organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Carb­­oxy­eth­yl)-1,3-dioxoisoindoline-5,6-dicarb­­oxy­lic acid methanol monosolvate

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
*Correspondence e-mail: Manuel.Fernandes@wits.ac.za

(Received 2 December 2011; accepted 7 December 2011; online 14 December 2011)

In the title compound, C13H9NO8·CH3OH, the main mol­ecule possesses three carb­oxy­lic acid groups, which are asymmetrically distributed around the mol­ecule core. This results in hydrogen-bonding motifs ranging from a chain to various rings. The combination of the chain motif together with a carb­oxy­lic dimer R22(8) ring motif creates a ribbon of mol­ecules propagating along the c-axis direction. A second ribbon results from the combination of the chain motif together with a methanol solvent mol­ecule and carboxyl-containing R44(12) ring motif. These two ribbons combine alternately, forming a hydrogen-bonded layer of mol­ecules parallel to (2[\overline{1}]0).

Related literature

For applications of charge-transfer complexes composed of pyromellitic anhydrides or their imides or polyimide derivatives, see: Barooah et al. (2006[Barooah, N., Sarma, R. J. & Baruah, J. B. (2006). CrystEngComm, 8, 608-615.]); Kim et al. (2002[Kim, Y.-H., Ahn, S.-K., Kim, H. S. & Kwon, S.-K. (2002). J. Polym. Sci. Part A: Polym. Chem. 40, 4288-4296.]); O'Brien et al. (1988[O'Brien, K. C., Koros, W. J. & Husk, G. R. (1988). J. Membr. Sci. 35, 217-230.]); Dingemans et al. (2004[Dingemans, T. J., Picken, S. J., Murthy, N. S., Mark, P., StClair, T. L. & Samulski, E. T. (2004). Chem. Mater. 16, 966-974.]); Zheng et al. (2008[Zheng, Q., Huang, J., Sarjeant, A. & Katz, H. E. (2008). J. Am. Chem. Soc. 130, 14410-14411.]). For an example of another asymmetrically substituted diimide, see: Zhu et al. (2010[Zhu, Z., Cardin, C. J., Gan, Y. & Colquhoun, H. M. (2010). Nat. Chem. 2, 653-660.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the REAXYS database, see: Elsevier (2011[Elsevier (2011). REAXYS. Elsevier Properties SA.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9NO8·CH4O

  • Mr = 339.25

  • Triclinic, [P \overline 1]

  • a = 8.7830 (3) Å

  • b = 9.7262 (3) Å

  • c = 9.9157 (3) Å

  • α = 66.164 (2)°

  • β = 72.830 (2)°

  • γ = 77.926 (2)°

  • V = 736.35 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 173 K

  • 0.44 × 0.14 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 11822 measured reflections

  • 3549 independent reflections

  • 2193 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.093

  • S = 0.89

  • 3549 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.84 2.6784 (17) 172
O5—H5⋯O4ii 0.84 1.88 2.7181 (15) 178
O7—H7⋯O9iii 0.84 1.71 2.5360 (17) 168
O9—H9⋯O8 0.84 1.87 2.7014 (17) 169
Symmetry codes: (i) -x+2, -y+2, -z-1; (ii) x, y, z+1; (iii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiberg, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Charge transfer complexes composed of pyromellitic anhydride have been extensively studied for their electronic properties. These molecules have also been modified into various imides or polyimides by reaction with suitable amines for use as host guest materials (Barooah et al., 2006), gas separation materials (Kim et al., 2002; O'Brien et al., 1988), and semiconductor materials (Dingemans et al., 2004; Zheng et al., 2008). Such products are usually symmetric with very few asymmetric examples of these products having been reported. A search of the REAXYS database (Elsevier, 2011) of reactions involving pyromellitic anhydride as starting material resulted in 1083 hits. Of these, very few report asymmetric products and only five reported reactions result in one side of the molecule being converted to an imide while the other side is opened resulting in a di-acid. A search of asymmetric pyromellitic anhydride derived molecules in the Cambridge Structural Database (CSD; Version 5.32 release; Allen, 2002) indicates that only one asymmetrically substituted molecule (a diimide) has been reported (Zhu et al., 2010). No structure involving a pyromellitic molecule which has been converted to an imide on one side, and had the other side ring opened to form a di-acid has been reported. Due to asymmetry in carboxylic acid substitution, such a molecule should result in an interesting and unusual hydrogen bonded network.

The title molecule (Fig. 1) has three carboxylic acid groups capable of H-bonding distributed unevenly as two ortho to each other on one side of the molecule, and another as a propionic acid extending out from the imide group on the other side of the molecule. This difference in carboxylic acid location results in different hydrogen bond patterns on the opposite sides of the molecule.

The crystal structure is composed of hydrogen bonded layers of molecules which are stacked along the [-2 1 0] direction. Each layer is held together by several hydrogen bonds (Fig. 2). On the imide side, the single propionic acid hydrogen bonds to another on a neighbouring molecule (related by an inversion center) to form a carboxylic acid dimer which can be described by the graph set R22(8) (Etter et al., 1990; Bernstein et al., 1995). On the other side of the molecule, one of the carboxylic groups hydrogen bonds to a carbonyl group of a neighbouring molecule (related by translation along c) to form a chain which can be described by the graph set C(9). The combination of the C(9) chain and the R22(8) dimers results in a ring of hydrogen bonded molecules described by the graph set R44(40). This upon cell translation produces a ribbon of molecules down the c-axis. A second different ribbon exists on the edges of the one just described. This is formed by the remaining carboxylic acid group which together with the methanol molecule forms a centrosymmetric hydrogen bonded ring of molecules [graph set R44(12)] to link the previously mentioned ribbons together. The combination of the two alternating ribbons results in a hydrogen bonded layer of molecules parallel to (2 -1 0).

Related literature top

For applications of charge-transfer complexes composed of pyromellitic anhydrides or their imides or polyimide derivatives, see: Barooah et al. (2006); Kim et al. (2002); O'Brien et al. (1988); Dingemans et al. (2004); Zheng et al. (2008). For an example of another asymmetrically substituted diimide, see: Zhu et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002). For the REAXYS database, see: Elsevier (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The title compound was accidently synthesized in a crude yield of 35% by reaction of pyromellitic anhydride with beta-alanine in a 1:1 molar ratio by refluxing in DMF containing water as an impurity. The product from the reaction was recrystallized for analysis by X-ray diffraction from methanol by means of slow evaporation at room temperature resulting in colorless needle-like crystals.

Refinement top

All H atoms were positioned geometrically, and allowed to ride on their parent atoms, with Atom—H bond lengths of 0.95 Å (CH), 0.99 Å (CH2), 0.98 Å (CH3), or 0.84 Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 times Ueq of the parent atom for CH and CH2, and 1.5 times Ueq of the parent atom for CH3 and OH.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. Diagram showing the intermolecular O—H···O hydrogen bonding network in the structure of the title solvate. The molecule is asymmetric and as a consequence forms different hydrogen bonded ribbons on opposite sides of the molecule. The combinations of these results in a H-bonded sheet running parallel to (-2 1 0). Symmetry operators for molecules in diagram: (i) x, y, -2+z; (ii) x, y, -1+z; (iii) x, y, z; (iv) 1-x, -y, -z; (v) 1-x, -y, 1-z; (vi) 1-x, -y, 2-z; (vii) -1+x, -2+y, z; (viii) -1+x, -2+y, 1+z; (ix) -1+x, -2+y, 2+z.
2-(2-carboxyethyl)-1,3-dioxoisoindoline-5,6-dicarboxylic acid methanol monosolvate top
Crystal data top
C13H9NO8·CH4OZ = 2
Mr = 339.25F(000) = 352
Triclinic, P1Dx = 1.530 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7830 (3) ÅCell parameters from 2207 reflections
b = 9.7262 (3) Åθ = 2.3–26.5°
c = 9.9157 (3) ŵ = 0.13 mm1
α = 66.164 (2)°T = 173 K
β = 72.830 (2)°Needle, colourless
γ = 77.926 (2)°0.44 × 0.14 × 0.07 mm
V = 736.35 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2193 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 28.0°, θmin = 2.3°
ϕ and ω scansh = 1111
11822 measured reflectionsk = 1212
3549 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0403P)2]
where P = (Fo2 + 2Fc2)/3
3549 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
0 constraints
Crystal data top
C13H9NO8·CH4Oγ = 77.926 (2)°
Mr = 339.25V = 736.35 (4) Å3
Triclinic, P1Z = 2
a = 8.7830 (3) ÅMo Kα radiation
b = 9.7262 (3) ŵ = 0.13 mm1
c = 9.9157 (3) ÅT = 173 K
α = 66.164 (2)°0.44 × 0.14 × 0.07 mm
β = 72.830 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2193 reflections with I > 2σ(I)
11822 measured reflectionsRint = 0.053
3549 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 0.89Δρmax = 0.30 e Å3
3549 reflectionsΔρmin = 0.23 e Å3
222 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9965 (2)0.8792 (2)0.28914 (19)0.0275 (4)
C20.9929 (2)0.79281 (19)0.12438 (17)0.0255 (4)
H2A1.07920.82060.09770.031*
H2B1.01190.68310.10460.031*
C30.8321 (2)0.8275 (2)0.02696 (17)0.0283 (4)
H3A0.81790.93580.04130.034*
H3B0.74590.80900.06140.034*
C40.8660 (2)0.7795 (2)0.23163 (18)0.0256 (4)
C50.81809 (19)0.66165 (18)0.38558 (17)0.0211 (4)
C60.74964 (19)0.55402 (19)0.37121 (18)0.0217 (4)
C70.74729 (19)0.60218 (19)0.20843 (18)0.0240 (4)
C80.83220 (19)0.65153 (19)0.52394 (17)0.0226 (4)
H80.88060.72560.53220.027*
C90.77322 (19)0.52920 (19)0.65146 (17)0.0208 (4)
C100.70651 (19)0.41746 (18)0.63744 (18)0.0211 (4)
C110.69438 (19)0.42998 (18)0.49515 (17)0.0232 (4)
H110.64940.35520.48450.028*
C120.7872 (2)0.52609 (19)0.80077 (18)0.0234 (4)
C130.6457 (2)0.28193 (19)0.77029 (18)0.0235 (4)
N10.81581 (16)0.73687 (16)0.13388 (14)0.0243 (3)
O11.13876 (15)0.87456 (16)0.38054 (13)0.0387 (3)
H11.13200.92370.47070.058*
O20.87748 (15)0.94623 (17)0.33501 (13)0.0441 (4)
O30.93188 (16)0.89010 (14)0.19466 (14)0.0379 (3)
O40.69235 (14)0.53863 (14)0.15292 (12)0.0312 (3)
O50.64890 (14)0.55908 (16)0.88490 (13)0.0352 (3)
H50.66170.55070.96860.053*
O60.91487 (14)0.50637 (15)0.83081 (13)0.0347 (3)
O70.69234 (15)0.25746 (15)0.89223 (13)0.0371 (3)
H70.64210.18970.96610.056*
O80.56037 (15)0.20381 (14)0.76129 (13)0.0339 (3)
C140.4653 (2)0.0897 (2)0.7258 (2)0.0445 (5)
H14A0.40250.00600.66290.067*
H14B0.42470.18530.74930.067*
H14C0.57800.09210.67060.067*
O90.45194 (18)0.06903 (15)0.86241 (13)0.0442 (4)
H90.47890.01640.84210.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0325 (10)0.0322 (10)0.0191 (9)0.0140 (9)0.0007 (8)0.0093 (8)
C20.0333 (10)0.0245 (9)0.0185 (9)0.0081 (8)0.0045 (7)0.0063 (8)
C30.0367 (10)0.0311 (10)0.0119 (9)0.0064 (8)0.0047 (7)0.0018 (8)
C40.0290 (10)0.0273 (10)0.0188 (9)0.0038 (8)0.0030 (7)0.0081 (8)
C50.0238 (9)0.0221 (9)0.0159 (9)0.0066 (7)0.0018 (7)0.0054 (7)
C60.0244 (9)0.0260 (9)0.0157 (8)0.0041 (7)0.0036 (7)0.0087 (7)
C70.0257 (9)0.0299 (10)0.0160 (9)0.0036 (8)0.0029 (7)0.0091 (8)
C80.0286 (9)0.0243 (9)0.0164 (9)0.0097 (8)0.0031 (7)0.0073 (7)
C90.0222 (9)0.0254 (9)0.0155 (8)0.0037 (7)0.0038 (6)0.0080 (7)
C100.0226 (9)0.0225 (9)0.0173 (9)0.0048 (7)0.0014 (7)0.0074 (7)
C110.0287 (9)0.0237 (9)0.0187 (9)0.0087 (8)0.0024 (7)0.0089 (8)
C120.0299 (10)0.0241 (9)0.0156 (9)0.0081 (8)0.0035 (7)0.0053 (7)
C130.0282 (9)0.0235 (9)0.0167 (9)0.0043 (8)0.0031 (7)0.0060 (8)
N10.0310 (8)0.0269 (8)0.0128 (7)0.0074 (7)0.0042 (6)0.0036 (6)
O10.0377 (8)0.0503 (9)0.0181 (7)0.0034 (6)0.0008 (5)0.0071 (7)
O20.0344 (8)0.0690 (11)0.0175 (7)0.0089 (7)0.0066 (6)0.0024 (7)
O30.0554 (9)0.0322 (8)0.0251 (7)0.0218 (7)0.0048 (6)0.0043 (6)
O40.0407 (8)0.0404 (8)0.0193 (7)0.0116 (6)0.0072 (5)0.0140 (6)
O50.0324 (7)0.0571 (9)0.0191 (7)0.0022 (6)0.0051 (5)0.0187 (7)
O60.0311 (7)0.0506 (9)0.0271 (7)0.0064 (6)0.0097 (6)0.0159 (7)
O70.0505 (8)0.0376 (8)0.0194 (7)0.0229 (7)0.0103 (6)0.0036 (6)
O80.0465 (8)0.0300 (7)0.0269 (7)0.0198 (6)0.0057 (6)0.0066 (6)
C140.0469 (13)0.0542 (14)0.0352 (12)0.0073 (11)0.0103 (9)0.0176 (11)
O90.0705 (10)0.0378 (9)0.0234 (7)0.0297 (8)0.0035 (7)0.0038 (6)
Geometric parameters (Å, º) top
C1—O21.217 (2)C8—H80.9500
C1—O11.313 (2)C9—C101.407 (2)
C1—C21.499 (2)C9—C121.509 (2)
C2—C31.517 (2)C10—C111.400 (2)
C2—H2A0.9900C10—C131.495 (2)
C2—H2B0.9900C11—H110.9500
C3—N11.4570 (19)C12—O61.2013 (19)
C3—H3A0.9900C12—O51.3153 (19)
C3—H3B0.9900C13—O81.2159 (18)
C4—O31.2014 (19)C13—O71.3062 (19)
C4—N11.399 (2)O1—H10.8400
C4—C51.493 (2)O5—H50.8400
C5—C81.376 (2)O7—H70.8400
C5—C61.383 (2)C14—O91.417 (2)
C6—C111.377 (2)C14—H14A0.9800
C6—C71.493 (2)C14—H14B0.9800
C7—O41.2142 (18)C14—H14C0.9800
C7—N11.382 (2)O9—H90.8400
C8—C91.392 (2)
O2—C1—O1122.62 (16)C9—C8—H8121.1
O2—C1—C2122.97 (15)C8—C9—C10120.64 (14)
O1—C1—C2114.40 (15)C8—C9—C12115.64 (14)
C1—C2—C3110.35 (14)C10—C9—C12123.72 (14)
C1—C2—H2A109.6C11—C10—C9120.38 (14)
C3—C2—H2A109.6C11—C10—C13116.95 (14)
C1—C2—H2B109.6C9—C10—C13122.67 (14)
C3—C2—H2B109.6C6—C11—C10117.92 (14)
H2A—C2—H2B108.1C6—C11—H11121.0
N1—C3—C2112.98 (14)C10—C11—H11121.0
N1—C3—H3A109.0O6—C12—O5125.07 (15)
C2—C3—H3A109.0O6—C12—C9121.79 (15)
N1—C3—H3B109.0O5—C12—C9112.91 (14)
C2—C3—H3B109.0O8—C13—O7124.65 (15)
H3A—C3—H3B107.8O8—C13—C10121.21 (15)
O3—C4—N1125.36 (16)O7—C13—C10114.15 (14)
O3—C4—C5129.03 (15)C7—N1—C4112.18 (13)
N1—C4—C5105.61 (14)C7—N1—C3124.74 (13)
C8—C5—C6121.89 (14)C4—N1—C3123.07 (14)
C8—C5—C4130.10 (15)C1—O1—H1109.5
C6—C5—C4108.01 (14)C12—O5—H5109.5
C11—C6—C5121.31 (15)C13—O7—H7109.5
C11—C6—C7130.59 (14)O9—C14—H14A109.5
C5—C6—C7108.08 (14)O9—C14—H14B109.5
O4—C7—N1126.69 (15)H14A—C14—H14B109.5
O4—C7—C6127.21 (15)O9—C14—H14C109.5
N1—C7—C6106.07 (13)H14A—C14—H14C109.5
C5—C8—C9117.82 (14)H14B—C14—H14C109.5
C5—C8—H8121.1C14—O9—H9109.5
O2—C1—C2—C311.2 (2)C5—C6—C11—C101.3 (2)
O1—C1—C2—C3169.92 (14)C7—C6—C11—C10177.13 (16)
C1—C2—C3—N1174.94 (14)C9—C10—C11—C60.1 (2)
O3—C4—C5—C82.3 (3)C13—C10—C11—C6179.96 (14)
N1—C4—C5—C8176.91 (16)C8—C9—C12—O667.8 (2)
O3—C4—C5—C6178.39 (18)C10—C9—C12—O6111.82 (19)
N1—C4—C5—C62.44 (18)C8—C9—C12—O5106.95 (17)
C8—C5—C6—C111.0 (2)C10—C9—C12—O573.4 (2)
C4—C5—C6—C11179.60 (15)C11—C10—C13—O814.9 (2)
C8—C5—C6—C7177.76 (15)C9—C10—C13—O8164.96 (16)
C4—C5—C6—C71.66 (18)C11—C10—C13—O7165.02 (15)
C11—C6—C7—O40.8 (3)C9—C10—C13—O715.1 (2)
C5—C6—C7—O4177.83 (17)O4—C7—N1—C4179.47 (17)
C11—C6—C7—N1178.86 (17)C6—C7—N1—C41.36 (18)
C5—C6—C7—N10.27 (18)O4—C7—N1—C30.7 (3)
C6—C5—C8—C90.7 (2)C6—C7—N1—C3177.39 (14)
C4—C5—C8—C9178.53 (16)O3—C4—N1—C7178.45 (17)
C5—C8—C9—C102.1 (2)C5—C4—N1—C72.34 (18)
C5—C8—C9—C12178.23 (15)O3—C4—N1—C32.8 (3)
C8—C9—C10—C111.8 (2)C5—C4—N1—C3176.44 (14)
C12—C9—C10—C11178.56 (16)C2—C3—N1—C793.99 (19)
C8—C9—C10—C13178.31 (15)C2—C3—N1—C487.39 (19)
C12—C9—C10—C131.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.842.6784 (17)172
O5—H5···O4ii0.841.882.7181 (15)178
O7—H7···O9iii0.841.712.5360 (17)168
O9—H9···O80.841.872.7014 (17)169
Symmetry codes: (i) x+2, y+2, z1; (ii) x, y, z+1; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC13H9NO8·CH4O
Mr339.25
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.7830 (3), 9.7262 (3), 9.9157 (3)
α, β, γ (°)66.164 (2), 72.830 (2), 77.926 (2)
V3)736.35 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.44 × 0.14 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11822, 3549, 2193
Rint0.053
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.093, 0.89
No. of reflections3549
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and SCHAKAL99 (Keller, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.842.6784 (17)172
O5—H5···O4ii0.841.882.7181 (15)178
O7—H7···O9iii0.841.712.5360 (17)168
O9—H9···O80.841.872.7014 (17)169
Symmetry codes: (i) x+2, y+2, z1; (ii) x, y, z+1; (iii) x+1, y, z+2.
 

Acknowledgements

This work was supported by the National Research Foundation, Pretoria (NRF, GUN 77122) and the University of the Witwatersrand.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarooah, N., Sarma, R. J. & Baruah, J. B. (2006). CrystEngComm, 8, 608–615.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDingemans, T. J., Picken, S. J., Murthy, N. S., Mark, P., StClair, T. L. & Samulski, E. T. (2004). Chem. Mater. 16, 966–974.  Web of Science CSD CrossRef CAS Google Scholar
First citationElsevier (2011). REAXYS. Elsevier Properties SA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiberg, Germany.  Google Scholar
First citationKim, Y.-H., Ahn, S.-K., Kim, H. S. & Kwon, S.-K. (2002). J. Polym. Sci. Part A: Polym. Chem. 40, 4288–4296.  Google Scholar
First citationO'Brien, K. C., Koros, W. J. & Husk, G. R. (1988). J. Membr. Sci. 35, 217–230.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Q., Huang, J., Sarjeant, A. & Katz, H. E. (2008). J. Am. Chem. Soc. 130, 14410–14411.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhu, Z., Cardin, C. J., Gan, Y. & Colquhoun, H. M. (2010). Nat. Chem. 2, 653–660.  Web of Science CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds