1125 (3)0.6278 (3)0.0310 (9)
C70.2734 (4)1.2006 (3)0.6906 (3)0.0348 (10)
H70.32801.25260.69670.042*
C80.1934 (4)1.2099 (3)0.7451 (4)0.0405 (11)
H80.19501.26900.78690.049*
C90.1125 (4)1.1326 (3)0.7376 (3)0.0397 (10)
H90.05961.13890.77340.048*
C100.1127 (4)1.0458 (3)0.6753 (3)0.0345 (9)
C110.1877 (3)1.0346 (3)0.6185 (3)0.0328 (9)
H110.18390.97630.57500.039*
C120.2648 (3)0.9524 (3)0.3388 (3)0.0308 (9)
H120.23391.01950.33210.037*
C130.1586 (4)0.8867 (3)0.0688 (3)0.0351 (10)
H13A0.09380.91340.00890.042*
H13B0.13970.81610.08410.042*
C140.2639 (3)0.8834 (3)0.0357 (3)0.0302 (9)
C150.2824 (4)0.9380 (3)0.0462 (3)0.0360 (10)
H150.22880.98620.08770.043*
C160.4424 (4)0.8484 (3)0.0046 (3)0.0355 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0347 (7)0.0614 (8)0.0707 (9)0.0063 (5)0.0322 (6)0.0026 (5)
Cl20.0299 (7)0.0728 (9)0.0460 (7)0.0030 (5)0.0179 (5)0.0001 (5)
S10.0347 (7)0.0345 (6)0.0437 (7)0.0039 (4)0.0244 (5)0.0030 (4)
S20.0270 (7)0.0436 (7)0.0312 (7)0.0031 (4)0.0119 (5)0.0028 (4)
F10.0242 (13)0.0447 (14)0.0503 (15)0.0077 (9)0.0109 (11)0.0058 (10)
F20.0461 (16)0.0323 (12)0.0411 (14)0.0024 (10)0.0161 (12)0.0052 (9)
F30.0392 (15)0.0408 (13)0.0442 (14)0.0027 (10)0.0244 (12)0.0076 (10)
O10.0342 (16)0.0420 (15)0.0284 (14)0.0115 (11)0.0100 (12)0.0036 (11)
N10.0197 (16)0.0392 (17)0.0297 (17)0.0036 (13)0.0143 (13)0.0025 (13)
N20.0219 (17)0.0339 (17)0.0336 (18)0.0021 (12)0.0115 (14)0.0001 (13)
N30.0263 (18)0.0370 (18)0.0319 (17)0.0058 (13)0.0120 (14)0.0054 (13)
N40.036 (2)0.054 (2)0.0329 (19)0.0050 (17)0.0147 (16)0.0029 (17)
C10.022 (2)0.040 (2)0.033 (2)0.0003 (15)0.0145 (16)0.0024 (16)
C20.0200 (19)0.037 (2)0.032 (2)0.0028 (14)0.0142 (16)0.0006 (15)
C30.0203 (19)0.0370 (19)0.032 (2)0.0006 (14)0.0160 (16)0.0011 (15)
C40.0191 (18)0.040 (2)0.034 (2)0.0026 (15)0.0190 (16)0.0001 (15)
C50.031 (2)0.048 (2)0.035 (2)0.0055 (17)0.0110 (18)0.0068 (18)
C60.026 (2)0.040 (2)0.0281 (19)0.0018 (15)0.0111 (16)0.0017 (15)
C70.036 (2)0.035 (2)0.036 (2)0.0047 (15)0.016 (2)0.0016 (15)
C80.042 (3)0.047 (2)0.036 (2)0.0157 (19)0.019 (2)0.0039 (18)
C90.033 (2)0.056 (3)0.035 (2)0.0158 (19)0.0181 (19)0.0011 (19)
C100.024 (2)0.046 (2)0.036 (2)0.0040 (16)0.0134 (17)0.0046 (17)
C110.026 (2)0.041 (2)0.033 (2)0.0066 (16)0.0125 (17)0.0007 (16)
C120.025 (2)0.036 (2)0.035 (2)0.0039 (15)0.0158 (17)0.0010 (15)
C130.029 (2)0.047 (2)0.029 (2)0.0040 (16)0.0098 (17)0.0009 (16)
C140.0233 (19)0.038 (2)0.0286 (19)0.0009 (15)0.0077 (16)0.0017 (15)
C150.033 (2)0.040 (2)0.034 (2)0.0066 (16)0.0105 (18)0.0056 (16)
C160.030 (2)0.047 (2)0.031 (2)0.0041 (17)0.0120 (17)0.0030 (17)
Geometric parameters (Å, º) top
Cl1—C101.756 (4)C3—C121.456 (5)
Cl2—C161.703 (4)C5—H5A0.9600
S1—C41.744 (4)C5—H5B0.9600
S1—C61.780 (4)C5—H5C0.9600
S2—C161.729 (4)C6—C71.386 (6)
S2—C141.730 (4)C6—C111.387 (6)
F1—C11.341 (5)C7—C81.409 (6)
F2—C11.338 (5)C7—H70.9300
F3—C11.339 (5)C8—C91.383 (7)
O1—N31.407 (4)C8—H80.9300
O1—C131.442 (5)C9—C101.380 (6)
N1—N21.352 (5)C9—H90.9300
N1—C41.376 (5)C10—C111.382 (6)
N1—C51.461 (5)C11—H110.9300
N2—C21.325 (5)C12—H120.9300
N3—C121.275 (5)C13—C141.505 (6)
N4—C161.298 (6)C13—H13A0.9700
N4—C151.379 (6)C13—H13B0.9700
C1—C21.497 (5)C14—C151.366 (6)
C2—C31.418 (5)C15—H150.9300
C3—C41.386 (5)
C4—S1—C6101.37 (18)C6—C7—C8118.7 (4)
C16—S2—C1488.5 (2)C6—C7—H7120.7
N3—O1—C13107.9 (3)C8—C7—H7120.7
N2—N1—C4111.4 (3)C9—C8—C7121.1 (4)
N2—N1—C5120.2 (3)C9—C8—H8119.4
C4—N1—C5128.3 (3)C7—C8—H8119.4
C2—N2—N1105.5 (3)C10—C9—C8117.9 (4)
C12—N3—O1109.5 (3)C10—C9—H9121.0
C16—N4—C15108.8 (4)C8—C9—H9121.0
F2—C1—F3107.0 (3)C9—C10—C11122.8 (4)
F2—C1—F1106.7 (3)C9—C10—Cl1118.7 (3)
F3—C1—F1106.9 (3)C11—C10—Cl1118.5 (3)
F2—C1—C2111.1 (3)C10—C11—C6118.4 (4)
F3—C1—C2113.3 (3)C10—C11—H11120.8
F1—C1—C2111.6 (3)C6—C11—H11120.8
N2—C2—C3112.2 (3)N3—C12—C3121.1 (4)
N2—C2—C1117.7 (3)N3—C12—H12119.5
C3—C2—C1130.1 (4)C3—C12—H12119.5
C4—C3—C2103.9 (3)O1—C13—C14112.8 (3)
C4—C3—C12124.5 (4)O1—C13—H13A109.0
C2—C3—C12131.6 (3)C14—C13—H13A109.0
N1—C4—C3107.0 (3)O1—C13—H13B109.0
N1—C4—S1122.7 (3)C14—C13—H13B109.0
C3—C4—S1130.2 (3)H13A—C13—H13B107.8
N1—C5—H5A109.5C15—C14—C13127.5 (4)
N1—C5—H5B109.5C15—C14—S2109.1 (3)
H5A—C5—H5B109.5C13—C14—S2123.4 (3)
N1—C5—H5C109.5C14—C15—N4116.8 (4)
H5A—C5—H5C109.5C14—C15—H15121.6
H5B—C5—H5C109.5N4—C15—H15121.6
C7—C6—C11121.0 (4)N4—C16—Cl2122.5 (3)
C7—C6—S1116.3 (3)N4—C16—S2116.7 (3)
C11—C6—S1122.5 (3)Cl2—C16—S2120.8 (3)
C4—N1—N2—C21.0 (4)C4—S1—C6—C1128.8 (4)
C5—N1—N2—C2177.4 (3)C11—C6—C7—C80.0 (6)
C13—O1—N3—C12177.1 (3)S1—C6—C7—C8175.6 (3)
N1—N2—C2—C30.1 (4)C6—C7—C8—C90.7 (6)
N1—N2—C2—C1179.5 (3)C7—C8—C9—C100.2 (6)
F2—C1—C2—N213.1 (5)C8—C9—C10—C111.8 (6)
F3—C1—C2—N2107.4 (4)C8—C9—C10—Cl1178.2 (3)
F1—C1—C2—N2131.9 (4)C9—C10—C11—C62.4 (6)
F2—C1—C2—C3166.4 (4)Cl1—C10—C11—C6177.6 (3)
F3—C1—C2—C373.2 (5)C7—C6—C11—C101.4 (6)
F1—C1—C2—C347.5 (5)S1—C6—C11—C10176.8 (3)
N2—C2—C3—C41.1 (4)O1—N3—C12—C3179.8 (3)
C1—C2—C3—C4178.4 (4)C4—C3—C12—N3167.3 (4)
N2—C2—C3—C12179.3 (4)C2—C3—C12—N313.1 (7)
C1—C2—C3—C121.3 (7)N3—O1—C13—C1475.3 (4)
N2—N1—C4—C31.7 (4)O1—C13—C14—C15100.8 (5)
C5—N1—C4—C3177.7 (4)O1—C13—C14—S281.4 (4)
N2—N1—C4—S1179.5 (3)C16—S2—C14—C151.1 (3)
C5—N1—C4—S13.5 (5)C16—S2—C14—C13177.0 (4)
C2—C3—C4—N11.6 (4)C13—C14—C15—N4177.1 (4)
C12—C3—C4—N1178.7 (3)S2—C14—C15—N40.9 (5)
C2—C3—C4—S1179.7 (3)C16—N4—C15—C140.1 (5)
C12—C3—C4—S10.0 (6)C15—N4—C16—Cl2178.8 (3)
C6—S1—C4—N174.0 (3)C15—N4—C16—S20.9 (5)
C6—S1—C4—C3107.5 (4)C14—S2—C16—N41.2 (3)
C4—S1—C6—C7155.6 (3)C14—S2—C16—Cl2178.5 (3)

Experimental details

Crystal data
Chemical formulaC16H11Cl2F3N4OS2
Mr467.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)12.328 (3), 12.787 (3), 13.139 (3)
β (°) 110.16 (3)
V3)1944.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.20 × 0.16 × 0.10
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.891, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
9881, 3309, 2725
Rint0.116
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.273, 1.10
No. of reflections3309
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.94

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 20772068), the Science and Technology Projects Fund of Nantong City (grant Nos. K2010016, AS2010005), the Science Foundation of Nantong University (grant Nos. 09Z010, 09 C001) and the Scientific Research Foundation for Talent Introduction of Nantong University.

References

First citationFahmy, H. Y. T. & Bekhit, A. A. (2002). Pharmazie, 57, 800–803.  Web of Science PubMed CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSidoova, E., Kralova, K. & Loos, D. (1999). Molecules, 4, 73–80.  Web of Science CrossRef CAS Google Scholar
First citationTakao, H., Wakisaka, S. & Murai, K. (1994). Jpn Patent No. 06329633.  Google Scholar
First citationWatanabe, M., Kuwata, T., Okada, T., Ohita, S., Asahara, T., Noritake, T. & Fukuda, Y. (2001). Jpn Patent No. 2001233861.  Google Scholar
First citationZhang, A. G., Kayser, H., Maienfisch, P. & Casida, J. E. (2000). J. Neurochem. 75, 1294–1303.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds