organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1H-Benzimidazol-2-yl)methanaminium perchlorate–18-crown-6–water (1/1/1)

aOrdered Matter Science Research Cente, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: sunsuwen_5127@163.com

(Received 3 October 2011; accepted 25 November 2011; online 3 December 2011)

The crystal structure of the title compound C8H10N3+·ClO4·C12H24O6·H2O, consists of an organic (1H-benzimidazol-2-yl)methanaminium cation, an inorganic ClO4 anion, one 18-crown-6 mol­ecule and one water mol­ecule. In the crystal, the cations and 18-crown-6 mol­ecules are linked by N—H⋯O hydrogen bonds. The crystal packing is stabilized by inter­molecular O—H⋯O, O—H⋯N and O—H⋯Cl hydrogen bonds between anions and the water mol­ecules. One 18-crown-6 C atom and a perchlorate O atom are disordered; both have an occupancy factor ratio of 0.60 (2) and 0.40 (2).

Related literature

The title compound was studied during efforts to obtain potential ferroelectric phase-transition materials. For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009[Fu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y. M., Wang, G. X., Chen, K. & Fu, D. W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R. G. & Huang, S. P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z. & Xiong, R. G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N3+·ClO4·C12H24O6·H2O

  • Mr = 529.97

  • Monoclinic, P 21 /n

  • a = 11.703 (2) Å

  • b = 18.623 (4) Å

  • c = 12.477 (3) Å

  • β = 106.06 (3)°

  • V = 2613.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.161, Tmax = 0.183

  • 26941 measured reflections

  • 5984 independent reflections

  • 2947 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.236

  • S = 1.04

  • 5984 reflections

  • 343 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O10 0.90 2.26 3.032 (6) 143
N2—H2C⋯O9 0.90 2.45 3.318 (7) 162
N3—H3A⋯O1 0.90 2.10 2.850 (4) 141
N3—H3A⋯O2 0.90 2.31 2.940 (4) 127
N3—H3B⋯O3 0.90 2.06 2.831 (4) 143
N3—H3B⋯O4 0.90 2.24 2.965 (4) 137
N3—H3C⋯O5 0.90 2.12 2.934 (4) 151
N3—H3C⋯O6 0.90 2.39 2.964 (4) 122
O1W—H1WA⋯N1 0.90 (7) 2.01 (7) 2.873 (5) 161 (6)
O1W—H1WB⋯O7i 0.78 (6) 2.50 (6) 3.202 (6) 150 (6)
O1W—H1WB⋯Cl1i 0.78 (6) 2.98 (6) 3.758 (5) 173 (6)
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The study of ferroelectric materials has received much attention and some materials have predominantly dielectric–ferroelectric performance (Ye et al., 2006; Fu et al., 2009; Zhang et al. 2010; Zhang et al., 2008). As a part of our work to obtain potential ferroelectric phase-transition materials, we report here the crystal structure of title compound. Unluckily, the title compound has no dielectric anomalies in the temperature range 93–453 K, suggesting that it might be only a paraelectric.

The asymmetric unit of the title compoundis is shown in Fig. 1.The structure of the title compound C8H10N3+.ClO4- .C12H24O6.H2O, consists of an organic 2-(1H-benzimidazol-2-yl)-ethylammonium cation, and inorganic ion (ClO4)- one 18-crown-6 molecule and one water molecule. In the asymmetric unit the cations and the 18-crown-6 molecules are linked by by N—H···O hydrogen bonds. The crystal packing is stabilized by intermolecular O—H···O and O—H···Cl hydrogen bonds between anions and water molecules, Table 1. The C2 and O8 atoms are disordered with ocupation factors of 0.60 (2)/0.40 (2) respectively.

Related literature top

The title compound was studied during our efforts to obtain potential ferroelectric

phase-transition materials. For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

2-(1H-benzimidazol-2-yl)-ethylamine (0.09 g) and an excess of perchloric acid (0.302 g) were dissolved in methanol. Then, 18-crown-6 (0.528 g) was added to the mixture. The precipitate was filtered and washed with a small amount of methanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution at room temperature over two days.

Refinement top

H atoms were placed in calculated positions (N—H = 0.90 Å and C—H = 0.97 Å for Csp2 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2) and 1.5Ueq( N)] and allowed to ride. The H1WA and H1WB on the O1W were refined freely along their isotropic displacement parameters. The disordered atoms O8 and C2 were split over two sites, the occupancies of which were refined with anisotropics models to a final occupancy of 0.60 (2)/0.40 (2).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. The O8 and C2 atoms are disordered. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram.
(1H-Benzimidazol-2-yl)methanaminium perchlorate–1,4,7,10,13,16-hexaoxacyclooctadecane–water (1/1/1) top
Crystal data top
C8H10N3+·ClO4·C12H24O6·H2OZ = 4
Mr = 529.97F(000) = 1128
Monoclinic, P21/nDx = 1.347 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.703 (2) Åθ = 3.0–27.5°
b = 18.623 (4) ŵ = 0.21 mm1
c = 12.477 (3) ÅT = 293 K
β = 106.06 (3)°Prism, colourless
V = 2613.2 (9) Å30.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
5984 independent reflections
Radiation source: fine-focus sealed tube2947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2424
Tmin = 0.161, Tmax = 0.183l = 1616
26941 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0924P)2 + 1.3318P]
where P = (Fo2 + 2Fc2)/3
5984 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C8H10N3+·ClO4·C12H24O6·H2OV = 2613.2 (9) Å3
Mr = 529.97Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.703 (2) ŵ = 0.21 mm1
b = 18.623 (4) ÅT = 293 K
c = 12.477 (3) Å0.20 × 0.20 × 0.20 mm
β = 106.06 (3)°
Data collection top
Rigaku Mercury2
diffractometer
5984 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2947 reflections with I > 2σ(I)
Tmin = 0.161, Tmax = 0.183Rint = 0.097
26941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.236H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.49 e Å3
5984 reflectionsΔρmin = 0.48 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.26044 (10)0.79963 (5)0.37379 (9)0.0645 (3)
O70.2014 (4)0.7892 (3)0.2618 (3)0.1347 (16)
O90.1810 (5)0.8015 (3)0.4416 (4)0.175 (2)
O100.2964 (6)0.8694 (2)0.3903 (5)0.190 (3)
O30.3959 (2)0.84535 (16)0.6880 (2)0.0724 (8)
O10.1554 (2)0.87756 (16)0.9402 (2)0.0740 (8)
O20.2686 (2)0.78555 (13)0.8289 (2)0.0663 (8)
O40.4890 (2)0.98277 (17)0.7326 (3)0.0785 (9)
O50.3883 (3)1.07751 (15)0.8618 (3)0.0820 (9)
O60.2657 (3)1.01143 (17)1.0000 (2)0.0822 (9)
C100.1543 (4)0.8026 (3)0.9562 (5)0.0923 (16)
H10A0.08210.78870.97460.111*
H10B0.22170.78861.01740.111*
C50.4954 (4)0.9450 (3)0.6367 (4)0.0954 (17)
H5A0.56490.96010.61460.114*
H5B0.42530.95490.57560.114*
C80.2836 (5)0.7504 (2)0.7331 (4)0.0878 (15)
H8A0.21920.76340.66850.105*
H8B0.28140.69880.74300.105*
C10.2837 (7)1.0867 (3)0.9978 (5)0.1062 (19)
H1A0.28931.10701.07070.127*
H1B0.21681.10890.94420.127*
C60.5029 (4)0.8666 (3)0.6623 (4)0.0907 (15)
H6A0.51200.83970.59860.109*
H6B0.57110.85690.72530.109*
C90.1603 (4)0.7663 (3)0.8530 (5)0.0906 (16)
H9A0.15720.71470.86220.109*
H9B0.09310.78040.79170.109*
C120.1522 (5)0.9938 (3)1.0155 (4)0.0958 (17)
H12A0.08941.00640.94930.115*
H12B0.13981.02061.07810.115*
C70.3976 (5)0.7710 (2)0.7148 (4)0.0879 (15)
H7A0.46150.76140.78160.105*
H7B0.41170.74280.65440.105*
C110.1492 (5)0.9165 (3)1.0371 (4)0.0956 (18)
H11A0.21570.90341.09990.115*
H11B0.07620.90441.05560.115*
C30.4937 (5)1.0921 (3)0.8285 (6)0.107 (2)
H3D0.56261.07310.88360.129*
H3E0.50391.14350.82330.129*
C20.410 (3)1.1034 (16)0.963 (2)0.094 (7)0.60 (2)
H2A0.42561.15450.96330.112*0.60 (2)
H2B0.47721.07951.01290.112*0.60 (2)
O80.3692 (12)0.7681 (13)0.4020 (12)0.198 (9)0.60 (2)
O8'0.302 (3)0.7372 (6)0.4164 (14)0.156 (9)0.40 (2)
C2'0.382 (3)1.098 (2)0.988 (3)0.061 (6)0.40 (2)
H2'A0.43931.06951.04250.073*0.40 (2)
H2'B0.40191.14831.00340.073*0.40 (2)
C40.4830 (5)1.0583 (3)0.7191 (6)0.1035 (19)
H4A0.40791.07160.66680.124*
H4B0.54691.07470.68950.124*
N10.1256 (2)1.05970 (15)0.6110 (2)0.0482 (7)
N20.1753 (2)0.97320 (15)0.5110 (2)0.0485 (7)
H2C0.19420.92900.49230.058*
C160.1647 (3)1.03409 (18)0.4465 (3)0.0441 (8)
C190.1515 (3)0.99175 (18)0.6072 (3)0.0433 (8)
C170.1780 (3)1.0462 (2)0.3411 (3)0.0608 (10)
H17A0.19751.00810.29740.073*
C200.1529 (3)0.9401 (2)0.6987 (3)0.0568 (10)
H20A0.13880.89250.66810.068*
H20B0.08950.95190.73070.068*
C180.1608 (4)1.1156 (3)0.3020 (3)0.0676 (11)
H18A0.17011.12650.22970.081*
C150.1332 (3)1.08788 (17)0.5099 (3)0.0442 (8)
C130.1150 (4)1.15770 (19)0.4680 (3)0.0615 (10)
H13A0.09421.19590.51070.074*
C140.1297 (4)1.1696 (2)0.3631 (3)0.0666 (11)
H14A0.11781.21710.33200.080*
N30.2672 (2)0.94099 (15)0.7874 (2)0.0471 (7)
H3A0.26500.90930.84120.071*
H3B0.32640.92920.75760.071*
H3C0.27980.98540.81670.071*
O1W0.0112 (4)1.0968 (2)0.7796 (3)0.0817 (10)
H1WA0.029 (6)1.084 (3)0.717 (6)0.15 (3)*
H1WB0.042 (6)1.121 (3)0.745 (5)0.13 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0740 (7)0.0562 (6)0.0617 (6)0.0005 (5)0.0158 (5)0.0046 (5)
O70.145 (4)0.177 (4)0.069 (2)0.017 (3)0.008 (2)0.031 (2)
O90.139 (4)0.287 (7)0.117 (4)0.026 (4)0.065 (3)0.007 (4)
O100.285 (7)0.094 (3)0.218 (6)0.065 (4)0.114 (5)0.044 (3)
O30.0712 (18)0.080 (2)0.0722 (19)0.0159 (15)0.0301 (15)0.0040 (15)
O10.0677 (18)0.087 (2)0.0759 (19)0.0182 (15)0.0343 (15)0.0373 (16)
O20.0725 (18)0.0500 (15)0.0728 (18)0.0037 (13)0.0139 (15)0.0061 (13)
O40.0725 (19)0.087 (2)0.081 (2)0.0020 (16)0.0295 (16)0.0277 (17)
O50.067 (2)0.0606 (18)0.099 (3)0.0068 (15)0.0086 (18)0.0038 (17)
O60.090 (2)0.082 (2)0.0666 (19)0.0269 (17)0.0089 (17)0.0031 (16)
C100.074 (3)0.097 (4)0.114 (4)0.003 (3)0.040 (3)0.056 (3)
C50.057 (3)0.165 (5)0.073 (3)0.005 (3)0.033 (2)0.035 (4)
C80.120 (4)0.052 (3)0.079 (3)0.003 (3)0.007 (3)0.009 (2)
C10.125 (5)0.093 (4)0.082 (4)0.027 (4)0.002 (4)0.029 (3)
C60.067 (3)0.140 (5)0.071 (3)0.022 (3)0.027 (2)0.009 (3)
C90.069 (3)0.073 (3)0.123 (4)0.017 (2)0.015 (3)0.029 (3)
C120.107 (4)0.127 (5)0.062 (3)0.054 (3)0.037 (3)0.011 (3)
C70.114 (4)0.071 (3)0.080 (3)0.034 (3)0.029 (3)0.013 (3)
C110.090 (3)0.139 (5)0.074 (3)0.049 (3)0.050 (3)0.042 (3)
C30.073 (3)0.059 (3)0.165 (6)0.019 (2)0.008 (4)0.024 (3)
C20.116 (16)0.061 (7)0.089 (14)0.010 (9)0.004 (9)0.011 (8)
O80.117 (9)0.286 (18)0.149 (10)0.142 (10)0.031 (6)0.060 (10)
O8'0.32 (3)0.049 (7)0.130 (10)0.068 (9)0.106 (14)0.051 (6)
C2'0.063 (11)0.058 (11)0.051 (11)0.002 (9)0.003 (9)0.014 (8)
C40.078 (3)0.091 (4)0.144 (5)0.014 (3)0.033 (4)0.054 (4)
N10.0532 (17)0.0501 (17)0.0412 (16)0.0046 (14)0.0129 (13)0.0023 (13)
N20.0451 (16)0.0456 (16)0.0541 (17)0.0036 (13)0.0123 (13)0.0012 (14)
C160.0408 (18)0.0480 (19)0.0429 (18)0.0026 (15)0.0107 (15)0.0038 (16)
C190.0332 (16)0.053 (2)0.0415 (18)0.0006 (14)0.0064 (14)0.0048 (15)
C170.057 (2)0.079 (3)0.050 (2)0.002 (2)0.0196 (18)0.004 (2)
C200.0402 (19)0.071 (2)0.055 (2)0.0083 (17)0.0049 (17)0.0164 (19)
C180.069 (3)0.086 (3)0.046 (2)0.019 (2)0.013 (2)0.008 (2)
C150.0440 (18)0.0446 (19)0.0415 (18)0.0007 (15)0.0077 (15)0.0024 (15)
C130.074 (3)0.046 (2)0.056 (2)0.0006 (19)0.004 (2)0.0010 (18)
C140.074 (3)0.059 (2)0.056 (2)0.016 (2)0.001 (2)0.020 (2)
N30.0501 (16)0.0506 (16)0.0407 (15)0.0012 (13)0.0130 (13)0.0069 (13)
O1W0.100 (3)0.086 (2)0.066 (2)0.017 (2)0.035 (2)0.0094 (18)
Geometric parameters (Å, º) top
Cl1—O8'1.315 (12)C11—H11A0.9699
Cl1—O81.357 (7)C11—H11B0.9700
Cl1—O101.364 (4)C3—C41.477 (8)
Cl1—O71.390 (4)C3—H3D0.9700
Cl1—O91.420 (5)C3—H3E0.9701
O3—C71.424 (5)C2—H2A0.9700
O3—C61.431 (5)C2—H2B0.9699
O1—C101.411 (5)C2—H2'A1.1500
O1—C111.429 (6)C2—H2'B0.9971
O2—C81.415 (5)C2'—H2A1.2461
O2—C91.427 (5)C2'—H2B1.1259
O4—C51.409 (6)C2'—H2'A0.9699
O4—C41.416 (5)C2'—H2'B0.9700
O5—C21.30 (2)C4—H4A0.9700
O5—C31.432 (7)C4—H4B0.9701
O5—C2'1.65 (3)N1—C191.305 (4)
O6—C11.420 (6)N1—C151.391 (4)
O6—C121.434 (6)N2—C191.350 (4)
C10—C91.474 (7)N2—C161.376 (4)
C10—H10A0.9701N2—H2C0.9001
C10—H10B0.9699C16—C171.385 (5)
C5—C61.492 (7)C16—C151.389 (4)
C5—H5A0.9700C19—C201.490 (5)
C5—H5B0.9700C17—C181.376 (6)
C8—C71.465 (7)C17—H17A0.9599
C8—H8A0.9700C20—N31.482 (4)
C8—H8B0.9700C20—H20A0.9599
C1—C2'1.21 (3)C20—H20B0.9599
C1—C21.68 (3)C18—C141.370 (6)
C1—H1A0.9699C18—H18A0.9600
C1—H1B0.9699C15—C131.396 (5)
C6—H6A0.9699C13—C141.384 (5)
C6—H6B0.9700C13—H13A0.9599
C9—H9A0.9701C14—H14A0.9601
C9—H9B0.9700N3—H3A0.9000
C12—C111.467 (7)N3—H3B0.9000
C12—H12A0.9699N3—H3C0.9000
C12—H12B0.9700O1W—H1WA0.90 (7)
C7—H7A0.9700O1W—H1WB0.78 (6)
C7—H7B0.9700
O8'—Cl1—O845.2 (8)O5—C3—H3D109.9
O8'—Cl1—O10135.7 (13)C4—C3—H3D109.9
O8—Cl1—O1098.3 (11)O5—C3—H3E109.8
O8'—Cl1—O7108.0 (9)C4—C3—H3E109.8
O8—Cl1—O7111.7 (5)H3D—C3—H3E108.3
O10—Cl1—O7109.4 (3)O5—C2—C1103.6 (18)
O8'—Cl1—O990.8 (10)O5—C2—H2A111.0
O8—Cl1—O9125.4 (10)C1—C2—H2A110.9
O10—Cl1—O996.4 (4)O5—C2—H2B111.1
O7—Cl1—O9112.1 (3)C1—C2—H2B111.2
C7—O3—C6111.4 (4)H2A—C2—H2B109.0
C10—O1—C11112.2 (4)O5—C2—H2'A124.4
C8—O2—C9112.7 (4)C1—C2—H2'A75.3
C5—O4—C4114.0 (4)H2A—C2—H2'A121.4
C2—O5—C3104.9 (13)O5—C2—H2'B141.5
C3—O5—C2'120.4 (11)C1—C2—H2'B79.0
C1—O6—C12112.1 (4)H2B—C2—H2'B103.1
O1—C10—C9109.0 (4)H2'A—C2—H2'B93.7
O1—C10—H10A109.9C1—C2'—O5111 (2)
C9—C10—H10A109.9C1—C2'—H2A129.8
O1—C10—H10B109.9O5—C2'—H2A79.9
C9—C10—H10B109.9C1—C2'—H2B144.9
H10A—C10—H10B108.3O5—C2'—H2B83.4
O4—C5—C6108.7 (4)H2A—C2'—H2B83.3
O4—C5—H5A109.9C1—C2'—H2'A109.3
C6—C5—H5A109.9O5—C2'—H2'A109.5
O4—C5—H5B109.9H2A—C2'—H2'A112.6
C6—C5—H5B110.0H2B—C2'—H2'A36.7
H5A—C5—H5B108.3C1—C2'—H2'B109.6
O2—C8—C7110.0 (4)O5—C2'—H2'B109.7
O2—C8—H8A109.7H2B—C2'—H2'B94.3
C7—C8—H8A109.6H2'A—C2'—H2'B108.1
O2—C8—H8B109.7O4—C4—C3108.9 (4)
C7—C8—H8B109.7O4—C4—H4A109.9
H8A—C8—H8B108.2C3—C4—H4A110.0
C2'—C1—O6109.0 (18)O4—C4—H4B109.9
C2'—C1—C29 (2)C3—C4—H4B109.9
O6—C1—C2109.4 (11)H4A—C4—H4B108.3
C2'—C1—H1A101.8C19—N1—C15105.0 (3)
O6—C1—H1A109.8C19—N2—C16107.6 (3)
C2—C1—H1A109.7C19—N2—H2C126.2
C2'—C1—H1B117.9C16—N2—H2C126.3
O6—C1—H1B109.8N2—C16—C17132.4 (3)
C2—C1—H1B110.0N2—C16—C15104.9 (3)
H1A—C1—H1B108.2C17—C16—C15122.7 (3)
O3—C6—C5108.4 (4)N1—C19—N2112.8 (3)
O3—C6—H6A110.0N1—C19—C20123.5 (3)
C5—C6—H6A110.0N2—C19—C20123.7 (3)
O3—C6—H6B110.0C18—C17—C16116.5 (4)
C5—C6—H6B110.1C18—C17—H17A121.8
H6A—C6—H6B108.4C16—C17—H17A121.7
O2—C9—C10109.2 (4)N3—C20—C19112.4 (3)
O2—C9—H9A109.8N3—C20—H20A109.1
C10—C9—H9A109.8C19—C20—H20A109.1
O2—C9—H9B109.8N3—C20—H20B109.1
C10—C9—H9B109.9C19—C20—H20B109.0
H9A—C9—H9B108.3H20A—C20—H20B108.1
O6—C12—C11108.7 (4)C14—C18—C17121.8 (4)
O6—C12—H12A110.0C14—C18—H18A119.0
C11—C12—H12A110.0C17—C18—H18A119.1
O6—C12—H12B109.9C16—C15—N1109.8 (3)
C11—C12—H12B110.0C16—C15—C13119.7 (3)
H12A—C12—H12B108.3N1—C15—C13130.6 (3)
O3—C7—C8109.7 (4)C14—C13—C15117.3 (4)
O3—C7—H7A109.7C14—C13—H13A121.6
C8—C7—H7A109.7C15—C13—H13A121.1
O3—C7—H7B109.8C18—C14—C13122.0 (4)
C8—C7—H7B109.8C18—C14—H14A118.9
H7A—C7—H7B108.2C13—C14—H14A119.1
O1—C11—C12109.4 (4)C20—N3—H3A110.1
O1—C11—H11A109.8C20—N3—H3B109.2
C12—C11—H11A109.9H3A—N3—H3B109.5
O1—C11—H11B109.8C20—N3—H3C109.1
C12—C11—H11B109.7H3A—N3—H3C109.5
H11A—C11—H11B108.2H3B—N3—H3C109.5
O5—C3—C4109.1 (4)H1WA—O1W—H1WB91 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O100.902.263.032 (6)143
N2—H2C···O90.902.453.318 (7)162
N3—H3A···O10.902.102.850 (4)141
N3—H3A···O20.902.312.940 (4)127
N3—H3B···O30.902.062.831 (4)143
N3—H3B···O40.902.242.965 (4)137
N3—H3C···O50.902.122.934 (4)151
N3—H3C···O60.902.392.964 (4)122
O1W—H1WA···N10.90 (7)2.01 (7)2.873 (5)161 (6)
O1W—H1WB···O7i0.78 (6)2.50 (6)3.202 (6)150 (6)
O1W—H1WB···Cl1i0.78 (6)2.98 (6)3.758 (5)173 (6)
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC8H10N3+·ClO4·C12H24O6·H2O
Mr529.97
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.703 (2), 18.623 (4), 12.477 (3)
β (°) 106.06 (3)
V3)2613.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.161, 0.183
No. of measured, independent and
observed [I > 2σ(I)] reflections
26941, 5984, 2947
Rint0.097
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.236, 1.04
No. of reflections5984
No. of parameters343
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.48

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O100.902.263.032 (6)143.1
N2—H2C···O90.902.453.318 (7)162.0
N3—H3A···O10.902.102.850 (4)140.6
N3—H3A···O20.902.312.940 (4)126.8
N3—H3B···O30.902.062.831 (4)142.9
N3—H3B···O40.902.242.965 (4)136.8
N3—H3C···O50.902.122.934 (4)150.7
N3—H3C···O60.902.392.964 (4)122.0
O1W—H1WA···N10.90 (7)2.01 (7)2.873 (5)161 (6)
O1W—H1WB···O7i0.78 (6)2.50 (6)3.202 (6)150 (6)
O1W—H1WB···Cl1i0.78 (6)2.98 (6)3.758 (5)173 (6)
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The author are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y. M., Wang, G. X., Chen, K. & Fu, D. W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R. G. & Huang, S. P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z. & Xiong, R. G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds