metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(acridine-κN)di­chloridopalladium(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 9 December 2011; accepted 11 December 2011; online 17 December 2011)

In the title complex, [PdCl2(C13H9N)2], the PdII ion is four-coordinated in an essentially square-planar environment by two N atoms from two acridine ligands and two Cl anions. The Pd atom is located on an inversion centre, and thus the asymmetric unit contains one half of the complex and the PdN2Cl2 unit is exactly planar. The dihedral angle between the PdN2Cl2 unit and the acridine ligand is 84.66 (6)°. In the crystal, the complex mol­ecules are stacked in columns along the a axis connected by C—H⋯Cl hydrogen bonds, forming chains along [110]. In the columns, numerous inter­molecular ππ inter­actions between the six-membered rings are present, the shortest ring centroid–centroid distance being 3.722 (4) Å.

Related literature

For the related crystal structures [PdX2(acr)2] (X = Br, I), see: Ha (2010a[Ha, K. (2010a). Z. Kristallogr. New Cryst. Struct. 225, 663-664.],b[Ha, K. (2010b). Z. Kristallogr. New Cryst. Struct. 225, 693-694.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C13H9N)2]

  • Mr = 535.72

  • Triclinic, [P \overline 1]

  • a = 8.2114 (16) Å

  • b = 8.8910 (18) Å

  • c = 9.0105 (18) Å

  • α = 66.188 (4)°

  • β = 77.230 (4)°

  • γ = 66.885 (4)°

  • V = 551.99 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 200 K

  • 0.20 × 0.12 × 0.09 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.679, Tmax = 1.000

  • 3488 measured reflections

  • 2124 independent reflections

  • 1626 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.107

  • S = 0.98

  • 2124 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—N1 2.055 (4)
Pd1—Cl1 2.2975 (15)
N1—Pd1—Cl1 89.75 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cl1i 0.95 2.74 3.589 (6) 149
Symmetry code: (i) -x, -y+2, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title complex, [PdCl2(acr)2] (acr = acridine, C13H9N), the PdII ion is four-coordinated in an essentially square-planar environment by two N atoms from two acridine (acr) ligands and two Cl- anions (Fig. 1 and Table 1). The complex and the iodo analogue [PdI2(acr)2] crystallized in the triclinic space group P1, whereas the analogous bromo Pd(II) complex [PdBr2(acr)2] crystallized in the monoclinic space group C2/c (Ha, 2010a,b).

The Pd atom is located on an inversion centre, and thus the asymmetric unit contains one half of the complex and the PdN2Cl2 unit is exactly plane. The nearly planar acridine ligands, with a maximum deviation of 0.033 (4) Å from the least-squares plane, are parallel. The dihedral angle between the PdN2Cl2 unit and acridine ligand is 84.66 (6)°. The Cl atoms are in trans conformation with respect to each other and almost perpendicular to the acridine planes, with the bond angle N1—Pd1—Cl1 = 89.75 (12)°. In the crystal, the complex molecules are stacked in columns along the a axis and connected by C—H···Cl hydrogen bonds, forming chains along [110]. In the columns, numerous intermolecular π-π interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 3.722 (4) Å.

Related literature top

For the related crystal structures [PdX2(acr)2] (X = Br, I), see: Ha (2010a,b).

Experimental top

To a solution of Na2PdCl4 (0.2014 g, 0.685 mmol) in H2O (20 ml) was added acridine (0.2561 g, 1.429 mmol), and the mixture was refluxed for 7 h. The precipitate was then separated by filtration, washed with acetone and pentane, and dried at 50 °C, to give a yellow powder (0.3369 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (0.83 e Å-3) and the deepest hole (-0.66 e Å-3) in the difference Fourier map are located 1.17 and 0.85 Å from the Pd1 atom, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms. Unlabelled atoms are related to the reference atoms by the (1 - x, 1 - y, -z) symmetry transformation.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. Hydrogen-bond interactions are drawn with dashed lines.
trans-Bis(acridine-κN)dichloridopalladium(II) top
Crystal data top
[PdCl2(C13H9N)2]Z = 1
Mr = 535.72F(000) = 268
Triclinic, P1Dx = 1.612 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2114 (16) ÅCell parameters from 940 reflections
b = 8.8910 (18) Åθ = 2.7–22.5°
c = 9.0105 (18) ŵ = 1.10 mm1
α = 66.188 (4)°T = 200 K
β = 77.230 (4)°Block, yellow
γ = 66.885 (4)°0.20 × 0.12 × 0.09 mm
V = 551.99 (19) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
2124 independent reflections
Radiation source: fine-focus sealed tube1626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.679, Tmax = 1.000k = 910
3488 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0328P)2]
where P = (Fo2 + 2Fc2)/3
2124 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[PdCl2(C13H9N)2]γ = 66.885 (4)°
Mr = 535.72V = 551.99 (19) Å3
Triclinic, P1Z = 1
a = 8.2114 (16) ÅMo Kα radiation
b = 8.8910 (18) ŵ = 1.10 mm1
c = 9.0105 (18) ÅT = 200 K
α = 66.188 (4)°0.20 × 0.12 × 0.09 mm
β = 77.230 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2124 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1626 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 1.000Rint = 0.056
3488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.98Δρmax = 0.83 e Å3
2124 reflectionsΔρmin = 0.66 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50000.50000.00000.0284 (2)
Cl10.27624 (19)0.42136 (19)0.1805 (2)0.0413 (4)
N10.3976 (5)0.7417 (5)0.0224 (5)0.0239 (10)
C10.2822 (7)0.8767 (7)0.0814 (7)0.0287 (13)
C20.2416 (7)0.8596 (8)0.2178 (7)0.0343 (15)
H20.29550.75130.23500.041*
C30.1271 (7)0.9955 (8)0.3232 (8)0.0399 (16)
H30.10170.98060.41320.048*
C40.0448 (7)1.1580 (8)0.3032 (8)0.0438 (17)
H40.03631.25120.37850.053*
C50.0810 (7)1.1817 (8)0.1766 (8)0.0407 (16)
H50.02461.29200.16340.049*
C60.2011 (7)1.0455 (7)0.0640 (7)0.0302 (14)
C70.2430 (7)1.0626 (7)0.0674 (7)0.0352 (15)
H70.18921.17140.08380.042*
C80.3604 (7)0.9262 (7)0.1749 (7)0.0254 (13)
C90.4058 (8)0.9384 (9)0.3117 (8)0.0411 (16)
H90.35191.04500.33210.049*
C100.5234 (9)0.8029 (9)0.4133 (8)0.0439 (17)
H100.55170.81420.50400.053*
C110.6047 (8)0.6432 (8)0.3845 (7)0.0407 (16)
H110.68860.54780.45570.049*
C120.5641 (8)0.6259 (7)0.2572 (7)0.0350 (15)
H120.62080.51790.23970.042*
C130.4400 (7)0.7629 (7)0.1489 (7)0.0269 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0283 (4)0.0212 (4)0.0363 (4)0.0025 (3)0.0064 (3)0.0144 (3)
Cl10.0379 (9)0.0295 (9)0.0540 (11)0.0098 (7)0.0061 (8)0.0188 (8)
N10.024 (2)0.020 (2)0.028 (3)0.005 (2)0.001 (2)0.011 (2)
C10.023 (3)0.030 (3)0.029 (3)0.007 (3)0.001 (3)0.009 (3)
C20.030 (3)0.028 (3)0.042 (4)0.001 (3)0.006 (3)0.017 (3)
C30.033 (3)0.046 (4)0.043 (4)0.011 (3)0.017 (3)0.013 (3)
C40.025 (3)0.035 (4)0.054 (5)0.000 (3)0.012 (3)0.003 (3)
C50.029 (3)0.030 (4)0.059 (5)0.003 (3)0.002 (3)0.021 (3)
C60.026 (3)0.024 (3)0.041 (4)0.006 (3)0.000 (3)0.015 (3)
C70.031 (3)0.023 (3)0.051 (4)0.007 (3)0.010 (3)0.020 (3)
C80.025 (3)0.025 (3)0.029 (3)0.011 (3)0.008 (3)0.016 (3)
C90.045 (4)0.047 (4)0.043 (4)0.023 (4)0.013 (3)0.028 (4)
C100.061 (4)0.057 (5)0.033 (4)0.039 (4)0.000 (4)0.018 (3)
C110.057 (4)0.037 (4)0.032 (4)0.022 (3)0.010 (3)0.007 (3)
C120.050 (4)0.022 (3)0.035 (4)0.010 (3)0.008 (3)0.012 (3)
C130.029 (3)0.027 (3)0.029 (3)0.009 (3)0.002 (3)0.016 (3)
Geometric parameters (Å, º) top
Pd1—N1i2.055 (4)C5—H50.9500
Pd1—N12.055 (4)C6—C71.382 (8)
Pd1—Cl1i2.2975 (15)C7—C81.373 (7)
Pd1—Cl12.2975 (15)C7—H70.9500
N1—C11.344 (6)C8—C91.420 (7)
N1—C131.362 (6)C8—C131.432 (7)
C1—C21.420 (7)C9—C101.344 (8)
C1—C61.442 (7)C9—H90.9500
C2—C31.350 (7)C10—C111.416 (8)
C2—H20.9500C10—H100.9500
C3—C41.402 (8)C11—C121.344 (7)
C3—H30.9500C11—H110.9500
C4—C51.353 (8)C12—C131.406 (7)
C4—H40.9500C12—H120.9500
C5—C61.408 (8)
N1i—Pd1—N1180.0C7—C6—C5123.4 (5)
N1i—Pd1—Cl1i89.75 (12)C7—C6—C1117.3 (5)
N1—Pd1—Cl1i90.25 (12)C5—C6—C1119.4 (5)
N1i—Pd1—Cl190.25 (12)C8—C7—C6121.5 (5)
N1—Pd1—Cl189.75 (12)C8—C7—H7119.2
Cl1i—Pd1—Cl1180.00 (8)C6—C7—H7119.2
C1—N1—C13119.7 (4)C7—C8—C9123.2 (5)
C1—N1—Pd1120.7 (3)C7—C8—C13118.6 (5)
C13—N1—Pd1119.6 (3)C9—C8—C13118.2 (5)
N1—C1—C2120.6 (5)C10—C9—C8121.6 (6)
N1—C1—C6122.0 (5)C10—C9—H9119.2
C2—C1—C6117.4 (5)C8—C9—H9119.2
C3—C2—C1120.7 (5)C9—C10—C11119.8 (6)
C3—C2—H2119.7C9—C10—H10120.1
C1—C2—H2119.7C11—C10—H10120.1
C2—C3—C4121.7 (6)C12—C11—C10120.4 (6)
C2—C3—H3119.1C12—C11—H11119.8
C4—C3—H3119.1C10—C11—H11119.8
C5—C4—C3119.8 (6)C11—C12—C13122.0 (5)
C5—C4—H4120.1C11—C12—H12119.0
C3—C4—H4120.1C13—C12—H12119.0
C4—C5—C6121.0 (5)N1—C13—C12121.2 (5)
C4—C5—H5119.5N1—C13—C8120.9 (5)
C6—C5—H5119.5C12—C13—C8118.0 (5)
Cl1i—Pd1—N1—C187.0 (4)C5—C6—C7—C8179.7 (5)
Cl1—Pd1—N1—C193.0 (4)C1—C6—C7—C81.6 (8)
Cl1i—Pd1—N1—C1396.5 (4)C6—C7—C8—C9179.6 (5)
Cl1—Pd1—N1—C1383.5 (4)C6—C7—C8—C130.2 (8)
C13—N1—C1—C2177.5 (5)C7—C8—C9—C10179.0 (6)
Pd1—N1—C1—C26.0 (7)C13—C8—C9—C101.5 (8)
C13—N1—C1—C60.2 (8)C8—C9—C10—C110.0 (9)
Pd1—N1—C1—C6176.8 (4)C9—C10—C11—C120.6 (9)
N1—C1—C2—C3179.3 (5)C10—C11—C12—C130.4 (9)
C6—C1—C2—C32.0 (8)C1—N1—C13—C12178.2 (5)
C1—C2—C3—C40.3 (9)Pd1—N1—C13—C125.2 (7)
C2—C3—C4—C50.7 (10)C1—N1—C13—C81.3 (8)
C3—C4—C5—C60.2 (9)Pd1—N1—C13—C8175.2 (4)
C4—C5—C6—C7180.0 (6)C11—C12—C13—N1178.6 (6)
C4—C5—C6—C12.0 (9)C11—C12—C13—C81.9 (9)
N1—C1—C6—C71.7 (8)C7—C8—C13—N11.4 (8)
C2—C1—C6—C7179.0 (5)C9—C8—C13—N1178.1 (5)
N1—C1—C6—C5179.9 (5)C7—C8—C13—C12178.1 (5)
C2—C1—C6—C52.8 (8)C9—C8—C13—C122.4 (8)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl1ii0.952.743.589 (6)149
Symmetry code: (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formula[PdCl2(C13H9N)2]
Mr535.72
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.2114 (16), 8.8910 (18), 9.0105 (18)
α, β, γ (°)66.188 (4), 77.230 (4), 66.885 (4)
V3)551.99 (19)
Z1
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.20 × 0.12 × 0.09
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.679, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3488, 2124, 1626
Rint0.056
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.107, 0.98
No. of reflections2124
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.66

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pd1—N12.055 (4)Pd1—Cl12.2975 (15)
N1—Pd1—Cl189.75 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl1i0.952.743.589 (6)148.5
Symmetry code: (i) x, y+2, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2010a). Z. Kristallogr. New Cryst. Struct. 225, 663–664.  CAS Google Scholar
First citationHa, K. (2010b). Z. Kristallogr. New Cryst. Struct. 225, 693–694.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds