organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tri­methyl­ammonium) naphthalene-1,5-di­sulfonate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jinyunihao@yahoo.cn

(Received 2 December 2011; accepted 7 December 2011; online 10 December 2011)

The asymmetric unit of the title compound, 2C3H10N+·C10H6S2O62−, contains a half-anion, which is completed by inversion symmetry, and one cation. The cations and anions are associated via strong N—H⋯O(sulfonate) hydrogen-bonding inter­actions, forming cation–anion–cation groups. Secondary inter­actions such as C—H(ammonium)⋯O(sulf­on­ate) and van der Waals inter­actions link the cations and anions together in a three-dimensional crystal structure, with zigzag rows of cations lying between layers of anions.

Related literature

The title compound was investigated as part of our search for simple ferroelectric compounds. For general background to ferroelectric metal-organic frameworks, see: Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K., Fu, D.-W., Hong Chan, P. W., Zhu, J.-S., Huang, S. D. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2009[Zhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S. D. (2010). J. Am. Chem. Soc. 132, 7300-7302.]); Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]). For a related structure, see: Wang & Yang (2011[Wang, C. & Yang, S. L. (2011). Acta Cryst. E67, o1847.]).

[Scheme 1]

Experimental

Crystal data
  • 2C3H10N+·C10H6O6S22−

  • Mr = 406.51

  • Monoclinic, P 21 /c

  • a = 8.3428 (17) Å

  • b = 10.502 (2) Å

  • c = 11.742 (2) Å

  • β = 105.81 (3)°

  • V = 989.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.489, Tmax = 1.000

  • 10031 measured reflections

  • 2265 independent reflections

  • 2016 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.10

  • 2265 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1E⋯O2i 0.91 1.81 2.718 (2) 173
C1—H1C⋯O1 0.96 2.43 3.372 (3) 166
C2—H2B⋯O3ii 0.96 2.31 3.232 (4) 162
Symmetry codes: (i) x+1, y, z; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ferroelectric compounds have displayed a variety of technical applications, such as ferroelectric random access memories, infrared detectors, piezoelectric sensors, nonlinear optical devices, as a result of their excellent ferroelectric, piezoelectric, pyroelectric, and optical properties. Most of the new ferroelectric metal-organic compounds consistent with the necessary requirements for ferroelectric properties have been explored. However, the conditions required in these systems, such as a phase transition, a good electric hysteresis loop and electric domain, and a dielectric anomaly, often disappear (Zhang et al., 2009). Hence, pure organic compounds can be of great potential and can probably make up for the drawbacks found in ferroelectric metal-organic compounds. Reversible structural phase transition remains one of the prominent properties for ferroelectrics. For a small part of these compounds, the components can be arranged in a disordered fashion at a relative high temperature and in an ordered fashion at a relative low temperature. The transition from the disordered arrangement to the ordered one gives rise to sharp change in the physical properties of the compound (Fu et al., 2009; Zhang et al., 2008, 2010; Ye et al., 2006). As part of our search for simple ferroelectric compounds, we have investigated the title compound and report now its room temperature crystal structure.

The centrosymmetric anion and one cation are shown in Fig. 1 with the hydrogen bonds listed in Table 1. The existence of numerous hydrogen-bonding interactions helps to make the substance more stable, and thus forms a three-dimensional layered structure. The interactions tie the cations and anions together in sheets with zigzag rows of cations lying between layers of anions (Fig. 2). There are only van der Waals interactions between layers. The reported structure is similar to that of a related naphthalene-1,5-disulfonate salt (Wang & Yang, 2011).

Related literature top

For general background to ferroelectric metal-organic frameworks, see: Ye et al. (2006); Zhang et al. (2008, 2009, 2010); Fu et al. (2009). For a related structure, see: Wang & Yang (2011).

Experimental top

(C3H10N+)2(C10H6S2O62-) was formed from a mixture of N(CH3)3 (8 mL), C10H8O6S2 (288.28 mg, 1.00 mmol), and distilled water (10 ml), which was stirred for few minutes at room temperature, giving a clear transparent solution. After evaporation over few days, block-shaped colorless crystals suitable for X-ray diffraction were obtained in about 82% yield, filtered and washed with distilled water.

Refinement top

H atoms bound to carbon and nitrogen were placed at idealized positions [C—H = 0.93–0.96 Å, N—H = 0.91 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the c axis. Intermolecular interactions are shown as dashed lines.
Bis(trimethylammonium) naphthalene-1,5-disulfonate top
Crystal data top
2C3H10N+·C10H6O6S22F(000) = 432
Mr = 406.51Dx = 1.364 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3450 reflections
a = 8.3428 (17) Åθ = 6.2–55.3°
b = 10.502 (2) ŵ = 0.30 mm1
c = 11.742 (2) ÅT = 293 K
β = 105.81 (3)°Block, colourless
V = 989.8 (3) Å30.3 × 0.3 × 0.2 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
2265 independent reflections
Radiation source: fine-focus sealed tube2016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1010
Tmin = 0.489, Tmax = 1.000k = 1313
10031 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.3652P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2265 reflectionsΔρmax = 0.28 e Å3
119 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.055 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
2C3H10N+·C10H6O6S22V = 989.8 (3) Å3
Mr = 406.51Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3428 (17) ŵ = 0.30 mm1
b = 10.502 (2) ÅT = 293 K
c = 11.742 (2) Å0.3 × 0.3 × 0.2 mm
β = 105.81 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2265 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2016 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 1.000Rint = 0.036
10031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.10Δρmax = 0.28 e Å3
2265 reflectionsΔρmin = 0.36 e Å3
119 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7732 (3)0.1761 (3)0.4624 (2)0.0783 (8)
H1B0.79490.23890.40900.117*
H1C0.65930.18260.46470.117*
H1D0.79290.09270.43570.117*
C20.8549 (4)0.1033 (3)0.6651 (3)0.0926 (10)
H2B0.92800.11940.74230.139*
H2C0.87600.01970.63950.139*
H2D0.74130.10870.66830.139*
C30.8748 (4)0.3266 (3)0.6265 (3)0.0824 (9)
H3B0.94910.33390.70460.124*
H3C0.76290.34360.62930.124*
H3D0.90610.38680.57490.124*
C40.4055 (2)0.39604 (16)0.66437 (14)0.0336 (4)
H4A0.35670.34520.71050.040*
C50.37869 (18)0.37009 (14)0.54673 (13)0.0279 (3)
C60.44909 (18)0.44781 (14)0.47321 (13)0.0258 (3)
C70.4218 (2)0.42584 (15)0.35041 (14)0.0315 (4)
H7A0.35350.35890.31460.038*
C80.4940 (2)0.50113 (16)0.28418 (14)0.0353 (4)
H8A0.47640.48420.20400.042*
N10.88425 (18)0.19790 (16)0.58184 (15)0.0444 (4)
H1E0.99040.18640.57720.053*
O10.3624 (2)0.15499 (14)0.43979 (16)0.0635 (5)
O20.21016 (15)0.17580 (12)0.58538 (12)0.0406 (3)
O30.11286 (19)0.28226 (17)0.39993 (14)0.0646 (5)
S10.25686 (5)0.23499 (4)0.48711 (4)0.03500 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0441 (12)0.127 (3)0.0569 (15)0.0063 (14)0.0017 (11)0.0125 (16)
C20.112 (2)0.086 (2)0.0729 (18)0.0519 (19)0.0134 (17)0.0023 (15)
C30.0762 (18)0.0563 (15)0.104 (2)0.0190 (13)0.0066 (16)0.0161 (14)
C40.0363 (8)0.0363 (8)0.0301 (8)0.0014 (7)0.0123 (7)0.0050 (6)
C50.0247 (7)0.0274 (7)0.0310 (8)0.0002 (6)0.0068 (6)0.0011 (6)
C60.0256 (7)0.0249 (7)0.0265 (7)0.0029 (6)0.0064 (6)0.0005 (6)
C70.0347 (8)0.0298 (8)0.0285 (8)0.0014 (6)0.0061 (6)0.0041 (6)
C80.0423 (9)0.0385 (9)0.0254 (7)0.0014 (7)0.0100 (7)0.0011 (6)
N10.0267 (7)0.0521 (10)0.0534 (10)0.0035 (6)0.0092 (7)0.0075 (8)
O10.0751 (11)0.0409 (8)0.0925 (12)0.0193 (7)0.0537 (10)0.0242 (8)
O20.0332 (6)0.0420 (7)0.0471 (7)0.0069 (5)0.0118 (5)0.0085 (5)
O30.0455 (8)0.0811 (11)0.0533 (9)0.0226 (8)0.0101 (7)0.0189 (8)
S10.0322 (2)0.0350 (3)0.0379 (3)0.00957 (16)0.00984 (17)0.00121 (16)
Geometric parameters (Å, º) top
C1—N11.473 (3)C4—H4A0.9300
C1—H1B0.9600C5—C61.426 (2)
C1—H1C0.9600C5—S11.7744 (16)
C1—H1D0.9600C6—C71.416 (2)
C2—N11.460 (3)C6—C6i1.424 (3)
C2—H2B0.9600C7—C81.359 (2)
C2—H2C0.9600C7—H7A0.9300
C2—H2D0.9600C8—C4i1.400 (2)
C3—N11.459 (3)C8—H8A0.9300
C3—H3B0.9600N1—H1E0.9100
C3—H3C0.9600O1—S11.4338 (15)
C3—H3D0.9600O2—S11.4541 (13)
C4—C51.365 (2)O3—S11.4379 (16)
C4—C8i1.400 (2)
N1—C1—H1B109.5C6—C5—S1120.33 (11)
N1—C1—H1C109.5C7—C6—C6i119.11 (17)
H1B—C1—H1C109.5C7—C6—C5123.01 (14)
N1—C1—H1D109.5C6i—C6—C5117.88 (16)
H1B—C1—H1D109.5C8—C7—C6120.95 (15)
H1C—C1—H1D109.5C8—C7—H7A119.5
N1—C2—H2B109.5C6—C7—H7A119.5
N1—C2—H2C109.5C7—C8—C4i120.58 (15)
H2B—C2—H2C109.5C7—C8—H8A119.7
N1—C2—H2D109.5C4i—C8—H8A119.7
H2B—C2—H2D109.5C3—N1—C2110.7 (2)
H2C—C2—H2D109.5C3—N1—C1113.8 (2)
N1—C3—H3B109.5C2—N1—C1110.8 (2)
N1—C3—H3C109.5C3—N1—H1E107.0
H3B—C3—H3C109.5C2—N1—H1E107.0
N1—C3—H3D109.5C1—N1—H1E107.0
H3B—C3—H3D109.5O1—S1—O3114.11 (11)
H3C—C3—H3D109.5O1—S1—O2112.49 (9)
C5—C4—C8i120.29 (15)O3—S1—O2111.10 (8)
C5—C4—H4A119.9O1—S1—C5105.98 (8)
C8i—C4—H4A119.9O3—S1—C5106.41 (9)
C4—C5—C6121.16 (14)O2—S1—C5106.10 (8)
C4—C5—S1118.50 (12)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1E···O2ii0.911.812.718 (2)173
C1—H1C···O10.962.433.372 (3)166
C2—H2B···O3iii0.962.313.232 (4)162
N1—H1E···S1ii0.912.763.5967 (18)154
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C3H10N+·C10H6O6S22
Mr406.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.3428 (17), 10.502 (2), 11.742 (2)
β (°) 105.81 (3)
V3)989.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.489, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10031, 2265, 2016
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.10
No. of reflections2265
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.36

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1E···O2i0.911.812.718 (2)172.6
C1—H1C···O10.962.433.372 (3)166
C2—H2B···O3ii0.962.313.232 (4)162
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The author thanks the Ordered Matter Science Research Center, Southeast University, for its excellent experimental conditions and its generous financial support.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C. & Yang, S. L. (2011). Acta Cryst. E67, o1847.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K., Fu, D.-W., Hong Chan, P. W., Zhu, J.-S., Huang, S. D. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S. D. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds