metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[5-(pyridin-2-yl)pyrazine-2-carbo­nitrile-κ2N4,N5]silver hexa­fluorido­phosphate

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: wanchqing@yahoo.com.cn

(Received 26 November 2011; accepted 29 November 2011; online 3 December 2011)

In the mononuclear title complex, [Ag(C10H6N4)2]PF6, two κ2N,N′-chelating 5-(pyridin-2-yl)pyrazine-2-carbonitrile ligands surround the AgI atom, forming a distorted N4 tetra­hedral coordination geometry. The mononuclear units are inter­connected through ππ inter­actions [centroid–centroid distances = 3.801 (2) and 3.979 (3) Å] and the hexa­fluoridophosphate anions are embedded within the inter­stices. C≡N⋯π inter­actions [N⋯centroid = 3.519 (2) Å] and C—H.⋯N hydrogen-bonding inter­actions also occur.

Related literature

For coordination complexes with pyridyl-based ligands, see: Boudalis et al. (2003[Boudalis, A. K., Dahan, F., Bousseksou, A., Tuchagues, J. P. & Perlepes, J. P. (2003). Dalton Trans. pp. 3411-3418.]); Dunne et al. (1997[Dunne, S. J., Summers, L. A. & von Nagy-Felsobuki, E. I. (1997). Coord. Chem. Rev. 165, 1-92.]); Huang et al. (2007[Huang, Y. G., Gong, Y. Q., Jiang, F. L., Yuan, D. Q., Wu, M. Y., Gao, Q., Wei, W. & Hong, M. C. (2007). Cryst. Growth Des. 7, 1385-1389.]); Wang et al. (2009[Wang, Y., Zhao, X. Q., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2009). Cryst. Growth Des. 9, 2137-2145.]). For a related complex with 5-(2-pyrid­yl)pyrazine-2-carbonitrile, see: Wang et al. (2010[Wang, Z.-J., Zhang, F. & Wan, C.-Q. (2010). Acta Cryst. E66, m1232-m1233.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C10H6N4)2]PF6

  • Mr = 617.22

  • Triclinic, [P \overline 1]

  • a = 8.8989 (9) Å

  • b = 9.1711 (10) Å

  • c = 14.0804 (15) Å

  • α = 77.023 (2)°

  • β = 86.926 (2)°

  • γ = 84.809 (2)°

  • V = 1114.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 293 K

  • 0.38 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.861, Tmax = 1.000

  • 8106 measured reflections

  • 5438 independent reflections

  • 4544 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.090

  • S = 1.04

  • 5438 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯N7i 0.93 2.47 3.201 (2) 135
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The coordination chemistry of pyridyl based ligands has intensively developed in the passed decades (Boudalis et al., 2003; Dunne et al., 1997; Wang et al.,2009).The devious rigid and/or flexible pyridyl based ligands were designed and synthesized to construct many fancy coordination frameworks (Huang et al. 2007). Herein, we report the structure of one new silver(I) complex ([Ag(C10H6N4)2]PF6) derived from 5-(2-pyridyl)pyrazine-2-carbonitrile, a rigid ligand featuring a 2-cyanopyrazinyl group at the 2-pyridyl carbon atom (Scheme 1).

As shown in Fig.1,two κ2 N:N chelating 5-(2-pyridyl)pyrazine-2-carbonitrile ligands surround the AgI center to form a distorted N4-tetrahedral coordination geometry. The Ag—N bond lengthes lie within the range of 2.289 (2)-2.472 (2)Å, with the Ag1—N5 being slight longer than the others, comparable to these in [Ag(C10H6N4)2]BF4 (2.196 (2)-2.685 (2) Å), a similar complex of 5-(2-pyridyl)pyrazine-2-carbonitrile reported (Wang et al. 2010). The two hetero rings of one 5-(2-pyridyl)pyrazine-2-carbonitrile exhibit a dihedral angle of 29.07 (1)°, while in the other one ligand the value is 5.50 (1)°. Such two chelating ligands are almost in an orthogonal orientation, which is remarkablely different from that an anti-relationship in [Ag(C10H6N4)2]BF4 reported by us (Wang et al. 2010). Two mononuclear units arranged in an invert center are interconnected through π(pyrazinyl)···π(pyrazinyl) (Cg1···Cg1i = 3.453 (2) Å, Cg1 = N5-C16-C17-N6-C19-C18 ring, i: -x+1, -y+2, -z+1) and C20N8(cyano)···π(pyridyl) interactions (Table 2) to form a dimeric unit. Along the a axis, the dimeric units are stacked and interconnected via C11—H11A···N7iv(cyano) interaction (Table 1), leading to a column motif. Along the [010] direction, the column motifs interconnect through π(pyridyl)···π(pyridyl) (Cg2···Cg2ii = 3.801 (2) Å, Cg2 = N4-C11-C12-C13-C14-C15 ring, ii: -x+1, -y+1, -z+1) interaction (Table 2), forming a lay in the abplane. Along [001] direction, the formed layers are stacked, and π(pyridyl)···π(pyridyl) interactions (Cg3···Cg3iii = 3.979 (3) Å, Cg3 = N1-C1-C2-C3-C4-C5, iii -x+1, -x+2, -x+2) occur to help to stablize the whole supramolecular structure with the hexafluorophosphate embedded within the interstices.

Related literature top

For coordination complexes with pyridyl-based ligands, see: Boudalis et al. (2003); Dunne et al. (1997); Huang et al. (2007); Wang et al. (2009). For a complex with 5-(2-pyridyl)pyrazine-2-carbonitrile, see: Wang et al. (2010).

Experimental top

The ligand 5-(2-pyridyl)-2-cyanopyrazine ligand was obtained commercially. The ligand (18.1 mg, 0.2 mmol) and AgPF6 (26 mg, 0.1mmol) were mixed and dissolved in 5 ml solvent of methanol (3 ml) and acetonitrile (2 ml). After stirring at room temperature for 4 hours, the resulted solution was filtrated, and the clear solution was kepted in air for slow evaporation. After about one week, the colorless block-like crystals were deposited (32.7 mg, 53% yeild).

Refinement top

All the H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed into idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

The coordination chemistry of pyridyl based ligands has intensively developed in the passed decades (Boudalis et al., 2003; Dunne et al., 1997; Wang et al.,2009).The devious rigid and/or flexible pyridyl based ligands were designed and synthesized to construct many fancy coordination frameworks (Huang et al. 2007). Herein, we report the structure of one new silver(I) complex ([Ag(C10H6N4)2]PF6) derived from 5-(2-pyridyl)pyrazine-2-carbonitrile, a rigid ligand featuring a 2-cyanopyrazinyl group at the 2-pyridyl carbon atom (Scheme 1).

As shown in Fig.1,two κ2 N:N chelating 5-(2-pyridyl)pyrazine-2-carbonitrile ligands surround the AgI center to form a distorted N4-tetrahedral coordination geometry. The Ag—N bond lengthes lie within the range of 2.289 (2)-2.472 (2)Å, with the Ag1—N5 being slight longer than the others, comparable to these in [Ag(C10H6N4)2]BF4 (2.196 (2)-2.685 (2) Å), a similar complex of 5-(2-pyridyl)pyrazine-2-carbonitrile reported (Wang et al. 2010). The two hetero rings of one 5-(2-pyridyl)pyrazine-2-carbonitrile exhibit a dihedral angle of 29.07 (1)°, while in the other one ligand the value is 5.50 (1)°. Such two chelating ligands are almost in an orthogonal orientation, which is remarkablely different from that an anti-relationship in [Ag(C10H6N4)2]BF4 reported by us (Wang et al. 2010). Two mononuclear units arranged in an invert center are interconnected through π(pyrazinyl)···π(pyrazinyl) (Cg1···Cg1i = 3.453 (2) Å, Cg1 = N5-C16-C17-N6-C19-C18 ring, i: -x+1, -y+2, -z+1) and C20N8(cyano)···π(pyridyl) interactions (Table 2) to form a dimeric unit. Along the a axis, the dimeric units are stacked and interconnected via C11—H11A···N7iv(cyano) interaction (Table 1), leading to a column motif. Along the [010] direction, the column motifs interconnect through π(pyridyl)···π(pyridyl) (Cg2···Cg2ii = 3.801 (2) Å, Cg2 = N4-C11-C12-C13-C14-C15 ring, ii: -x+1, -y+1, -z+1) interaction (Table 2), forming a lay in the abplane. Along [001] direction, the formed layers are stacked, and π(pyridyl)···π(pyridyl) interactions (Cg3···Cg3iii = 3.979 (3) Å, Cg3 = N1-C1-C2-C3-C4-C5, iii -x+1, -x+2, -x+2) occur to help to stablize the whole supramolecular structure with the hexafluorophosphate embedded within the interstices.

For coordination complexes with pyridyl-based ligands, see: Boudalis et al. (2003); Dunne et al. (1997); Huang et al. (2007); Wang et al. (2009). For a complex with 5-(2-pyridyl)pyrazine-2-carbonitrile, see: Wang et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The CN···π(pyridyl) and ππ interactions between the mononuclear units, forming the dimer in the title complex.
[Figure 3] Fig. 3. The packing structure of the title complex viewed down the a direction, a layer formed in the ab plane. All non-covalent interactions are omitted for clarity.
Bis[5-(pyridin-2-yl)pyrazine-2-carbonitrile-κ2N4,N5]silver hexafluoridophosphate top
Crystal data top
[Ag(C10H6N4)2]PF6Z = 2
Mr = 617.22F(000) = 608
Triclinic, P1Dx = 1.839 Mg m3
a = 8.8989 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1711 (10) ÅCell parameters from 252 reflections
c = 14.0804 (15) Åθ = 2.3–28.3°
α = 77.023 (2)°µ = 1.05 mm1
β = 86.926 (2)°T = 293 K
γ = 84.809 (2)°Block, colorless
V = 1114.5 (2) Å30.38 × 0.30 × 0.30 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5438 independent reflections
Radiation source: fine-focus sealed tube4544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.861, Tmax = 1.000k = 1211
8106 measured reflectionsl = 1418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.4779P] P = (Fo2 + 2Fc2)/3
5438 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ag(C10H6N4)2]PF6γ = 84.809 (2)°
Mr = 617.22V = 1114.5 (2) Å3
Triclinic, P1Z = 2
a = 8.8989 (9) ÅMo Kα radiation
b = 9.1711 (10) ŵ = 1.05 mm1
c = 14.0804 (15) ÅT = 293 K
α = 77.023 (2)°0.38 × 0.30 × 0.30 mm
β = 86.926 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5438 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4544 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 1.000Rint = 0.017
8106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.04Δρmax = 0.71 e Å3
5438 reflectionsΔρmin = 0.37 e Å3
325 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.48500 (2)0.72149 (2)0.719902 (13)0.05876 (9)
N10.5186 (2)0.8140 (2)0.85560 (14)0.0472 (4)
N20.2770 (2)0.6575 (2)0.83133 (14)0.0488 (4)
N30.0214 (2)0.6780 (2)0.95255 (15)0.0519 (5)
N40.6022 (2)0.6137 (2)0.60099 (14)0.0421 (4)
N50.3774 (2)0.8372 (2)0.55962 (13)0.0417 (4)
N60.3283 (2)0.9988 (2)0.37004 (15)0.0512 (5)
N70.2337 (3)0.5344 (3)0.8368 (2)0.0701 (7)
N80.0293 (3)1.2382 (3)0.4069 (2)0.0654 (6)
C10.6476 (3)0.8679 (3)0.8722 (2)0.0577 (6)
H1A0.71090.90450.81910.069*
C20.6908 (3)0.8716 (4)0.9636 (2)0.0644 (7)
H2A0.78060.91080.97220.077*
C30.5984 (4)0.8163 (4)1.0420 (2)0.0747 (9)
H3A0.62660.81431.10490.090*
C40.4630 (3)0.7635 (4)1.0269 (2)0.0659 (7)
H4A0.39820.72731.07930.079*
C50.4258 (3)0.7655 (3)0.93238 (17)0.0471 (5)
C60.2814 (3)0.7132 (3)0.91130 (15)0.0429 (5)
C70.1518 (3)0.7245 (3)0.97008 (17)0.0494 (5)
H7A0.15700.76661.02390.059*
C80.1461 (3)0.6118 (3)0.81258 (18)0.0526 (6)
H8A0.13940.57240.75770.063*
C90.0207 (3)0.6218 (3)0.87300 (18)0.0478 (5)
C100.1216 (3)0.5724 (3)0.8523 (2)0.0555 (6)
C110.7058 (3)0.4967 (3)0.62202 (18)0.0493 (5)
H11A0.71940.45000.68710.059*
C120.7931 (3)0.4422 (3)0.5521 (2)0.0531 (6)
H12A0.86310.36010.56960.064*
C130.7749 (3)0.5111 (3)0.4566 (2)0.0551 (6)
H13A0.83450.47840.40800.066*
C140.6665 (3)0.6305 (3)0.43296 (18)0.0474 (5)
H14A0.65120.67790.36810.057*
C150.5814 (2)0.6782 (2)0.50681 (15)0.0346 (4)
C160.4612 (2)0.8042 (2)0.48494 (15)0.0345 (4)
C170.4369 (3)0.8876 (3)0.39062 (17)0.0487 (5)
H17A0.49910.86470.33980.058*
C180.2663 (2)0.9470 (3)0.53981 (18)0.0453 (5)
H18A0.20470.97120.59040.054*
C190.2421 (2)1.0246 (2)0.44564 (17)0.0407 (4)
C200.1224 (3)1.1448 (3)0.4237 (2)0.0494 (5)
P10.04799 (7)1.12551 (7)0.76794 (5)0.04787 (15)
F50.0408 (3)1.1620 (2)0.65229 (13)0.0903 (6)
F40.2221 (2)1.0737 (3)0.75732 (16)0.0945 (7)
F30.1266 (2)1.1778 (3)0.77714 (17)0.0920 (6)
F60.0579 (3)1.0844 (3)0.88231 (14)0.1011 (7)
F10.0880 (3)1.2901 (2)0.7634 (2)0.1208 (9)
F20.0083 (3)0.9602 (2)0.77003 (17)0.0918 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.06857 (14)0.07215 (15)0.03810 (11)0.00412 (10)0.00886 (8)0.02065 (9)
N10.0422 (10)0.0584 (12)0.0420 (10)0.0000 (8)0.0002 (8)0.0152 (9)
N20.0525 (11)0.0576 (12)0.0382 (10)0.0042 (9)0.0012 (8)0.0152 (8)
N30.0503 (11)0.0603 (12)0.0461 (11)0.0050 (9)0.0022 (9)0.0146 (9)
N40.0423 (9)0.0452 (10)0.0400 (9)0.0016 (8)0.0038 (7)0.0136 (8)
N50.0372 (9)0.0492 (10)0.0403 (9)0.0015 (7)0.0019 (7)0.0156 (8)
N60.0467 (10)0.0569 (12)0.0464 (11)0.0084 (9)0.0023 (8)0.0088 (9)
N70.0617 (14)0.0812 (17)0.0726 (16)0.0124 (13)0.0100 (12)0.0234 (13)
N80.0524 (12)0.0628 (14)0.0816 (17)0.0149 (11)0.0132 (12)0.0223 (12)
C10.0458 (13)0.0699 (17)0.0585 (15)0.0028 (12)0.0013 (11)0.0181 (13)
C20.0472 (13)0.083 (2)0.0680 (18)0.0040 (13)0.0085 (12)0.0263 (15)
C30.0706 (18)0.109 (3)0.0515 (16)0.0126 (17)0.0169 (14)0.0258 (16)
C40.0655 (16)0.096 (2)0.0383 (13)0.0135 (15)0.0038 (11)0.0151 (13)
C50.0469 (12)0.0547 (13)0.0395 (11)0.0005 (10)0.0023 (9)0.0114 (10)
C60.0481 (11)0.0473 (12)0.0322 (10)0.0012 (9)0.0012 (8)0.0071 (9)
C70.0528 (13)0.0593 (14)0.0382 (11)0.0051 (11)0.0016 (9)0.0156 (10)
C80.0591 (14)0.0607 (14)0.0415 (12)0.0079 (11)0.0018 (10)0.0175 (11)
C90.0507 (12)0.0477 (12)0.0437 (12)0.0036 (10)0.0045 (10)0.0064 (10)
C100.0570 (15)0.0587 (15)0.0513 (14)0.0068 (12)0.0052 (11)0.0116 (11)
C110.0507 (13)0.0499 (13)0.0471 (13)0.0053 (10)0.0126 (10)0.0114 (10)
C120.0461 (12)0.0479 (13)0.0665 (16)0.0111 (10)0.0114 (11)0.0189 (12)
C130.0518 (13)0.0567 (14)0.0570 (15)0.0116 (11)0.0060 (11)0.0214 (12)
C140.0487 (12)0.0505 (13)0.0420 (12)0.0065 (10)0.0043 (9)0.0134 (10)
C150.0311 (9)0.0349 (9)0.0395 (10)0.0028 (7)0.0001 (7)0.0121 (8)
C160.0302 (9)0.0368 (10)0.0389 (10)0.0037 (7)0.0001 (7)0.0137 (8)
C170.0461 (12)0.0562 (13)0.0402 (12)0.0100 (10)0.0041 (9)0.0098 (10)
C180.0372 (10)0.0525 (13)0.0480 (12)0.0043 (9)0.0032 (9)0.0194 (10)
C190.0310 (9)0.0394 (10)0.0540 (13)0.0015 (8)0.0045 (8)0.0148 (9)
C200.0384 (11)0.0507 (13)0.0610 (15)0.0020 (10)0.0063 (10)0.0176 (11)
P10.0530 (3)0.0482 (3)0.0428 (3)0.0012 (3)0.0021 (2)0.0128 (3)
F50.1156 (16)0.0957 (14)0.0469 (9)0.0363 (12)0.0066 (10)0.0060 (9)
F40.0560 (10)0.1330 (19)0.0913 (15)0.0151 (11)0.0017 (10)0.0271 (13)
F30.0626 (11)0.1042 (15)0.1056 (16)0.0126 (10)0.0113 (10)0.0262 (13)
F60.1187 (17)0.140 (2)0.0472 (10)0.0087 (15)0.0014 (10)0.0267 (11)
F10.146 (2)0.0698 (13)0.160 (2)0.0404 (14)0.0392 (18)0.0522 (15)
F20.1197 (17)0.0551 (10)0.1022 (16)0.0126 (10)0.0138 (13)0.0163 (10)
Geometric parameters (Å, º) top
Ag1—N42.2887 (18)C5—C61.478 (3)
Ag1—N12.301 (2)C6—C71.393 (3)
Ag1—N22.389 (2)C7—H7A0.9300
Ag1—N52.4714 (19)C8—C91.376 (4)
N1—C51.343 (3)C8—H8A0.9300
N1—C11.342 (3)C9—C101.448 (4)
N2—C81.331 (3)C11—C121.374 (4)
N2—C61.340 (3)C11—H11A0.9300
N3—C71.326 (3)C12—C131.362 (4)
N3—C91.334 (3)C12—H12A0.9300
N4—C151.341 (3)C13—C141.386 (3)
N4—C111.341 (3)C13—H13A0.9300
N5—C161.331 (3)C14—C151.381 (3)
N5—C181.339 (3)C14—H14A0.9300
N6—C191.330 (3)C15—C161.492 (3)
N6—C171.333 (3)C16—C171.393 (3)
N7—C101.134 (4)C17—H17A0.9300
N8—C201.131 (3)C18—C191.375 (3)
C1—C21.371 (4)C18—H18A0.9300
C1—H1A0.9300C19—C201.454 (3)
C2—C31.371 (5)P1—F11.568 (2)
C2—H2A0.9300P1—F61.575 (2)
C3—C41.382 (4)P1—F21.5812 (19)
C3—H3A0.9300P1—F41.5883 (19)
C4—C51.385 (3)P1—F51.5906 (18)
C4—H4A0.9300P1—F31.5908 (19)
N4—Ag1—N1145.43 (7)C8—C9—C10121.0 (2)
N4—Ag1—N2133.18 (7)N7—C10—C9179.3 (3)
N1—Ag1—N272.30 (7)N4—C11—C12123.3 (2)
N4—Ag1—N569.52 (6)N4—C11—H11A118.4
N1—Ag1—N5132.63 (7)C12—C11—H11A118.4
N2—Ag1—N5106.77 (7)C13—C12—C11118.6 (2)
C5—N1—C1118.0 (2)C13—C12—H12A120.7
C5—N1—Ag1115.17 (16)C11—C12—H12A120.7
C1—N1—Ag1123.14 (16)C12—C13—C14119.1 (2)
C8—N2—C6117.4 (2)C12—C13—H13A120.4
C8—N2—Ag1127.48 (16)C14—C13—H13A120.4
C6—N2—Ag1112.57 (15)C15—C14—C13119.2 (2)
C7—N3—C9115.6 (2)C15—C14—H14A120.4
C15—N4—C11117.90 (19)C13—C14—H14A120.4
C15—N4—Ag1119.88 (13)N4—C15—C14121.82 (19)
C11—N4—Ag1121.75 (15)N4—C15—C16117.00 (17)
C16—N5—C18117.68 (19)C14—C15—C16121.18 (19)
C16—N5—Ag1113.32 (13)N5—C16—C17120.12 (19)
C18—N5—Ag1127.61 (14)N5—C16—C15117.60 (18)
C19—N6—C17115.7 (2)C17—C16—C15122.27 (18)
N1—C1—C2123.2 (3)N6—C17—C16122.8 (2)
N1—C1—H1A118.4N6—C17—H17A118.6
C2—C1—H1A118.4C16—C17—H17A118.6
C1—C2—C3118.5 (3)N5—C18—C19120.9 (2)
C1—C2—H2A120.8N5—C18—H18A119.6
C3—C2—H2A120.8C19—C18—H18A119.6
C2—C3—C4119.6 (3)N6—C19—C18122.76 (19)
C2—C3—H3A120.2N6—C19—C20116.0 (2)
C4—C3—H3A120.2C18—C19—C20121.2 (2)
C3—C4—C5118.7 (3)N8—C20—C19179.9 (3)
C3—C4—H4A120.7F1—P1—F691.37 (15)
C5—C4—H4A120.7F1—P1—F2178.75 (15)
N1—C5—C4122.0 (2)F6—P1—F289.84 (13)
N1—C5—C6116.7 (2)F1—P1—F490.26 (15)
C4—C5—C6121.3 (2)F6—P1—F490.18 (13)
N2—C6—C7120.2 (2)F2—P1—F489.45 (13)
N2—C6—C5117.8 (2)F1—P1—F589.97 (15)
C7—C6—C5121.9 (2)F6—P1—F5178.18 (13)
N3—C7—C6122.9 (2)F2—P1—F588.81 (12)
N3—C7—H7A118.6F4—P1—F588.57 (11)
C6—C7—H7A118.6F1—P1—F389.76 (14)
N2—C8—C9121.1 (2)F6—P1—F390.52 (13)
N2—C8—H8A119.4F2—P1—F390.52 (13)
C9—C8—H8A119.4F4—P1—F3179.29 (12)
N3—C9—C8122.9 (2)F5—P1—F390.72 (12)
N3—C9—C10116.1 (2)
N4—Ag1—N1—C5132.25 (17)C4—C5—C6—C729.9 (4)
N2—Ag1—N1—C511.13 (16)C9—N3—C7—C61.4 (4)
N5—Ag1—N1—C5107.90 (18)N2—C6—C7—N32.1 (4)
N4—Ag1—N1—C125.6 (3)C5—C6—C7—N3179.8 (2)
N2—Ag1—N1—C1169.0 (2)C6—N2—C8—C90.1 (4)
N5—Ag1—N1—C194.3 (2)Ag1—N2—C8—C9160.13 (19)
N4—Ag1—N2—C843.4 (3)C7—N3—C9—C80.2 (4)
N1—Ag1—N2—C8164.3 (2)C7—N3—C9—C10179.2 (2)
N5—Ag1—N2—C834.0 (2)N2—C8—C9—N30.5 (4)
N4—Ag1—N2—C6155.58 (14)N2—C8—C9—C10179.8 (2)
N1—Ag1—N2—C63.24 (16)N3—C9—C10—N711 (29)
N5—Ag1—N2—C6127.02 (16)C8—C9—C10—N7169 (100)
N1—Ag1—N4—C15124.46 (16)C15—N4—C11—C121.3 (4)
N2—Ag1—N4—C15106.73 (17)Ag1—N4—C11—C12170.83 (19)
N5—Ag1—N4—C1512.60 (15)N4—C11—C12—C130.7 (4)
N1—Ag1—N4—C1147.6 (2)C11—C12—C13—C141.9 (4)
N2—Ag1—N4—C1181.3 (2)C12—C13—C14—C151.1 (4)
N5—Ag1—N4—C11175.4 (2)C11—N4—C15—C142.2 (3)
N4—Ag1—N5—C1614.09 (14)Ag1—N4—C15—C14170.13 (17)
N1—Ag1—N5—C16134.22 (14)C11—N4—C15—C16177.62 (19)
N2—Ag1—N5—C16144.66 (14)Ag1—N4—C15—C1610.1 (2)
N4—Ag1—N5—C18179.8 (2)C13—C14—C15—N41.0 (3)
N1—Ag1—N5—C1831.9 (2)C13—C14—C15—C16178.8 (2)
N2—Ag1—N5—C1849.2 (2)C18—N5—C16—C173.1 (3)
C5—N1—C1—C21.9 (4)Ag1—N5—C16—C17164.53 (17)
Ag1—N1—C1—C2155.3 (2)C18—N5—C16—C15177.86 (18)
N1—C1—C2—C30.7 (5)Ag1—N5—C16—C1514.5 (2)
C1—C2—C3—C42.2 (5)N4—C15—C16—N54.1 (3)
C2—C3—C4—C51.2 (5)C14—C15—C16—N5175.7 (2)
C1—N1—C5—C43.0 (4)N4—C15—C16—C17174.9 (2)
Ag1—N1—C5—C4156.0 (2)C14—C15—C16—C175.3 (3)
C1—N1—C5—C6177.3 (2)C19—N6—C17—C160.9 (4)
Ag1—N1—C5—C623.7 (3)N5—C16—C17—N62.1 (4)
C3—C4—C5—N11.5 (5)C15—C16—C17—N6178.9 (2)
C3—C4—C5—C6178.8 (3)C16—N5—C18—C191.2 (3)
C8—N2—C6—C71.3 (3)Ag1—N5—C18—C19164.36 (16)
Ag1—N2—C6—C7161.78 (18)C17—N6—C19—C182.8 (3)
C8—N2—C6—C5179.5 (2)C17—N6—C19—C20179.4 (2)
Ag1—N2—C6—C516.4 (3)N5—C18—C19—N61.8 (4)
N1—C5—C6—N227.7 (3)N5—C18—C19—C20179.5 (2)
C4—C5—C6—N2152.0 (3)N6—C19—C20—N8163 (100)
N1—C5—C6—C7150.4 (2)C18—C19—C20—N814 (100)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···N7i0.932.473.201 (2)135
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C10H6N4)2]PF6
Mr617.22
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8989 (9), 9.1711 (10), 14.0804 (15)
α, β, γ (°)77.023 (2), 86.926 (2), 84.809 (2)
V3)1114.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.38 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.861, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8106, 5438, 4544
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.04
No. of reflections5438
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.37

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···N7i0.932.473.201 (2)135
Symmetry code: (i) x+1, y, z.
CN···π-electron ring interactions top
CN···CgC···Cg (Å)N···Cg (Å)sym. code
C20 N8 Cg23.509 (3)3.519 (2)-x+1,-y+2,-z+1
^*^ Cg2 is the centroids of N4-C11-C12-C13-C14-C15 (pyridyl)
 

Acknowledgements

The author is grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.

References

First citationBoudalis, A. K., Dahan, F., Bousseksou, A., Tuchagues, J. P. & Perlepes, J. P. (2003). Dalton Trans. pp. 3411–3418.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDunne, S. J., Summers, L. A. & von Nagy-Felsobuki, E. I. (1997). Coord. Chem. Rev. 165, 1–92.  CrossRef CAS Google Scholar
First citationHuang, Y. G., Gong, Y. Q., Jiang, F. L., Yuan, D. Q., Wu, M. Y., Gao, Q., Wei, W. & Hong, M. C. (2007). Cryst. Growth Des. 7, 1385–1389.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-J., Zhang, F. & Wan, C.-Q. (2010). Acta Cryst. E66, m1232–m1233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y., Zhao, X. Q., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2009). Cryst. Growth Des. 9, 2137–2145.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds