organic compounds
2,2′-[Imidazolidine-1,3-diylbis(methylene)]diphenol
aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co
In the title molecule, C17H20N2O2, the imidazolidine ring adopts a twist conformation. The mean plane through the five atoms of the imidazolidine ring makes dihedral angles of 70.18 (4) and 74.14 (4)° with the planes of the two aromatic rings. The dihedral angle between the benzene rings is 53.11 (5)°. Both phenol –OH groups form intramolecular hydrogen bonds to the N atoms, with graph-set motif S(6). In the crystal, pairs of O—H⋯O hydrogen bonds link the molecules into dimers with R44(18) ring motifs. The crystal packing is further stabilized by C—H⋯O and weak C—H⋯π interactions.
Related literature
For a related structure, see: Rivera et al. (2011). For the preparation of the title compound, see: Rivera et al. (1993). For ring conformations, see Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995). For details of hydrogen bonding in Mannich bases, see: Koll et al. (2006); Filarowski et al. (1997).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.
Supporting information
10.1107/S1600536811053748/bt5752sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811053748/bt5752Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811053748/bt5752Isup3.cml
All H atoms bonded to carbon atoms were positioned geometrically and treated as riding on their parent atoms. The hydroxyl H atoms were found in difference Fourier maps ant their coordinates were refined with a distance restraint of 0.87 Å with σ of 0.01. All H atoms were refined with displacement coefficients Uiso(H) set to 1.5Ueq(O) for hydroxyl groups and to 1.2Ueq(C) for the –CH– and CH2– groups.
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Dimer formation of the title compound by a R44(18) ring motif. | |
Fig. 3. Packing of the molecules of the title compound view along the b axis. |
C17H20N2O2 | F(000) = 608 |
Mr = 284.4 | Dx = 1.295 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -P 2yn | Cell parameters from 9734 reflections |
a = 9.6541 (6) Å | θ = 2.8–66.9° |
b = 9.5198 (11) Å | µ = 0.68 mm−1 |
c = 16.0007 (19) Å | T = 120 K |
β = 97.321 (7)° | Block, colourless |
V = 1458.6 (3) Å3 | 0.56 × 0.46 × 0.35 mm |
Z = 4 |
Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector | 2592 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 2323 reflections with I > 3σ(I) |
Mirror monochromator | Rint = 0.029 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 67.1°, θmin = 5.1° |
Rotation method data acquisition using ω scans | h = −10→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −11→11 |
Tmin = 0.684, Tmax = 1 | l = −18→18 |
16045 measured reflections |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.032 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2) |
wR(F2) = 0.102 | (Δ/σ)max = 0.008 |
S = 1.84 | Δρmax = 0.18 e Å−3 |
2592 reflections | Δρmin = −0.16 e Å−3 |
197 parameters | Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974) |
2 restraints | Extinction coefficient: 2300 (400) |
74 constraints |
C17H20N2O2 | V = 1458.6 (3) Å3 |
Mr = 284.4 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 9.6541 (6) Å | µ = 0.68 mm−1 |
b = 9.5198 (11) Å | T = 120 K |
c = 16.0007 (19) Å | 0.56 × 0.46 × 0.35 mm |
β = 97.321 (7)° |
Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector | 2592 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 2323 reflections with I > 3σ(I) |
Tmin = 0.684, Tmax = 1 | Rint = 0.029 |
16045 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 2 restraints |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.84 | Δρmax = 0.18 e Å−3 |
2592 reflections | Δρmin = −0.16 e Å−3 |
197 parameters |
Experimental. CrysAlisPro (Agilent, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.88118 (9) | 0.55808 (8) | 0.54258 (5) | 0.0258 (3) | |
O2 | 0.64185 (9) | 0.24108 (8) | 0.20085 (5) | 0.0266 (3) | |
N1 | 0.82182 (10) | 0.29372 (9) | 0.50324 (6) | 0.0216 (3) | |
N2 | 0.75183 (10) | 0.27736 (10) | 0.36014 (6) | 0.0230 (3) | |
C1 | 0.73543 (12) | 0.41864 (12) | 0.62221 (7) | 0.0220 (3) | |
C2 | 0.78452 (12) | 0.54925 (11) | 0.59766 (7) | 0.0223 (3) | |
C3 | 0.73697 (13) | 0.67284 (12) | 0.63044 (7) | 0.0263 (4) | |
C4 | 0.64267 (13) | 0.66779 (12) | 0.68865 (7) | 0.0286 (4) | |
C5 | 0.59312 (13) | 0.53957 (13) | 0.71379 (7) | 0.0293 (4) | |
C6 | 0.63913 (13) | 0.41633 (12) | 0.67971 (7) | 0.0260 (4) | |
C7 | 0.79468 (12) | 0.28403 (11) | 0.59129 (7) | 0.0234 (3) | |
C8 | 0.69700 (12) | 0.29649 (12) | 0.44015 (7) | 0.0234 (3) | |
C9 | 0.89999 (13) | 0.17320 (11) | 0.47679 (7) | 0.0258 (4) | |
C10 | 0.86888 (13) | 0.17560 (12) | 0.38032 (7) | 0.0261 (4) | |
C11 | 0.80113 (12) | 0.41147 (11) | 0.32684 (7) | 0.0234 (3) | |
C12 | 0.84082 (12) | 0.39145 (11) | 0.23931 (7) | 0.0220 (3) | |
C13 | 0.75755 (12) | 0.30847 (11) | 0.18009 (7) | 0.0226 (3) | |
C14 | 0.79084 (13) | 0.29425 (12) | 0.09837 (7) | 0.0260 (4) | |
C15 | 0.90434 (13) | 0.36558 (12) | 0.07451 (7) | 0.0286 (4) | |
C16 | 0.98804 (13) | 0.44846 (12) | 0.13217 (8) | 0.0282 (4) | |
C17 | 0.95637 (12) | 0.45896 (11) | 0.21422 (7) | 0.0241 (3) | |
H3 | 0.769609 | 0.761889 | 0.612664 | 0.0316* | |
H4 | 0.611303 | 0.753394 | 0.711789 | 0.0343* | |
H5 | 0.527828 | 0.536104 | 0.754248 | 0.0352* | |
H6 | 0.603597 | 0.327787 | 0.696268 | 0.0311* | |
H7a | 0.879717 | 0.260909 | 0.626476 | 0.0281* | |
H7b | 0.731088 | 0.208142 | 0.597016 | 0.0281* | |
H8a | 0.637442 | 0.218852 | 0.449563 | 0.0281* | |
H8b | 0.652961 | 0.386822 | 0.44087 | 0.0281* | |
H9a | 0.863665 | 0.08824 | 0.497922 | 0.031* | |
H9b | 0.99806 | 0.187851 | 0.493244 | 0.031* | |
H10a | 0.949631 | 0.208598 | 0.356872 | 0.0313* | |
H10b | 0.83935 | 0.083954 | 0.360322 | 0.0313* | |
H11a | 0.880577 | 0.444991 | 0.363629 | 0.0281* | |
H11b | 0.728563 | 0.480712 | 0.325292 | 0.0281* | |
H14 | 0.735192 | 0.235123 | 0.058695 | 0.0312* | |
H15 | 0.925546 | 0.357838 | 0.017685 | 0.0343* | |
H16 | 1.066759 | 0.49779 | 0.115436 | 0.0338* | |
H17 | 1.015526 | 0.514012 | 0.254456 | 0.0289* | |
H1o | 0.8869 (16) | 0.4725 (11) | 0.5220 (9) | 0.0387* | |
H2o | 0.6533 (17) | 0.2415 (17) | 0.2562 (6) | 0.0399* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0292 (5) | 0.0224 (4) | 0.0271 (4) | −0.0034 (3) | 0.0088 (3) | −0.0011 (3) |
O2 | 0.0273 (5) | 0.0291 (4) | 0.0231 (4) | −0.0045 (3) | 0.0026 (3) | −0.0035 (3) |
N1 | 0.0230 (5) | 0.0218 (4) | 0.0200 (5) | −0.0001 (4) | 0.0032 (4) | −0.0009 (3) |
N2 | 0.0263 (5) | 0.0222 (5) | 0.0209 (5) | −0.0016 (4) | 0.0047 (4) | −0.0017 (3) |
C1 | 0.0224 (6) | 0.0249 (5) | 0.0175 (5) | −0.0003 (4) | −0.0020 (4) | −0.0006 (4) |
C2 | 0.0217 (6) | 0.0264 (6) | 0.0179 (5) | −0.0008 (4) | −0.0010 (4) | 0.0003 (4) |
C3 | 0.0309 (7) | 0.0233 (6) | 0.0238 (6) | 0.0003 (4) | −0.0003 (5) | −0.0004 (4) |
C4 | 0.0315 (7) | 0.0281 (6) | 0.0257 (6) | 0.0049 (5) | 0.0012 (5) | −0.0054 (4) |
C5 | 0.0294 (7) | 0.0362 (6) | 0.0230 (6) | 0.0020 (5) | 0.0059 (5) | −0.0023 (5) |
C6 | 0.0280 (7) | 0.0280 (6) | 0.0217 (6) | −0.0028 (5) | 0.0030 (5) | 0.0010 (4) |
C7 | 0.0279 (6) | 0.0222 (5) | 0.0203 (6) | −0.0010 (4) | 0.0037 (4) | 0.0020 (4) |
C8 | 0.0237 (6) | 0.0249 (5) | 0.0218 (6) | −0.0022 (4) | 0.0036 (4) | −0.0013 (4) |
C9 | 0.0292 (7) | 0.0223 (5) | 0.0266 (6) | 0.0023 (4) | 0.0060 (5) | −0.0001 (4) |
C10 | 0.0309 (7) | 0.0220 (5) | 0.0258 (6) | 0.0012 (4) | 0.0057 (5) | −0.0023 (4) |
C11 | 0.0273 (6) | 0.0203 (5) | 0.0223 (6) | −0.0023 (4) | 0.0019 (5) | −0.0022 (4) |
C12 | 0.0261 (6) | 0.0183 (5) | 0.0214 (6) | 0.0030 (4) | 0.0024 (4) | 0.0007 (4) |
C13 | 0.0235 (6) | 0.0198 (5) | 0.0245 (6) | 0.0036 (4) | 0.0027 (4) | 0.0010 (4) |
C14 | 0.0309 (7) | 0.0248 (5) | 0.0217 (6) | 0.0053 (5) | 0.0013 (5) | −0.0023 (4) |
C15 | 0.0349 (7) | 0.0294 (6) | 0.0224 (6) | 0.0083 (5) | 0.0078 (5) | 0.0037 (5) |
C16 | 0.0292 (7) | 0.0250 (6) | 0.0313 (6) | 0.0036 (5) | 0.0079 (5) | 0.0057 (4) |
C17 | 0.0264 (6) | 0.0193 (5) | 0.0264 (6) | 0.0017 (4) | 0.0025 (5) | 0.0018 (4) |
O1—C2 | 1.3654 (15) | C7—H7b | 0.96 |
O1—H1o | 0.883 (11) | C8—H8a | 0.96 |
O2—C13 | 1.3653 (14) | C8—H8b | 0.96 |
O2—H2o | 0.879 (9) | C9—C10 | 1.5348 (16) |
N1—C7 | 1.4684 (15) | C9—H9a | 0.96 |
N1—C8 | 1.4703 (14) | C9—H9b | 0.96 |
N1—C9 | 1.4650 (15) | C10—H10a | 0.96 |
N2—C8 | 1.4578 (15) | C10—H10b | 0.96 |
N2—C10 | 1.4922 (15) | C11—C12 | 1.5104 (16) |
N2—C11 | 1.4849 (15) | C11—H11a | 0.96 |
C1—C2 | 1.4044 (16) | C11—H11b | 0.96 |
C1—C6 | 1.3890 (17) | C12—C13 | 1.4050 (15) |
C1—C7 | 1.5120 (16) | C12—C17 | 1.3902 (17) |
C2—C3 | 1.3898 (16) | C13—C14 | 1.3922 (17) |
C3—C4 | 1.3837 (18) | C14—C15 | 1.3836 (18) |
C3—H3 | 0.96 | C14—H14 | 0.96 |
C4—C5 | 1.3890 (18) | C15—C16 | 1.3916 (16) |
C4—H4 | 0.96 | C15—H15 | 0.96 |
C5—C6 | 1.3902 (17) | C16—C17 | 1.3890 (18) |
C5—H5 | 0.96 | C16—H16 | 0.96 |
C6—H6 | 0.96 | C17—H17 | 0.96 |
C7—H7a | 0.96 | ||
C2—O1—H1o | 105.3 (10) | H8a—C8—H8b | 114.38 |
C13—O2—H2o | 104.0 (10) | N1—C9—C10 | 103.70 (9) |
C7—N1—C8 | 115.40 (9) | N1—C9—H9a | 109.4718 |
C7—N1—C9 | 112.92 (8) | N1—C9—H9b | 109.4709 |
C8—N1—C9 | 102.89 (8) | C10—C9—H9a | 109.4712 |
C8—N2—C10 | 103.93 (8) | C10—C9—H9b | 109.4714 |
C8—N2—C11 | 112.12 (9) | H9a—C9—H9b | 114.686 |
C10—N2—C11 | 111.54 (9) | N2—C10—C9 | 105.84 (9) |
C2—C1—C6 | 118.51 (10) | N2—C10—H10a | 109.4709 |
C2—C1—C7 | 120.24 (10) | N2—C10—H10b | 109.4713 |
C6—C1—C7 | 121.09 (10) | C9—C10—H10a | 109.4712 |
O1—C2—C1 | 121.18 (10) | C9—C10—H10b | 109.4714 |
O1—C2—C3 | 118.51 (10) | H10a—C10—H10b | 112.8697 |
C1—C2—C3 | 120.30 (11) | N2—C11—C12 | 110.80 (9) |
C2—C3—C4 | 120.12 (11) | N2—C11—H11a | 109.4718 |
C2—C3—H3 | 119.9399 | N2—C11—H11b | 109.4711 |
C4—C3—H3 | 119.9395 | C12—C11—H11a | 109.4708 |
C3—C4—C5 | 120.39 (11) | C12—C11—H11b | 109.4713 |
C3—C4—H4 | 119.8038 | H11a—C11—H11b | 108.1129 |
C5—C4—H4 | 119.8053 | C11—C12—C13 | 120.35 (10) |
C4—C5—C6 | 119.27 (12) | C11—C12—C17 | 121.14 (9) |
C4—C5—H5 | 120.3644 | C13—C12—C17 | 118.45 (10) |
C6—C5—H5 | 120.3649 | O2—C13—C12 | 121.04 (10) |
C1—C6—C5 | 121.38 (11) | O2—C13—C14 | 118.47 (10) |
C1—C6—H6 | 119.3094 | C12—C13—C14 | 120.49 (11) |
C5—C6—H6 | 119.3085 | C13—C14—C15 | 119.81 (10) |
N1—C7—C1 | 112.45 (9) | C13—C14—H14 | 120.0949 |
N1—C7—H7a | 109.4718 | C15—C14—H14 | 120.0956 |
N1—C7—H7b | 109.4717 | C14—C15—C16 | 120.58 (11) |
C1—C7—H7a | 109.4708 | C14—C15—H15 | 119.7101 |
C1—C7—H7b | 109.4707 | C16—C15—H15 | 119.7107 |
H7a—C7—H7b | 106.316 | C15—C16—C17 | 119.23 (11) |
N1—C8—N2 | 104.07 (9) | C15—C16—H16 | 120.3866 |
N1—C8—H8a | 109.471 | C17—C16—H16 | 120.3878 |
N1—C8—H8b | 109.4708 | C12—C17—C16 | 121.40 (10) |
N2—C8—H8a | 109.4722 | C12—C17—H17 | 119.2994 |
N2—C8—H8b | 109.4714 | C16—C17—H17 | 119.2985 |
Cg3 is the centroid of the C12–C17 benzene rings. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1o···N1 | 0.88 (1) | 1.83 (1) | 2.6394 (13) | 152 (2) |
O2—H2o···N2 | 0.88 (1) | 1.84 (1) | 2.6557 (13) | 154 (2) |
O1—H1o···O1i | 0.88 (1) | 2.60 (2) | 3.0232 (12) | 111 (1) |
C11—H11a···O1i | 0.96 | 2.58 | 3.4961 (15) | 159 |
C14—H14···O1ii | 0.96 | 2.50 | 3.4561 (15) | 172 |
C6—H6···Cg3iii | 0.96 | 2.97 | 3.7868 (14) | 143 |
C10—H10b···Cg3ii | 0.96 | 2.83 | 3.6718 (13) | 148 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x−1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C17H20N2O2 |
Mr | 284.4 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 9.6541 (6), 9.5198 (11), 16.0007 (19) |
β (°) | 97.321 (7) |
V (Å3) | 1458.6 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.68 |
Crystal size (mm) | 0.56 × 0.46 × 0.35 |
Data collection | |
Diffractometer | Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.684, 1 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 16045, 2592, 2323 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.102, 1.84 |
No. of reflections | 2592 |
No. of parameters | 197 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.18, −0.16 |
Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).
Cg3 is the centroid of the C12–C17 benzene rings. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1o···N1 | 0.883 (11) | 1.826 (11) | 2.6394 (13) | 152.2 (15) |
O2—H2o···N2 | 0.878 (10) | 1.840 (10) | 2.6557 (13) | 153.6 (15) |
O1—H1o···O1i | 0.883 (11) | 2.599 (15) | 3.0232 (12) | 110.5 (11) |
C11—H11a···O1i | 0.9600 | 2.5800 | 3.4961 (15) | 159.00 |
C14—H14···O1ii | 0.9600 | 2.5000 | 3.4561 (15) | 172.00 |
C6—H6···Cg3iii | 0.96 | 2.97 | 3.7868 (14) | 143 |
C10—H10b···Cg3ii | 0.96 | 2.83 | 3.6718 (13) | 148 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x−1/2, −y+1/2, z+1/2. |
Acknowledgements
We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Filarowski, A., Szemik-Hojniak, A., Glowiak, T. & Koll, A. (1997). J. Mol. Struct. 404, 67–74. CrossRef CAS Web of Science Google Scholar
Koll, A., Karpfen, A. & Wolschann, P. (2006). J. Mol. Struct. 790, 55–64. Web of Science CrossRef CAS Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic. Google Scholar
Rivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun. 23, 2921–2929. CrossRef CAS Web of Science Google Scholar
Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The study of intramolecular hydrogen bonds is interesting because of the high thermodynamic and structural stability of these systems. Intramolecularly hydrogen-bonded systems with direct coupling between acid and base centers reveal properties which make them valuable materials for practical use (Koll et al., 2006). Of the various different bifunctional intramolecularly hydrogen bonded compounds, ortho-Mannich bases are of special interest due to the presence of an electronic coupling between the proton donating and proton accepting groups through the aromatic ring which potentially affords structural consequences (Filarowski et al., 1997). We report here the crystal structure analysis of the title compound, (I).
The asymmetric unit of title compound (I) contains one molecule which have no internal symmetry (Fig 1). In (I), Fig. 1, the imidazolidine ring is twisted about the N1—C8 bond as seen in the puckering parameters Q(2) = 0.4126 (12) Å and ϕ = 20.02 (17) ° (Cremer & Pople, 1975). The mean plane of imidazolidine ring defined by N2, C9 and C10 makes a dihedral angle of 67.326 (56)° and 76.528 (47)° with the two pendant aromatic rings, C1—C6 and C12—C17 respectively. The dihedral angle between the phenyl rings is 53.134 (39)°. Both N atoms serves as hydrogen-bond acceptors to the phenolic OH group forming two intramolecular O—H···N hydrogen bond with graph-set motif S(6).
The molecular packing in (I) facilitates reciprocal O1—H1···O1 and C11—H11a···O1 interactions which join two crystallographically independent molecules into a dimer (Figure 2) forming an R44(18) ring motif. The dimers are further connected via C14—H14···O1 hydrogen bonds and weak C—H···π, forming chains along [111] (Figure 3).