organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-3-(2,4,5-tri­chloro­phen­yl)thio­urea

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Engineering, Gifu University Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: khawar_rauf@hotmail.com

(Received 2 December 2011; accepted 7 December 2011; online 14 December 2011)

The benzene and phenyl rings in the title compound, C14H9Cl3N2OS, form a dihedral angle of 40.98 (6)°. The mol­ecule exists in the thione form with typical thio­urea C—S [1.666 (2) Å] and C—O [1.227 (3) Å] bond lengths as well as shortened C—N bonds [1.345 (3) and 1.386 (2) Å]. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation. In the crystal, pairs of N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For information on thio­urea derivatives, see: Patil & Chedekel (1984[Patil, D. G. & Chedekel, M. R. (1984). J. Org. Chem. 49, 997-1000.]); Baily et al. (1996[Baily, N., Dean, A. W., Judd, D. B., Middlemiss, D., Storer, R. & Watson, S. P. (1996). Bioorg. Med. Chem. Lett. 6, 1409-1413.]); Namgun et al. (2001[Namgun, L., Mi-Hyun, C. & Taek, H. K. (2001). J. Korean Chem. Soc. 45, 96-99.]); Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]); Wegner et al. (1986[Wegner, P., Hans, R., Frank, H. & Joppien, H. (1986). Eur. Patent No. 190611.]); Krishnamurthy et al. (1999[Krishnamurthy, R., Govindaraghavan, S. & Narayanasamy, J. (1999). J. Pestic. Sci. 52, 145-151.]); Murtaza et al. (2009a[Murtaza, G., Ebihara, M., Said, M., Khawar Rauf, M. & Anwar, S. (2009a). Acta Cryst. E65, o2297-o2298.],b[Murtaza, G., Hanif-Ur-Rehman, Khawar Rauf, M., Ebihara, M. & Badshah, A. (2009b). Acta Cryst. E65, o343.]). For related structures, see: Khawar Rauf et al. (2009a[Khawar Rauf, M., Bolte, M. & Badshah, A. (2009a). Acta Cryst. E65, o177.],b[Khawar Rauf, M., Bolte, M. & Badshah, A. (2009b). Acta Cryst. E65, o240.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Cl3N2OS

  • Mr = 359.64

  • Monoclinic, C 2/c

  • a = 33.111 (8) Å

  • b = 3.8413 (7) Å

  • c = 25.220 (6) Å

  • β = 115.995 (2)°

  • V = 2883.1 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.800, Tmax = 1.000

  • 11264 measured reflections

  • 3264 independent reflections

  • 2686 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.084

  • S = 1.06

  • 3264 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.89 2.586 (2) 137
N2—H2⋯S1i 0.86 2.83 3.6771 (19) 168
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation and Rigaku, 2001[Molecular Structure Corporation and Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and TEXSAN (Molecular Structure Corporation and Rigaku, 2004[Molecular Structure Corporation and Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: Yadokari-XG_2009 (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218-224.]).

Supporting information


Comment top

Thiourea derivatives are very useful building blocks for the synthesis of a wide range of aliphatic macromolecular and heterocyclic compounds. Thus, benzothiazoles have been prepared from arylthioureas in the presence of bromine (Patil & Chedekel, 1984), 2-aminothiazoles from the condensation of thiourea with α-halocarbonyl compounds (Baily et al., 1996), and 2-Methyl-aminothiazolines from N-(2-hydroxyethyl)-N'-methylthioureas (Namgun et al., 2001). N, N-dialkyl-N-aroylthioureas have been efficiently used for the extraction of Nickle, Palladium and Platinum metals (Koch, 2001). Aliphatic and acylthioureas are well known for their antimicrobial activities (Wegner et al., 1986). Symmetrical and unsymmetrical thioureas have shown antifungal activity against the plant pathogens (Krishnamurthy et al., 1999). We became interested in the synthesis of these thioureas as intermediates in the synthesis of novel guanidines(Murtaza et al., 2009a ; 2009b) and heterocyclic compounds for the systematic study of bioactivity and Complexation behaviour. Hence, we present here the crystal structure of the title compound, (I), Fig. 1. Comparison with N-benzoyl-N'-phenylthioureas [Cambridge Structural Database (Mogul Version 1.7; Allen, 2002) and (Allen et al., 1987)], show the molecule to exist in the thione form with typical thiourea C—S and C—O bonds, as well as shortened C—N bond lengths. Comparison with N-benzoyl-N'-phenylthioureas (Khawar Rauf et al., 2009a,b) suggests the 2,4,5-trichloro substitution on phenyl ring implies no significant effect on these bond lengths. Compound (I) (Fig. 1) shows the typical Thiourea CS and CO double bonds as well as shortened C—N bond lengths. The thiocarbonyl and carbonyl groups are almost coplanar, as reflected by the torsion angles C1—N2—C2—O1 [-5.0 (3)] and N1—C1—N2—C2 [1.7 (3)]. This is associated with the expected typical thiourea intramolecular N—H···O H–bond (Table 1), forming a six-membered ring commonly observed in this class of compounds (Khawar Rauf et al., 2009a,b). The dihedral angles to the N1 C1 S1 N2 C2 O1 plane are 50.97 (4)° for the ring formed by C3 to C8 and 11.44 (7)° for the ring formed by C9 to C14. The crystal packing shows intramolecular N—H···O and intermolecular N—H···S H–bonds (Table 1, Fig. 2). The Cl atoms are not involved in any type of H–bonds.

Related literature top

For information on thiourea derivatives, see: Patil & Chedekel (1984); Baily et al. (1996); Namgun et al. (2001); Koch (2001); Wegner et al. (1986); Krishnamurthy et al. (1999); Murtaza et al. (2009a,b). For related structures, see: Khawar Rauf et al. (2009a,b). For bond-length data, see: Allen et al. (1987). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Freshly prepared benzoylisothiocyanate (1.63 g, 10 mmol) was dissolved in acetone (50 ml) and stirred for 45 minutes. Afterwards neat 2,4,5-trichloroaniline(1.96 g, 10 mmol) was added and the resulting mixture was stirred for 1 h. The reaction mixture was then poured into acidified water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/1,1-dichloromethane (1:1 v/v) to give fine crystals of the title compound (I), with an overall yield of 95%. Full spectroscopic and physical characterization will be reported elsewhere.

Refinement top

Hydrogen atoms were included in calculated positions and refined as riding on their parent atom with N—H = 0.86 Å and Uiso(H) = 1.2U(Neq), C—H = 0.93 Å and Uiso(H) = 1.2U(Ceq).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation and Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation and Rigaku, 2001); data reduction: CrystalClear (Molecular Structure Corporation and Rigaku, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and TEXSAN (Molecular Structure Corporation and Rigaku, 2004); software used to prepare material for publication: Yadokari-XG_2009 (Kabuto et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular diagram of (I). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of (I) viewed along b-axis. Hydrogen bonds shown as dashed lines.
1-Benzoyl-3-(2,4,5-trichlorophenyl)thiourea top
Crystal data top
C14H9Cl3N2OSF(000) = 1456
Mr = 359.64Dx = 1.657 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 3588 reflections
a = 33.111 (8) Åθ = 3.4–27.5°
b = 3.8413 (7) ŵ = 0.78 mm1
c = 25.220 (6) ÅT = 296 K
β = 115.995 (2)°Prism, colorless
V = 2883.1 (11) Å30.20 × 0.20 × 0.20 mm
Z = 8
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3264 independent reflections
Radiation source: Sealed Tube2686 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.039
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 3.2°
dtprofit.ref scansh = 4231
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 34
Tmin = 0.800, Tmax = 1.000l = 2832
11264 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.4746P]
where P = (Fo2 + 2Fc2)/3
3264 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C14H9Cl3N2OSV = 2883.1 (11) Å3
Mr = 359.64Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.111 (8) ŵ = 0.78 mm1
b = 3.8413 (7) ÅT = 296 K
c = 25.220 (6) Å0.20 × 0.20 × 0.20 mm
β = 115.995 (2)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3264 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2686 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 1.000Rint = 0.039
11264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
3264 reflectionsΔρmin = 0.39 e Å3
190 parameters
Special details top

Experimental. ????

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43321 (7)0.2438 (4)0.27137 (9)0.0156 (4)
S10.435250 (18)0.44890 (12)0.21438 (2)0.01721 (13)
N10.39554 (6)0.1658 (4)0.27661 (7)0.0169 (4)
H10.39850.07850.30950.020*
N20.47294 (6)0.1480 (4)0.31893 (7)0.0161 (4)
H20.49730.20180.31660.019*
C20.47806 (7)0.0243 (5)0.36979 (9)0.0183 (4)
O10.44567 (5)0.0919 (4)0.37941 (7)0.0262 (4)
C30.35153 (7)0.2166 (5)0.23204 (9)0.0159 (4)
C40.31883 (7)0.3736 (5)0.24474 (9)0.0169 (4)
C50.27552 (7)0.4225 (4)0.20171 (10)0.0183 (5)
H50.25420.52740.21100.022*
C60.26409 (7)0.3141 (5)0.14447 (9)0.0175 (4)
C70.29612 (7)0.1512 (5)0.13109 (9)0.0170 (4)
C80.33904 (7)0.0996 (4)0.17480 (9)0.0157 (4)
H80.36000.01540.16580.019*
Cl10.332696 (18)0.51597 (12)0.31608 (2)0.02171 (14)
Cl20.210441 (17)0.39364 (12)0.09054 (2)0.02358 (14)
Cl30.283000 (19)0.00640 (12)0.06075 (2)0.02230 (14)
C90.52450 (7)0.1244 (4)0.41257 (9)0.0160 (4)
C100.56177 (7)0.1060 (5)0.40132 (10)0.0202 (5)
H100.55890.02090.36530.024*
C110.60327 (7)0.2139 (5)0.44354 (10)0.0262 (5)
H110.62820.20270.43560.031*
C120.60807 (7)0.3382 (5)0.49742 (10)0.0236 (5)
H120.63610.41000.52570.028*
C130.57106 (8)0.3556 (5)0.50921 (10)0.0278 (5)
H130.57410.43750.54550.033*
C140.52959 (8)0.2506 (5)0.46687 (10)0.0250 (5)
H140.50470.26440.47470.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0159 (11)0.0153 (9)0.0139 (11)0.0006 (7)0.0050 (9)0.0028 (7)
S10.0155 (3)0.0206 (2)0.0151 (3)0.00181 (18)0.0063 (2)0.00292 (18)
N10.0143 (9)0.0239 (8)0.0117 (9)0.0017 (6)0.0048 (8)0.0036 (7)
N20.0117 (9)0.0228 (8)0.0127 (9)0.0001 (6)0.0042 (8)0.0017 (6)
C20.0181 (12)0.0218 (10)0.0136 (11)0.0013 (8)0.0058 (10)0.0001 (8)
O10.0157 (9)0.0441 (9)0.0203 (9)0.0027 (6)0.0093 (8)0.0103 (7)
C30.0135 (11)0.0174 (9)0.0143 (11)0.0006 (7)0.0037 (9)0.0029 (7)
C40.0176 (12)0.0175 (9)0.0162 (11)0.0011 (7)0.0080 (10)0.0005 (7)
C50.0143 (11)0.0184 (9)0.0237 (13)0.0005 (7)0.0096 (10)0.0022 (8)
C60.0108 (11)0.0175 (9)0.0201 (12)0.0010 (7)0.0031 (9)0.0052 (8)
C70.0180 (11)0.0170 (9)0.0142 (11)0.0017 (7)0.0054 (9)0.0007 (7)
C80.0143 (11)0.0161 (9)0.0174 (11)0.0009 (7)0.0076 (9)0.0011 (8)
Cl10.0205 (3)0.0287 (3)0.0170 (3)0.00048 (19)0.0092 (2)0.00330 (19)
Cl20.0140 (3)0.0281 (3)0.0231 (3)0.00175 (19)0.0030 (2)0.0041 (2)
Cl30.0202 (3)0.0295 (3)0.0133 (3)0.00027 (19)0.0038 (2)0.00146 (19)
C90.0144 (11)0.0167 (9)0.0138 (11)0.0013 (7)0.0033 (9)0.0008 (7)
C100.0217 (12)0.0211 (10)0.0182 (12)0.0011 (8)0.0091 (10)0.0033 (8)
C110.0178 (12)0.0298 (11)0.0301 (14)0.0022 (9)0.0097 (11)0.0056 (9)
C120.0176 (12)0.0218 (10)0.0213 (13)0.0016 (8)0.0007 (10)0.0033 (8)
C130.0291 (14)0.0337 (12)0.0168 (13)0.0025 (9)0.0066 (11)0.0055 (9)
C140.0193 (13)0.0349 (11)0.0214 (13)0.0032 (9)0.0093 (11)0.0054 (9)
Geometric parameters (Å, º) top
C1—N11.345 (3)C6—Cl21.727 (2)
C1—N21.386 (2)C7—C81.379 (3)
C1—S11.666 (2)C7—Cl31.723 (2)
N1—C31.410 (2)C8—H80.9300
N1—H10.8600C9—C101.384 (3)
N2—C21.386 (3)C9—C141.391 (3)
N2—H20.8600C10—C111.382 (3)
C2—O11.227 (3)C10—H100.9300
C2—C91.491 (3)C11—C121.382 (3)
C3—C81.391 (3)C11—H110.9300
C3—C41.394 (3)C12—C131.383 (3)
C4—C51.380 (3)C12—H120.9300
C4—Cl11.739 (2)C13—C141.379 (3)
C5—C61.386 (3)C13—H130.9300
C5—H50.9300C14—H140.9300
C6—C71.394 (3)
N1—C1—N2115.16 (18)C8—C7—C6119.9 (2)
N1—C1—S1125.47 (16)C8—C7—Cl3118.89 (16)
N2—C1—S1119.36 (15)C6—C7—Cl3121.24 (17)
C1—N1—C3124.74 (18)C7—C8—C3121.12 (19)
C1—N1—H1117.6C7—C8—H8119.4
C3—N1—H1117.6C3—C8—H8119.4
C2—N2—C1127.76 (18)C10—C9—C14119.02 (19)
C2—N2—H2116.1C10—C9—C2124.6 (2)
C1—N2—H2116.1C14—C9—C2116.36 (19)
O1—C2—N2121.4 (2)C11—C10—C9120.1 (2)
O1—C2—C9121.06 (19)C11—C10—H10119.9
N2—C2—C9117.51 (18)C9—C10—H10119.9
C8—C3—C4118.10 (19)C12—C11—C10120.5 (2)
C8—C3—N1121.05 (18)C12—C11—H11119.7
C4—C3—N1120.81 (19)C10—C11—H11119.7
C5—C4—C3121.5 (2)C11—C12—C13119.8 (2)
C5—C4—Cl1118.90 (16)C11—C12—H12120.1
C3—C4—Cl1119.63 (16)C13—C12—H12120.1
C4—C5—C6119.57 (19)C14—C13—C12119.6 (2)
C4—C5—H5120.2C14—C13—H13120.2
C6—C5—H5120.2C12—C13—H13120.2
C5—C6—C7119.82 (19)C13—C14—C9120.9 (2)
C5—C6—Cl2118.96 (16)C13—C14—H14119.5
C7—C6—Cl2121.20 (17)C9—C14—H14119.5
N2—C1—N1—C3175.25 (16)C5—C6—C7—Cl3178.95 (14)
S1—C1—N1—C36.3 (3)Cl2—C6—C7—Cl32.6 (2)
N1—C1—N2—C21.7 (3)C6—C7—C8—C31.9 (3)
S1—C1—N2—C2179.68 (15)Cl3—C7—C8—C3178.94 (14)
C1—N2—C2—O15.0 (3)C4—C3—C8—C72.9 (3)
C1—N2—C2—C9175.03 (17)N1—C3—C8—C7179.55 (16)
C1—N1—C3—C849.5 (3)O1—C2—C9—C10169.75 (18)
C1—N1—C3—C4133.0 (2)N2—C2—C9—C1010.3 (3)
C8—C3—C4—C51.9 (3)O1—C2—C9—C149.0 (3)
N1—C3—C4—C5179.45 (17)N2—C2—C9—C14170.96 (17)
C8—C3—C4—Cl1178.74 (14)C14—C9—C10—C110.4 (3)
N1—C3—C4—Cl11.2 (2)C2—C9—C10—C11178.33 (18)
C3—C4—C5—C60.1 (3)C9—C10—C11—C120.5 (3)
Cl1—C4—C5—C6179.25 (14)C10—C11—C12—C130.1 (3)
C4—C5—C6—C71.2 (3)C11—C12—C13—C140.4 (3)
C4—C5—C6—Cl2177.30 (14)C12—C13—C14—C90.6 (3)
C5—C6—C7—C80.2 (3)C10—C9—C14—C130.2 (3)
Cl2—C6—C7—C8178.26 (14)C2—C9—C14—C13178.98 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.892.586 (2)137
N2—H2···S1i0.862.833.6771 (19)168
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H9Cl3N2OS
Mr359.64
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)33.111 (8), 3.8413 (7), 25.220 (6)
β (°) 115.995 (2)
V3)2883.1 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.800, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11264, 3264, 2686
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.084, 1.06
No. of reflections3264
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.39

Computer programs: CrystalClear (Molecular Structure Corporation and Rigaku, 2001), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and TEXSAN (Molecular Structure Corporation and Rigaku, 2004), Yadokari-XG_2009 (Kabuto et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.892.586 (2)137.2
N2—H2···S1i0.862.833.6771 (19)167.5
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

MKR is grateful to the Quaid-i-Azam University, Islamabad, for financial support for a post-doctoral fellowship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaily, N., Dean, A. W., Judd, D. B., Middlemiss, D., Storer, R. & Watson, S. P. (1996). Bioorg. Med. Chem. Lett. 6, 1409–1413.  CrossRef Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Badshah, A. (2009a). Acta Cryst. E65, o177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Badshah, A. (2009b). Acta Cryst. E65, o240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationKrishnamurthy, R., Govindaraghavan, S. & Narayanasamy, J. (1999). J. Pestic. Sci. 52, 145–151.  Google Scholar
First citationMolecular Structure Corporation and Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation and Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMurtaza, G., Ebihara, M., Said, M., Khawar Rauf, M. & Anwar, S. (2009a). Acta Cryst. E65, o2297–o2298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurtaza, G., Hanif-Ur-Rehman, Khawar Rauf, M., Ebihara, M. & Badshah, A. (2009b). Acta Cryst. E65, o343.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNamgun, L., Mi-Hyun, C. & Taek, H. K. (2001). J. Korean Chem. Soc. 45, 96–99.  Google Scholar
First citationPatil, D. G. & Chedekel, M. R. (1984). J. Org. Chem. 49, 997–1000.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWegner, P., Hans, R., Frank, H. & Joppien, H. (1986). Eur. Patent No. 190611.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds