organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Hexyl-1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecan-1-ium iodide

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 18 November 2011; accepted 25 November 2011; online 3 December 2011)

In the title compound, C13H27N4+·I, the ethyl­ene bridge is distorted from the ideal D2d symmetry wherein an N—C—C—N planar bridge, around whose C—C bond the C—N and C—H bonds are exactly eclipsed, is disordered over two sites with equal occupancies. In both disorder components, the hexyl chain adopts an ideal all-trans conformation. In the crystal, adjacent ions are connected by C—H⋯I hydrogen bonds, forming ionic pairs that are further linked into chains along [101] via a second C—H⋯I inter­action.

Related literature

For related structures, see: Rivera et al. (2011a[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011a). Acta Cryst. E67, o2629.],b[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Palatinus, L. (2011b). Chem. Cent. J. 5, article number 55.]). For the preparation of the title compound, see: Rivera et al. (2011b[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Palatinus, L. (2011b). Chem. Cent. J. 5, article number 55.]). For synthetic applications of quaternary ammonium salts, see: Starks (1971[Starks, C. M. (1971). J. Am. Chem. Soc. 93, 195-199.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H27N4+·I

  • Mr = 366.3

  • Monoclinic, P 21 /n

  • a = 8.4914 (4) Å

  • b = 16.1497 (6) Å

  • c = 11.8673 (6) Å

  • β = 102.690 (5)°

  • V = 1587.65 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 120 K

  • 0.21 × 0.19 × 0.11 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), Tmin = 0.930, Tmax = 1.000

  • 6803 measured reflections

  • 6795 independent reflections

  • 4959 reflections with I > 3σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.23

  • 6795 reflections

  • 160 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1a⋯I1i 0.96 2.98 3.913 (3) 164
C3—H3b⋯I1ii 0.96 3.04 3.925 (2) 154
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

In previous paper we described the synthesis of a series of new N-alkylated quaternary ammonium salts derived from the cyclic aminal 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane by alkylation with alkyl halides according the Menschutkin reaction (Rivera et al., 2011b).

As a part of our interest in complementing the structural information on these quaternary ammonium salts herein we report the results of the X-ray structure determination of the title compound (I). A perspective view of the molecule of the title compound, showing the atomic numbering scheme, is given in Fig. 1. The bridge is distorted from the ideal D2 d symmetry, and is disordered over two sites (N3—C5—C6—N4 and N3—C5x—C6x—N4) with equal occupancies (Fig. 2). Whereas the N—C—C—N fragment in the first conformer is nearly planar [torsion angle = 0.4 (9)°], the second conformer is slightly twisted out with a N3—C5x—C6x—N4 torsion angle of 9.6 (10)°. In both disorder components the hexyl chain adopts an ideal all-trans conformation. Bond lengths (Allen et al., 1987) and angles are normal and comparable to the related structure (Rivera et al., 2011a). However, the observed C—C bond lengths [C5—C6, 1.439 (10) Å; C5x—C6x, 1.435 (10) Å] are shorter in relation to the mentioned related structure [C—C, 1.475 (4) Å] (Rivera, et al. 2011b). Moreover, the C—C bonds in the chain tend to be slightly shorter than the average values observed in related structure by 0.015 Å. The most obvious differences with the related structures is the observed disorder of the ethylene fragment in the title compound. This disorder is not observed in related structure (Rivera et al., 2011a).

In the crystal, adjacent ions are connected by intermolecular C—H···I hydrogen bonds [C1···I1, 3.913 (3) Å] forming ionic pairs that are further linked into chains along [101] via a second intermolecular C—H···I interactions [C3···I3, 3.925 (2) Å] (Table 1, Fig. 3).

Related literature top

For related structures, see: Rivera et al. (2011a,b). For the preparation of the title compound, see: Rivera et al. (2011b). For synthetic applications of quaternary ammonium salts, see: Starks (1971). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized according to the published procedure (Rivera et al., 2011b). The crystallization was carried out at room temperature by slow evaporation of title compound solution in ethanol.

Refinement top

All hydrogen atoms were added to calculated positions with C–H distance 0.96 Å and refined as riding on their parent atoms. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom.

Refinement of atomic positions in disordered part was unreliable, probably due to partial overlaps of reflections caused by twinning. No untwinned sample could be found. Therefore, the coordinates of disordered atoms were refined with restrictions on C—C and C—N bond lenghts of 1.46 Å with σ 0.005. During the refinement it was also necessary to fix occupancy of the disordered parts.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Overlay diagram showing the conformational disorder of the ethylene bridge.
[Figure 3] Fig. 3. Packing of the ions of the title compound view along a axis. C—H···I hydrogen bonds are drawn as dashed lines.
1-Hexyl-1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecan-1-ium iodide top
Crystal data top
C13H27N4+·IF(000) = 744
Mr = 366.3Dx = 1.532 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 6021 reflections
a = 8.4914 (4) Åθ = 3.0–28.6°
b = 16.1497 (6) ŵ = 2.01 mm1
c = 11.8673 (6) ÅT = 120 K
β = 102.690 (5)°Prism, colourless
V = 1587.65 (13) Å30.21 × 0.19 × 0.11 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
6795 independent reflections
Radiation source: Enhance (Mo) X-ray Source4959 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.3784 pixels mm-1θmax = 28.7°, θmin = 2.8°
Rotation method data acquisition using ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010),
k = 2121
Tmin = 0.930, Tmax = 1.000l = 1515
6803 measured reflections
Refinement top
Refinement on F2126 constraints
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.23(Δ/σ)max = 0.010
6795 reflectionsΔρmax = 0.71 e Å3
160 parametersΔρmin = 0.54 e Å3
6 restraints
Crystal data top
C13H27N4+·IV = 1587.65 (13) Å3
Mr = 366.3Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4914 (4) ŵ = 2.01 mm1
b = 16.1497 (6) ÅT = 120 K
c = 11.8673 (6) Å0.21 × 0.19 × 0.11 mm
β = 102.690 (5)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
6795 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010),
4959 reflections with I > 3σ(I)
Tmin = 0.930, Tmax = 1.000Rint = 0.028
6803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.23Δρmax = 0.71 e Å3
6795 reflectionsΔρmin = 0.54 e Å3
160 parameters
Special details top

Experimental. (CrysAlis PRO; Agilent, 2010), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.76438 (2)0.145638 (12)0.653063 (18)0.03486 (7)
N10.3333 (2)0.14856 (13)0.3771 (2)0.0243 (7)
N20.1997 (3)0.08915 (14)0.5186 (2)0.0288 (8)
N30.0378 (3)0.14480 (14)0.3388 (2)0.0315 (8)
N40.2240 (3)0.23902 (15)0.5091 (2)0.0388 (9)
C10.3335 (3)0.07917 (16)0.4647 (2)0.0271 (9)
C20.0478 (3)0.08342 (17)0.4302 (2)0.0304 (9)
C30.3437 (3)0.23048 (16)0.4446 (2)0.0305 (10)
C40.1724 (3)0.14102 (17)0.2875 (2)0.0264 (8)
C50.0374 (8)0.2221 (3)0.3446 (7)0.0496 (12)*0.5
C5x0.0024 (9)0.2269 (3)0.3739 (7)0.0496 (12)*0.5
C60.0726 (7)0.2638 (5)0.4366 (6)0.0572 (13)*0.5
C6x0.0779 (8)0.2814 (5)0.4655 (7)0.0572 (13)*0.5
C70.2155 (4)0.16748 (18)0.5817 (3)0.0362 (11)
C80.4742 (3)0.14364 (17)0.3199 (3)0.0311 (9)
C90.4960 (4)0.0633 (2)0.2612 (3)0.0442 (12)
C100.6358 (4)0.0646 (2)0.2041 (3)0.0449 (12)
C110.6715 (4)0.0158 (2)0.1516 (3)0.0431 (12)
C120.8106 (4)0.0173 (2)0.0927 (3)0.0597 (15)
C130.8456 (4)0.0991 (2)0.0453 (3)0.0559 (15)
H1a0.3254270.0266240.4260540.0325*
H1b0.4323260.0809620.5224310.0325*
H2a0.0378220.0289190.3970840.0365*
H2b0.0421950.0900430.466220.0365*
H3a0.4484820.235270.4950020.0366*
H3b0.3371770.2761380.3919240.0366*
H4a0.1650880.1844570.2313780.0317*
H4b0.1704570.0897870.2462220.0317*
H5b0.0432810.2516220.2735870.0596*0.5
H5ax0.0453880.2589030.3069610.0596*0.5
H5bx0.1124460.2348510.3578540.0596*0.5
H6a0.0126180.2957380.4810320.0686*0.5
H6b0.076840.3215730.4182840.0686*0.5
H6ax0.0149060.2830590.5234450.0686*0.5
H6bx0.1005320.33350.4334640.0686*0.5
H7a0.309890.1657740.6434440.0435*
H7b0.1263680.1738030.6186690.0435*
H8a0.5716960.156910.3751210.0373*
H8b0.4685060.1883790.2659190.0373*
H9a0.5096460.01910.3165980.053*
H9b0.3992140.050540.2050880.053*
H10a0.7303820.0832520.2582090.0539*
H10b0.6197810.1071990.1463020.0539*
H11a0.5760020.0353280.0992590.0517*
H11b0.6854210.0586640.209060.0517*
H12a0.9058750.0028290.1447470.0716*
H12b0.7936010.023340.0321960.0716*
H13a0.9302040.0928870.0039670.0839*
H13b0.8790250.1376250.1075810.0839*
H13c0.7500770.1194840.006170.0839*
H5a0.138840.2139230.3661850.0596*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02999 (10)0.03331 (11)0.03983 (12)0.00062 (9)0.00452 (8)0.01420 (10)
N10.0220 (11)0.0227 (11)0.0273 (12)0.0016 (10)0.0034 (9)0.0020 (10)
N20.0321 (12)0.0270 (12)0.0271 (14)0.0009 (10)0.0056 (11)0.0047 (10)
N30.0240 (11)0.0380 (14)0.0308 (14)0.0042 (11)0.0024 (10)0.0098 (12)
N40.0467 (15)0.0317 (14)0.0413 (17)0.0010 (13)0.0168 (13)0.0035 (12)
C10.0270 (14)0.0235 (14)0.0285 (16)0.0001 (11)0.0012 (12)0.0065 (12)
C20.0273 (14)0.0336 (16)0.0294 (16)0.0070 (13)0.0045 (12)0.0046 (13)
C30.0344 (15)0.0219 (14)0.0328 (17)0.0062 (12)0.0022 (14)0.0006 (12)
C40.0233 (12)0.0310 (15)0.0217 (14)0.0036 (12)0.0022 (11)0.0059 (13)
C70.0433 (18)0.0391 (17)0.0265 (17)0.0058 (14)0.0083 (14)0.0017 (13)
C80.0247 (13)0.0323 (15)0.0372 (17)0.0053 (13)0.0087 (12)0.0051 (14)
C90.0467 (19)0.0394 (18)0.052 (2)0.0038 (15)0.0230 (17)0.0022 (16)
C100.0341 (16)0.0442 (19)0.058 (2)0.0009 (16)0.0135 (16)0.0005 (17)
C110.0455 (19)0.0450 (19)0.041 (2)0.0046 (15)0.0145 (17)0.0044 (16)
C120.042 (2)0.059 (2)0.083 (3)0.0058 (18)0.026 (2)0.012 (2)
C130.050 (2)0.073 (3)0.048 (2)0.018 (2)0.0190 (19)0.000 (2)
Geometric parameters (Å, º) top
N1—C11.529 (4)C5x—H5ax0.96
N1—C31.539 (3)C5x—H5bx0.96
N1—C41.541 (3)C6—H6a0.96
N1—C81.502 (4)C6—H6b0.96
N2—C11.430 (4)C6x—H6ax0.96
N2—C21.476 (3)C6x—H6bx0.96
N2—C71.461 (4)C7—H7a0.96
N3—C21.458 (4)C7—H7b0.96
N3—C41.409 (4)C8—C91.503 (4)
N3—C51.411 (6)C8—H8a0.96
N3—C5x1.441 (6)C8—H8b0.96
N4—C31.408 (4)C9—C101.490 (5)
N4—C61.438 (7)C9—H9a0.96
N4—C6x1.412 (7)C9—H9b0.96
N4—C71.452 (4)C10—C111.500 (5)
C1—H1a0.96C10—H10a0.96
C1—H1b0.96C10—H10b0.96
C2—H2a0.96C11—C121.499 (5)
C2—H2b0.96C11—H11a0.96
C3—H3a0.96C11—H11b0.96
C3—H3b0.96C12—C131.491 (6)
C4—H4a0.96C12—H12a0.96
C4—H4b0.96C12—H12b0.96
C5—C61.439 (10)C13—H13a0.96
C5—H5b0.96C13—H13b0.96
C5—H5a0.96C13—H13c0.96
C5x—C6x1.435 (10)
C1—N1—C3106.5 (2)N4—C6—C5132.1 (6)
C1—N1—C4106.25 (19)N4—C6—H6a109.4707
C1—N1—C8112.7 (2)N4—C6—H6b109.4714
C3—N1—C4111.58 (19)C5—C6—H6a109.4715
C3—N1—C8108.7 (2)C5—C6—H6b109.4717
C4—N1—C8111.0 (2)H6a—C6—H6b69.7221
C1—N2—C2109.3 (2)N4—C6x—C5x101.0 (6)
C1—N2—C7109.5 (2)N4—C6x—H6ax109.4706
C2—N2—C7112.7 (2)N4—C6x—H6bx109.4714
C2—N3—C4111.8 (2)C5x—C6x—H6ax109.4706
C2—N3—C5121.2 (4)C5x—C6x—H6bx109.4716
C2—N3—C5x113.1 (4)H6ax—C6x—H6bx116.7784
C4—N3—C5118.6 (4)N2—C7—N4113.3 (3)
C4—N3—C5x113.9 (4)N2—C7—H7a109.4714
C3—N4—C6111.0 (4)N2—C7—H7b109.472
C3—N4—C6x121.9 (4)N4—C7—H7a109.4709
C3—N4—C7112.4 (2)N4—C7—H7b109.4705
C6—N4—C7115.0 (4)H7a—C7—H7b105.3282
C6x—N4—C7116.7 (4)N1—C8—C9116.5 (2)
N1—C1—N2109.8 (2)N1—C8—H8a109.4716
N1—C1—H1a109.4711N1—C8—H8b109.4713
N1—C1—H1b109.4708C9—C8—H8a109.4715
N2—C1—H1a109.4712C9—C8—H8b109.4708
N2—C1—H1b109.4718H8a—C8—H8b101.3702
H1a—C1—H1b109.0907C8—C9—C10113.0 (3)
N2—C2—N3112.6 (2)C8—C9—H9a109.4702
N2—C2—H2a109.4708C8—C9—H9b109.4711
N2—C2—H2b109.472C10—C9—H9a109.472
N3—C2—H2a109.4708C10—C9—H9b109.4714
N3—C2—H2b109.4711H9a—C9—H9b105.7374
H2a—C2—H2b106.0941C9—C10—C11115.5 (3)
N1—C3—N4113.7 (2)C9—C10—H10a109.4709
N1—C3—H3a109.4712C9—C10—H10b109.471
N1—C3—H3b109.4711C11—C10—H10a109.4711
N4—C3—H3a109.4713C11—C10—H10b109.4722
N4—C3—H3b109.4714H10a—C10—H10b102.6643
H3a—C3—H3b104.9048C10—C11—C12117.3 (3)
N1—C4—N3112.3 (2)C10—C11—H11a109.4708
N1—C4—H4a109.4714C10—C11—H11b109.4718
N1—C4—H4b109.4716C12—C11—H11a109.4709
N3—C4—H4a109.471C12—C11—H11b109.4715
N3—C4—H4b109.4715H11a—C11—H11b100.2535
H4a—C4—H4b106.513C11—C12—C13115.6 (3)
N3—C5—C6103.0 (5)C11—C12—H12a109.4712
N3—C5—H5b109.4716C11—C12—H12b109.4718
N3—C5—H5a109.472C13—C12—H12a109.4714
C6—C5—H5b109.4704C13—C12—H12b109.4707
C6—C5—H5a109.4707H12a—C12—H12b102.5339
H5b—C5—H5a115.2131C12—C13—H13a109.4716
N3—C5x—C6x134.1 (6)C12—C13—H13b109.471
N3—C5x—H5ax109.4707C12—C13—H13c109.4712
N3—C5x—H5bx109.471H13a—C13—H13b109.4712
C6x—C5x—H5ax109.4709H13a—C13—H13c109.4704
C6x—C5x—H5bx109.4719H13b—C13—H13c109.4719
H5ax—C5x—H5bx62.4606
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1a···I1i0.962.983.913 (3)164
C3—H3b···I1ii0.963.043.925 (2)154
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H27N4+·I
Mr366.3
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)8.4914 (4), 16.1497 (6), 11.8673 (6)
β (°) 102.690 (5)
V3)1587.65 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.21 × 0.19 × 0.11
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010),
Tmin, Tmax0.930, 1.000
No. of measured, independent and
observed [I > 3σ(I)] reflections
6803, 6795, 4959
Rint0.028
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.23
No. of reflections6795
No. of parameters160
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.54

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1a···I1i0.962.983.913 (3)164
C3—H3b···I1ii0.963.043.925 (2)154
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Palatinus, L. (2011b). Chem. Cent. J. 5, article number 55.  Web of Science CSD CrossRef Google Scholar
First citationRivera, A., Sadat-Bernal, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011a). Acta Cryst. E67, o2629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarks, C. M. (1971). J. Am. Chem. Soc. 93, 195–199.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds