organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(4-Bromo­benzo­yl)eth­yl]iso­propyl­aminium chloride

aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey, and dDepartment of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr

(Received 17 November 2011; accepted 6 December 2011; online 10 December 2011)

The crystal structure of the title compound, C12H17BrNO+·Cl, is stabilized by N—H⋯Cl and C—H⋯O hydrogen bonds, forming a three-dimensional network. The inter­actions framework is completed by C—H⋯π contacts between a methyl­ene group and the benzene ring of a symmetry-related mol­ecule.

Related literature

For details of the pharmacological effects of Mannich bases and for the synthesis, see: Dimmock & Kumar (1997[Dimmock, J. R. & Kumar, P. (1997). Curr. Med. Chem. 4, 1-22.]); Gul, Gul, et al. (2005[Gul, M., Gul, H. I., Das, U. & Hanninen, O. (2005). Arzneim. Forsch. 55, 332-337.]); Gul, Sahin et al. (2005[Gul, H. I., Sahin, F., Gul, M., Ozturk, S. & Yerdelen, K. O. (2005). Arch. Pharm. 338, 335-338.]); Gul et al. (2007[Gul, H. I., Yerdelen, K. O., Gul, M., Das, U., Pandit, B., Li, P.-K., Secen, H. & Sahin, F. (2007). Arch. Pharm. 340, 195-201.]); Mete et al. (2011[Mete, E., Gul, H. I., Cetin-Atalay, R., Das, U., Sahin, E., Gul, M., Kazaz, C. & Dimmock, J. R. (2011). Arch. Pharm. Chem. Life Sci. 11, 333-339.]); Kucukoglu et al. (2011[Kucukoglu, K., Gul, M., Atalay, M., Mete, E., Kazaz, C., Hanninen, O. & Gul, H. I. (2011). Arzneim. Forsch. 61, 366-371.]); Canturk et al. (2008[Canturk, P., Kucukoglu, K., Topcu, Z., Gul, M. & Gul, H. I. (2008). Arzneim. Forsch. 58, 686-691.]); Chen et al. (1991[Chen, H. T., Jing, Y. K., Ji, Z. Z. & Zhang, B. F. (1991). Yaoxue Xuebao, 26, 183-192.]); Suleyman et al. (2007[Suleyman, H., Gul, H. I., Gul, M., Alkan, M. & Gocer, F. (2007). Biol. Pharm. Bull. 30, 63-67.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17BrNO+·Cl

  • Mr = 306.62

  • Tetragonal, P 42 /n

  • a = 19.7122 (4) Å

  • c = 7.1738 (2) Å

  • V = 2787.53 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 294 K

  • 0.15 × 0.13 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.632, Tmax = 0.709

  • 50060 measured reflections

  • 2836 independent reflections

  • 1617 reflections with I > 2σ(I)

  • Rint = 0.151

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.181

  • S = 1.07

  • 2836 reflections

  • 153 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN2⋯Cl1 0.86 (4) 2.26 (4) 3.102 (4) 166 (5)
N1—HN1⋯Cl1i 0.86 (6) 2.27 (6) 3.133 (5) 177 (9)
C12—H12B⋯O1ii 0.96 2.60 3.378 (7) 139
C9—H9BCg1iii 0.97 3.00 3.943 (6) 164
Symmetry codes: (i) [-y+{\script{1\over 2}}, x-1, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+2; (iii) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Mannich bases are generally formed by the reaction between formaldehyde, a secondary amine and a compound containing reactive hydrogen atoms. On occasion, aldehydes other than formaldehyde may be employed and the secondary amine may be replaced by ammonia and primary amines. This process is known as the Mannich reaction (Dimmock & Kumar, 1997).

Mannich bases display varied biological activities such as antimicrobial (Gul, Sahin, et al., 2005), cytotoxic (Gul, Gul et al., 2005; Gul et al., 2007; Mete et al., 2011; Kucukoglu et al., 2011), anticancer (Dimmock & Kumar, 1997; Chen et al., 1991), anti-inflammatory (Suleyman et al., 2007), and DNA topoisomerase I inhibiting properties (Canturk et al., 2008).

A Mannich base having at least one hydrogen atom at the β position of amine group can undergo a deamination process to generate an α,β-unsaturated ketone moiety.

In the molecule of the tile compound (Fig. 1), the bond lengths are within normal ranges (Allen et al., 1987), as well as bond angles.

In the crystal structure, molecules are linked via intermolecular N—H···Cl and C—H···O hydrogen bonds (Table 1, Fig. 2), forming a three dimensional network. Furthermore, a C—H···π interaction (Table 1) contributes to the stabilization of the crystal packing.

Related literature top

For details of the pharmacological effects of Mannich bases and for the synthesis, see: Dimmock & Kumar (1997); Gul, Gul, et al. (2005); Gul, Sahin et al. (2005); Gul et al. (2007); Mete et al. (2011); Kucukoglu et al. (2011); Canturk et al. (2008); Chen et al. (1991); Suleyman et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of the appropriate ketone (50 mmol), para-formaldehyde (50 mmol), and iso-propylamine hydrochloride (27 mmol) was heated in an oil bath at 403 K. The reaction vessel was then removed from the oil bath and when the temperature of the mixture dropped to 338 K, ethyl acetate (40–80 ml) was added. The mixture was stirred at room temperature for 24 h. and the resulting precipitates were then collected and the Mannich base (I) was passed through a column of silica gel 60 (70–230 mesh) using methanol as eluent. After evaporation of the solvent, the product was recrystallized from methanol. M.p.: 447–449 K. Yield: 38%. 1H-NMR (CDCl3) δ 1.49 (d, J = 6.8 Hz, 6H, CH(CH3)2), 3.34–3.38 (m, 3H, CH(CH3)2 and 2 x H-2), 3.73 (t, J = 7.3 Hz, 2H, 2 x H-3), 7.50 (d, J = 8.4 Hz, 2H, H-3'/5'), 7.76 (d, 2H, J = 8.4 Hz, H-2'/6'), 9.55 (brs, 2H, NH2+). 13C-NMR (CDCl3) δ 19.4 (CH(CH3)2), 35.3, 40.2, 51.3, 129.4, 129.8, 132.3, 134.7, 195.8 (CO); MS (EI) m/z: 254 (M - CH3)+, 256 (M - CH3 + 2)+, 270.2 (M + H)+, 272.2 (M + H + 2)+. IR (KBr, cm-1): 2462 (NH2+), 1684 (CO). Calcd. for C12H17BrClNO (306.63): C 47.00, H 5.59, N 4.57. Found: C 46.74, H 5.52, N 4.59 (Mete et al., 2011).

Refinement top

The H atoms of the NH2 group, HN1 and HN2, were located in a difference map and refined with a distance restraint of N—H = 0.86 (1) Å. Their displacement parameters were calculated as Uiso = 1.2Ueq(N1). The other H atoms were positioned geometrically with C—H = 0.93 (aromatic), 0.96 (methyl), 0.97 (methylene) and 0.98 Å (methine), and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids for non-H atoms shown at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title salt viewed down the c axis. H atoms not involved in hydrogen bonds are omitted for the sake of clarity.
N-[2-(4-Bromobenzoyl)ethyl]isopropylaminium chloride top
Crystal data top
C12H17BrNO+·ClDx = 1.461 Mg m3
Mr = 306.62Melting point: 447 K
Tetragonal, P42/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 4bcCell parameters from 3888 reflections
a = 19.7122 (4) Åθ = 2.9–26.4°
c = 7.1738 (2) ŵ = 3.12 mm1
V = 2787.53 (11) Å3T = 294 K
Z = 8Block, white
F(000) = 12480.15 × 0.13 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
2836 independent reflections
Radiation source: Sealed Tube1617 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.151
Detector resolution: 10.0000 pixels mm-1θmax = 26.4°, θmin = 2.9°
dtprofit.ref scansh = 2424
Absorption correction: multi-scan
(Blessing, 1995)
k = 2424
Tmin = 0.632, Tmax = 0.709l = 88
50060 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0581P)2 + 4.3122P]
where P = (Fo2 + 2Fc2)/3
2836 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.67 e Å3
2 restraintsΔρmin = 0.81 e Å3
0 constraints
Crystal data top
C12H17BrNO+·ClZ = 8
Mr = 306.62Mo Kα radiation
Tetragonal, P42/nµ = 3.12 mm1
a = 19.7122 (4) ÅT = 294 K
c = 7.1738 (2) Å0.15 × 0.13 × 0.11 mm
V = 2787.53 (11) Å3
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
2836 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1617 reflections with I > 2σ(I)
Tmin = 0.632, Tmax = 0.709Rint = 0.151
50060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0762 restraints
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.67 e Å3
2836 reflectionsΔρmin = 0.81 e Å3
153 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.66757 (4)0.19433 (5)0.04514 (15)0.1156 (4)
O10.5235 (2)0.0463 (2)0.7192 (7)0.0850 (17)
N10.6128 (2)0.1377 (2)0.8767 (7)0.0540 (17)
C10.6340 (3)0.0359 (3)0.3195 (9)0.065 (2)
C20.6561 (3)0.0740 (3)0.1698 (10)0.073 (3)
C30.6384 (3)0.1411 (3)0.1604 (10)0.069 (2)
C40.5995 (3)0.1707 (3)0.2962 (10)0.074 (3)
C50.5762 (3)0.1323 (3)0.4438 (9)0.067 (2)
C60.5940 (3)0.0644 (3)0.4585 (8)0.057 (2)
C70.5686 (3)0.0245 (3)0.6205 (9)0.061 (2)
C80.5994 (3)0.0435 (3)0.6592 (8)0.063 (2)
C90.5742 (3)0.0744 (3)0.8392 (9)0.061 (2)
C100.5984 (3)0.1725 (3)1.0610 (8)0.0583 (19)
C110.6462 (3)0.2324 (3)1.0768 (9)0.070 (2)
C120.5251 (3)0.1928 (3)1.0763 (8)0.069 (2)
Cl10.75617 (8)0.07602 (8)0.9322 (2)0.0682 (6)
H10.646100.009600.327500.0780*
HN10.604 (4)0.168 (3)0.794 (9)0.1390*
HN20.6548 (13)0.126 (4)0.877 (12)0.1390*
H20.682500.054400.076900.0870*
H40.588900.216600.289000.0890*
H50.548400.152000.533600.0800*
H8A0.648300.038800.665200.0760*
H8B0.588800.073900.556900.0760*
H9A0.580500.042700.941000.0730*
H9B0.526100.084600.829200.0730*
H100.608700.140601.162000.0700*
H11A0.635500.265000.981900.1050*
H11B0.641200.252901.197300.1050*
H11C0.692100.217101.061200.1050*
H12A0.513200.221200.972600.1030*
H12B0.497100.153001.075800.1030*
H12C0.518200.217301.190400.1030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0916 (6)0.1139 (7)0.1414 (9)0.0018 (4)0.0247 (5)0.0597 (6)
O10.091 (3)0.074 (3)0.090 (3)0.020 (2)0.021 (3)0.008 (3)
N10.055 (3)0.049 (3)0.058 (3)0.002 (2)0.001 (2)0.007 (2)
C10.061 (4)0.055 (4)0.080 (4)0.009 (3)0.003 (3)0.007 (3)
C20.067 (4)0.067 (4)0.084 (5)0.003 (3)0.006 (3)0.011 (4)
C30.049 (3)0.070 (4)0.087 (5)0.006 (3)0.004 (3)0.023 (4)
C40.075 (4)0.056 (4)0.090 (5)0.002 (3)0.008 (4)0.013 (4)
C50.072 (4)0.051 (3)0.077 (4)0.005 (3)0.003 (3)0.000 (3)
C60.062 (4)0.050 (3)0.060 (4)0.002 (3)0.010 (3)0.004 (3)
C70.056 (4)0.060 (4)0.068 (4)0.000 (3)0.004 (3)0.001 (3)
C80.064 (4)0.061 (4)0.065 (4)0.006 (3)0.001 (3)0.009 (3)
C90.060 (4)0.053 (3)0.070 (4)0.003 (3)0.003 (3)0.005 (3)
C100.068 (4)0.056 (3)0.051 (3)0.003 (3)0.004 (3)0.005 (3)
C110.070 (4)0.072 (4)0.067 (4)0.009 (3)0.008 (3)0.013 (3)
C120.067 (4)0.075 (4)0.064 (4)0.004 (3)0.008 (3)0.006 (3)
Cl10.0608 (9)0.0857 (11)0.0580 (9)0.0135 (7)0.0045 (7)0.0045 (8)
Geometric parameters (Å, º) top
Br1—C31.899 (7)C10—C111.515 (8)
O1—C71.215 (7)C1—H10.9300
N1—C91.486 (7)C2—H20.9300
N1—C101.516 (8)C4—H40.9300
N1—HN20.86 (4)C5—H50.9300
N1—HN10.86 (6)C8—H8A0.9700
C1—C21.381 (9)C8—H8B0.9700
C1—C61.390 (9)C9—H9A0.9700
C2—C31.370 (8)C9—H9B0.9700
C3—C41.370 (9)C10—H100.9800
C4—C51.380 (9)C11—H11A0.9600
C5—C61.388 (8)C11—H11B0.9600
C6—C71.490 (9)C11—H11C0.9600
C7—C81.498 (8)C12—H12A0.9600
C8—C91.512 (9)C12—H12B0.9600
C10—C121.503 (8)C12—H12C0.9600
C9—N1—C10116.2 (4)C5—C4—H4120.00
HN2—N1—HN1113 (8)C4—C5—H5120.00
C9—N1—HN1111 (5)C6—C5—H5120.00
C10—N1—HN2107 (6)C7—C8—H8A109.00
C9—N1—HN2106 (5)C7—C8—H8B109.00
C10—N1—HN1105 (4)C9—C8—H8A109.00
C2—C1—C6121.1 (6)C9—C8—H8B109.00
C1—C2—C3118.9 (6)H8A—C8—H8B108.00
Br1—C3—C2119.7 (5)N1—C9—H9A110.00
Br1—C3—C4119.1 (5)N1—C9—H9B110.00
C2—C3—C4121.3 (6)C8—C9—H9A110.00
C3—C4—C5119.9 (6)C8—C9—H9B110.00
C4—C5—C6120.2 (6)H9A—C9—H9B108.00
C5—C6—C7118.9 (5)N1—C10—H10108.00
C1—C6—C7122.5 (5)C11—C10—H10108.00
C1—C6—C5118.6 (5)C12—C10—H10108.00
O1—C7—C6120.9 (5)C10—C11—H11A109.00
C6—C7—C8118.7 (5)C10—C11—H11B109.00
O1—C7—C8120.3 (6)C10—C11—H11C109.00
C7—C8—C9112.7 (5)H11A—C11—H11B110.00
N1—C9—C8109.0 (5)H11A—C11—H11C110.00
N1—C10—C12111.4 (5)H11B—C11—H11C110.00
C11—C10—C12112.6 (5)C10—C12—H12A109.00
N1—C10—C11107.5 (5)C10—C12—H12B110.00
C2—C1—H1119.00C10—C12—H12C109.00
C6—C1—H1119.00H12A—C12—H12B109.00
C1—C2—H2121.00H12A—C12—H12C109.00
C3—C2—H2121.00H12B—C12—H12C109.00
C3—C4—H4120.00
C9—N1—C10—C11176.0 (5)C3—C4—C5—C62.3 (9)
C9—N1—C10—C1260.1 (6)C4—C5—C6—C11.7 (9)
C10—N1—C9—C8174.9 (4)C4—C5—C6—C7179.4 (6)
C6—C1—C2—C30.5 (9)C5—C6—C7—C8166.9 (5)
C2—C1—C6—C50.3 (9)C1—C6—C7—O1165.4 (6)
C2—C1—C6—C7179.2 (6)C1—C6—C7—C814.2 (9)
C1—C2—C3—C40.1 (10)C5—C6—C7—O113.5 (9)
C1—C2—C3—Br1179.5 (5)O1—C7—C8—C96.8 (8)
C2—C3—C4—C51.4 (10)C6—C7—C8—C9173.6 (5)
Br1—C3—C4—C5178.1 (5)C7—C8—C9—N1173.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—HN2···Cl10.86 (4)2.26 (4)3.102 (4)166 (5)
N1—HN1···Cl1i0.86 (6)2.27 (6)3.133 (5)177 (9)
C12—H12B···O1ii0.962.603.378 (7)139
C9—H9B···Cg1iii0.973.003.943 (6)164
Symmetry codes: (i) y+1/2, x1, z+3/2; (ii) x+1, y, z+2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H17BrNO+·Cl
Mr306.62
Crystal system, space groupTetragonal, P42/n
Temperature (K)294
a, c (Å)19.7122 (4), 7.1738 (2)
V3)2787.53 (11)
Z8
Radiation typeMo Kα
µ (mm1)3.12
Crystal size (mm)0.15 × 0.13 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.632, 0.709
No. of measured, independent and
observed [I > 2σ(I)] reflections
50060, 2836, 1617
Rint0.151
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.181, 1.07
No. of reflections2836
No. of parameters153
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.81

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—HN2···Cl10.86 (4)2.26 (4)3.102 (4)166 (5)
N1—HN1···Cl1i0.86 (6)2.27 (6)3.133 (5)177 (9)
C12—H12B···O1ii0.962.603.378 (7)139
C9—H9B···Cg1iii0.973.003.943 (6)164
Symmetry codes: (i) y+1/2, x1, z+3/2; (ii) x+1, y, z+2; (iii) x+1, y, z+1.
 

Acknowledgements

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCanturk, P., Kucukoglu, K., Topcu, Z., Gul, M. & Gul, H. I. (2008). Arzneim. Forsch. 58, 686–691.  CAS Google Scholar
First citationChen, H. T., Jing, Y. K., Ji, Z. Z. & Zhang, B. F. (1991). Yaoxue Xuebao, 26, 183–192.  CAS Google Scholar
First citationDimmock, J. R. & Kumar, P. (1997). Curr. Med. Chem. 4, 1–22.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGul, M., Gul, H. I., Das, U. & Hanninen, O. (2005). Arzneim. Forsch. 55, 332–337.  CAS Google Scholar
First citationGul, H. I., Sahin, F., Gul, M., Ozturk, S. & Yerdelen, K. O. (2005). Arch. Pharm. 338, 335–338.  Web of Science CrossRef CAS Google Scholar
First citationGul, H. I., Yerdelen, K. O., Gul, M., Das, U., Pandit, B., Li, P.-K., Secen, H. & Sahin, F. (2007). Arch. Pharm. 340, 195–201.  Web of Science CrossRef CAS Google Scholar
First citationKucukoglu, K., Gul, M., Atalay, M., Mete, E., Kazaz, C., Hanninen, O. & Gul, H. I. (2011). Arzneim. Forsch. 61, 366–371.  CAS Google Scholar
First citationMete, E., Gul, H. I., Cetin-Atalay, R., Das, U., Sahin, E., Gul, M., Kazaz, C. & Dimmock, J. R. (2011). Arch. Pharm. Chem. Life Sci. 11, 333–339.  Web of Science CSD CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleyman, H., Gul, H. I., Gul, M., Alkan, M. & Gocer, F. (2007). Biol. Pharm. Bull. 30, 63–67.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds