metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m52-m53

Aqua­bis­­(4-fluoro­benzoato-κO)bis­­(nicotinamide-κN1)copper(II) nicotinamide hemisolvate trihydrate

aKafkas University, Department of Chemistry, 36100 Kars, Turkey, and bHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 11 November 2011; accepted 9 December 2011; online 17 December 2011)

The asymmetric unit of the title compound, [Cu(C7H4FO2)2(C6H6N2O)2(H2O)]·0.5C6H6N2O·3H2O, contains two aqua­bis­(4-fluoro­benzoato)bis­(nicotinamide)­copper(II) mol­ecules, one nicotinamide solvent mol­ecule and six water mol­ecules. The CuII ion is coordinated by two O atoms from two 4-fluoro­benzoate ligands, two N atoms from two nicotinamide ligands and one water O atom in a distorted square-pyramidal geometry. In the crystal, O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds consolidate the crystal packing, which also exhibits ππ inter­actions between the aromatic rings [centroid–centroid distances 3.692 (2)–3.794 (2) Å].

Related literature

For general background to niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For general background to the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.], 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607-m608.]); Hökelek & Necefoğlu (1998[Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.], 2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]); Necefoğlu et al. (2011[Necefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m619-m620.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H4FO2)2(C6H6N2O)2(H2O)]·0.5C6H6N2O·3H2O

  • Mr = 719.13

  • Monoclinic, P 21 /c

  • a = 18.4108 (4) Å

  • b = 14.8908 (3) Å

  • c = 22.8569 (5) Å

  • β = 105.247 (3)°

  • V = 6045.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 100 K

  • 0.24 × 0.20 × 0.19 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 0.858

  • 103729 measured reflections

  • 15210 independent reflections

  • 11162 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.160

  • S = 1.12

  • 15210 reflections

  • 900 parameters

  • 34 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.27 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O18 0.86 2.10 2.929 (6) 163
N2—H2B⋯O4i 0.86 2.13 2.914 (5) 150
N4—H4A⋯O18ii 0.86 2.27 3.090 (6) 160
N4—H4B⋯O4iii 0.86 2.12 2.909 (5) 152
N6—H6A⋯O21iv 0.86 2.00 2.849 (5) 169
N6—H6B⋯O9v 0.86 2.18 2.925 (4) 145
N8—H8A⋯O16 0.86 2.44 3.285 (5) 167
N8—H8B⋯O9vi 0.86 2.07 2.890 (4) 160
N10—H10A⋯O7 0.86 2.20 3.031 (5) 163
N10—H10B⋯O12vii 0.86 2.10 2.897 (5) 155
O7—H71⋯O13vii 0.92 (3) 1.85 (3) 2.762 (4) 174 (3)
O7—H72⋯O14vii 0.81 (5) 2.02 (5) 2.824 (4) 174 (3)
O14—H141⋯N9 0.93 (4) 1.93 (4) 2.812 (4) 158 (4)
O14—H142⋯O5viii 0.93 (3) 1.85 (3) 2.782 (4) 177 (5)
O16—H161⋯O19 0.60 (4) 2.26 (3) 2.845 (6) 164 (8)
O17—H172⋯O6ix 0.73 (5) 2.21 (5) 2.887 (5) 156 (5)
O18—H182⋯O17x 0.63 (6) 2.30 (6) 2.839 (6) 145 (7)
O19—H191⋯O13 0.74 (5) 2.06 (5) 2.800 (6) 172 (5)
O20—H201⋯O18viii 0.77 2.07 2.611 (6) 128
O20—H202⋯O15 0.64 2.14 2.710 (5) 149
O21—H211⋯O2 0.91 (3) 1.91 (3) 2.807 (4) 169 (4)
O21—H212⋯O16xi 0.89 (4) 1.88 (5) 2.759 (5) 168 (5)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (viii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ix) -x+1, -y+1, -z+1; (x) -x+1, -y, -z+1; (xi) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title mononuclear CuII complex (Fig. 1) contains two [Cu(PFB)2(NA)2(H2O)] molecules (PFB = 4-fluorobenzoato), one NA solvent molecule and six crystalline water molecules, all ligands coordinating in a monodentate manner. The crystal structures of similar omplexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2] (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2] (Hökelek & Necefoğlu, 1998), [Co(C9H9O2)2(C10H14N2O)2(H2O)2] (Necefoğlu et al., 2011), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), [Mn(C9H10NO2)2(H2O)4].2H2O (Hökelek & Necefoğlu, 2007) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009b) have also been reported. In the copper(II) complex mentioned above the two benzoate ions coordinate to the CuII atom as bidentate ligands, while in the other structures all the ligands coordinate in a monodentate manner.

In the title compound, each CuII ion is coordinated by two O atoms from two PFB ligands, two N atoms from two NA ligands and one Owater atom in a distorted square-pyramidal geometry. The near equalities of the C1—O1 [1.281 (4) Å], C1—O2 [1.240 (4) Å], C8—O3 [1.282 (5) Å], C8—O4 [1.249 (5) Å] and C27—O8 [1.278 (4) Å], C27—O9 [1.249 (4) Å], C34—O10 [1.285 (5) Å], C34—O11 [1.245 (5) Å], bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The Cu—O bond lengths are between 1.933 (3)-1.945 (3) Å (for benzoate oxygens) and 2.445 (3) Å and 2.479 (3) Å (for water oxygens), and the Cu—N bond lengths are between 2.021 (3)-2.044 (3) Å, close to standard values (Allen et al., 1987). The intramolecular N—H···O, O—H···N and O—H···O hydrogen bonds (Table 1) link the water molecules to the nicotinamide ligands, carboxylate groups and to the uncoordianated water molecules. The Cu1 and Cu2 atoms are displaced out of the mean-planes of the adjacent carboxylate groups (O1/C1/O2), (O3/C8/O4) and (O8/C27/O9), (O10/C34/O11) by 0.1551 (4), -0.1910 (4) and -0.2732 (4), 0.4498 (4) Å, respectively. The dihedral angles between the planar carboxylate groups (O1/C1/O2), (O3/C8/O4) and (O8/C27/O9), (O10/C34/O11) and the adjacent benzene rings A (C2—C7), B (C9—C14) and E (C28—C33), F (C35—C40) are 11.34 (18), 14.87 (24) and 11.72 (18), 17.02 (21) °. The benzene and pyridine C (N1/C15—C19), D (N3/C21—C25) and G (N5/C41—C45), H(N7/C47—C51) rings are oriented at dihedral angles of A/B = 33.20 (13), A/C = 83.21 (13), A/D = 67.15 (13), B/C = 64.04 (13), B/D = 79.75 (13), C/D = 16.65 (11) and E/F = 45.16 (13), E/G = 76.73 (12), E/H = 58.51 (12), F/G = 58.75 (12), F/H = 76.90 (13), G/H = 18.23 (12) °.

In the crystal, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional network. There also exist two weak C—H···π interactions (Table 1) and the ππ contacts between the benzene and benzene rings and between the pyridine and pyridine rings Cg1—Cg1i, Cg1—Cg2ii, Cg2—Cg2iii, Cg5—Cg5iv, Cg5—Cg6ii, Cg6—Cg6v and Cg3—Cg4vi, Cg7—Cg8vii, may further stabilize the structure [centroid-centroid distances = 3.851 (3), 3.846 (3), 3.869 (3), 3.888 (3), 3.756 (3), 3.990 (3) and 3.794 (2), 3.692 (2) Å; symmetry codes: (i) -x, 1 - y, -z, (ii) x, 1/2 - y, -1/2 + z, (iii) -x, 1 - y, 1 - z, (iv) 1 - x, 1 - y, -z, (v) 1 - x, 1 - y, 1 - z, (vi) -x, -1/2 + y, 1/2 - z, (vii) 1 - x, -1/2 + y, 1/2 - z; Cg1, Cg2, Cg3, Cg4, Cg5, Cg6, Cg7 and Cg8 are the centroids of the rings A (C2—C7), B (C9—C14), C (N1/C15—C19), D (N3/C21—C25), E (C28—C33), F (C35—C40), G (N5/C41—C45) and H (N7/C47—C51), respectively.

Related literature top

For general background to niacin, see: Krishnamachari (1974). For general background to the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b); Hökelek & Necefoğlu (1998, 2007); Necefoğlu et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.23 g, 5 mmol) in H2O (20 ml) and NA (1.22 g, 10 mmol) in H2O (20 ml) with sodium 4-fluorobenzoate (1.62 g, 10 mmol) in H2O (50 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for two weeks, giving blue single crystals.

Refinement top

Atoms H71, H72, H141, H142, H161, H162, H171, H172, H181, H182, H191, H192, H201, H202, H211 and H212 (for water molecules) were located in a difference Fourier map and were refined by applying restraints. The N-bound and C-bound H-atoms were positioned geometrically with N—H = 0.86 Å, for NH2 H-atoms, and C—H = 0.93 Å, for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering scheme and 50% probability displacement ellipsoids. Crystalline water molecules and hydrogen atoms have been omitted for clarity.
Aquabis(4-fluorobenzoato-κO)bis(nicotinamide-κN1)copper(II) nicotinamide hemisolvate trihydrate top
Crystal data top
[Cu(C7H4FO2)2(C6H6N2O)2(H2O)]·0.5C6H6N2O·3H2OF(000) = 2968
Mr = 719.13Dx = 1.580 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9877 reflections
a = 18.4108 (4) Åθ = 2.3–28.4°
b = 14.8908 (3) ŵ = 0.80 mm1
c = 22.8569 (5) ÅT = 100 K
β = 105.247 (3)°Block, blue
V = 6045.7 (2) Å30.24 × 0.20 × 0.19 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
15210 independent reflections
Radiation source: fine-focus sealed tube11162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 28.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2424
Tmin = 0.825, Tmax = 0.858k = 1719
103729 measured reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0469P)2 + 20.8651P]
where P = (Fo2 + 2Fc2)/3
15210 reflections(Δ/σ)max = 0.001
900 parametersΔρmax = 1.27 e Å3
34 restraintsΔρmin = 1.16 e Å3
Crystal data top
[Cu(C7H4FO2)2(C6H6N2O)2(H2O)]·0.5C6H6N2O·3H2OV = 6045.7 (2) Å3
Mr = 719.13Z = 8
Monoclinic, P21/cMo Kα radiation
a = 18.4108 (4) ŵ = 0.80 mm1
b = 14.8908 (3) ÅT = 100 K
c = 22.8569 (5) Å0.24 × 0.20 × 0.19 mm
β = 105.247 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
15210 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
11162 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.858Rint = 0.060
103729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06334 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0469P)2 + 20.8651P]
where P = (Fo2 + 2Fc2)/3
15210 reflectionsΔρmax = 1.27 e Å3
900 parametersΔρmin = 1.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.08147 (2)0.39867 (3)0.26867 (2)0.01246 (11)
Cu20.42670 (2)0.18332 (3)0.73175 (2)0.01296 (11)
O10.06780 (14)0.39884 (18)0.18189 (11)0.0160 (5)
O20.05644 (15)0.3901 (2)0.16749 (12)0.0201 (6)
O30.08077 (16)0.39915 (19)0.35352 (12)0.0198 (6)
O40.04449 (16)0.40360 (19)0.32462 (12)0.0210 (6)
O50.22275 (15)0.1525 (2)0.16971 (12)0.0199 (6)
O60.21882 (15)0.6496 (2)0.15711 (12)0.0200 (6)
O70.21840 (15)0.3835 (2)0.29314 (13)0.0176 (6)
H710.242 (2)0.436 (2)0.308 (2)0.028 (13)*
H720.236 (3)0.362 (3)0.2673 (18)0.036 (15)*
O80.43509 (14)0.17369 (18)0.64890 (12)0.0163 (5)
O90.55938 (14)0.19444 (19)0.67500 (12)0.0181 (6)
O100.43810 (15)0.18487 (18)0.81861 (12)0.0170 (6)
O110.56355 (16)0.1867 (2)0.83741 (13)0.0245 (7)
O120.28210 (15)0.4238 (2)0.82874 (13)0.0211 (6)
O130.28108 (15)0.0442 (2)0.84207 (13)0.0218 (6)
O140.28719 (15)0.18029 (19)0.70437 (12)0.0174 (6)
H1410.272 (3)0.145 (3)0.6696 (16)0.044*
H1420.266 (3)0.2367 (18)0.694 (2)0.044*
O150.25627 (17)0.3240 (2)0.47017 (14)0.0277 (7)
O160.2515 (2)0.2231 (3)0.9564 (2)0.0412 (9)
H1610.239 (4)0.1857 (17)0.956 (3)0.044*
H1620.230 (3)0.214 (4)0.972 (3)0.044*
O170.6950 (2)0.2562 (3)0.9124 (2)0.0394 (9)
H1710.713 (4)0.285 (3)0.9312 (18)0.044*
H1720.711 (3)0.292 (3)0.898 (2)0.044*
O180.2330 (2)0.0874 (3)0.0866 (2)0.0545 (12)
H1810.270 (3)0.104 (4)0.113 (2)0.044*
H1820.260 (3)0.112 (4)0.084 (2)0.044*
O190.2134 (3)0.0382 (3)0.9384 (2)0.0525 (11)
H1910.230 (3)0.035 (4)0.9120 (16)0.044*
H1920.234 (3)0.001 (3)0.958 (2)0.044*
O200.2792 (3)0.4252 (3)0.5720 (2)0.0743 (15)
H2010.26820.46950.55470.044*
H2020.26240.41250.54500.044*
O210.21237 (17)0.3687 (2)0.12010 (14)0.0279 (7)
H2110.1621 (12)0.380 (3)0.131 (2)0.044*
H2120.218 (3)0.322 (3)0.095 (2)0.044*
N10.08483 (16)0.2615 (2)0.26844 (13)0.0122 (6)
N20.17473 (19)0.0141 (2)0.17423 (17)0.0253 (8)
H2A0.19970.00820.15080.030*
H2B0.14540.01960.18830.030*
N30.09809 (17)0.5334 (2)0.26912 (14)0.0149 (6)
N40.1643 (2)0.7834 (2)0.16339 (17)0.0259 (8)
H4A0.18340.80720.13660.031*
H4B0.13590.81480.18000.031*
N50.41525 (17)0.3183 (2)0.72846 (14)0.0139 (6)
N60.31899 (19)0.5658 (2)0.81972 (16)0.0228 (8)
H6A0.29190.58630.84220.027*
H6B0.34570.60190.80470.027*
N70.41236 (17)0.0480 (2)0.73400 (14)0.0152 (6)
N80.32489 (18)0.1853 (2)0.84234 (16)0.0214 (7)
H8A0.30180.20270.86850.026*
H8B0.35180.22270.82840.026*
N90.25532 (19)0.1124 (2)0.58553 (16)0.0221 (7)
N100.24886 (19)0.2368 (2)0.38840 (16)0.0239 (8)
H10A0.24930.28260.36560.029*
H10B0.24610.18350.37350.029*
F10.02454 (14)0.3629 (2)0.10047 (10)0.0292 (6)
F20.01950 (14)0.34751 (18)0.60768 (10)0.0266 (6)
F30.49145 (14)0.08908 (18)0.39708 (10)0.0270 (6)
F40.52020 (13)0.07895 (17)1.09345 (10)0.0240 (5)
C10.0005 (2)0.3913 (3)0.14816 (17)0.0147 (7)
C20.0058 (2)0.3831 (3)0.08151 (16)0.0140 (7)
C30.0562 (2)0.4003 (3)0.05915 (18)0.0189 (8)
H30.10190.41650.08560.023*
C40.0500 (2)0.3933 (3)0.00216 (18)0.0234 (9)
H40.09130.40430.01740.028*
C50.0181 (2)0.3697 (3)0.04024 (17)0.0191 (8)
C60.0804 (2)0.3515 (3)0.01972 (19)0.0238 (9)
H60.12570.33430.04640.029*
C70.0738 (2)0.3594 (3)0.04143 (18)0.0208 (8)
H70.11550.34870.05610.025*
C80.0162 (2)0.3976 (3)0.36483 (17)0.0165 (8)
C90.0169 (2)0.3862 (3)0.42988 (17)0.0154 (7)
C100.0474 (2)0.4021 (3)0.44950 (18)0.0185 (8)
H100.09120.42140.42180.022*
C110.0472 (2)0.3895 (3)0.50937 (18)0.0188 (8)
H110.09010.40020.52250.023*
C120.0184 (2)0.3608 (3)0.54878 (17)0.0191 (8)
C130.0833 (2)0.3444 (3)0.53159 (18)0.0215 (9)
H130.12670.32470.55950.026*
C140.0822 (2)0.3582 (3)0.47177 (18)0.0195 (8)
H140.12570.34860.45930.023*
C150.0631 (2)0.2073 (3)0.30758 (17)0.0152 (7)
H150.03920.23240.33480.018*
C160.0748 (2)0.1154 (3)0.30898 (17)0.0167 (8)
H160.05760.07950.33590.020*
C170.1122 (2)0.0774 (3)0.27013 (18)0.0165 (8)
H170.12070.01580.27040.020*
C180.1370 (2)0.1331 (3)0.23057 (17)0.0153 (7)
C190.1215 (2)0.2243 (3)0.23078 (16)0.0144 (7)
H190.13720.26130.20370.017*
C200.1814 (2)0.1009 (3)0.18868 (17)0.0168 (8)
C210.0810 (2)0.5883 (3)0.31046 (17)0.0187 (8)
H210.05990.56320.33940.022*
C220.0930 (2)0.6793 (3)0.31204 (18)0.0213 (8)
H220.08060.71440.34160.026*
C230.1238 (2)0.7181 (3)0.26920 (17)0.0177 (8)
H230.13170.77970.26890.021*
C240.1426 (2)0.6625 (3)0.22630 (16)0.0138 (7)
C250.1293 (2)0.5711 (3)0.22823 (16)0.0132 (7)
H250.14260.53410.19990.016*
C260.1785 (2)0.6982 (3)0.17921 (17)0.0162 (8)
C270.4991 (2)0.1754 (3)0.63700 (17)0.0152 (7)
C280.4987 (2)0.1499 (3)0.57344 (17)0.0147 (7)
C290.4341 (2)0.1129 (3)0.53510 (17)0.0174 (8)
H290.39220.10230.54960.021*
C300.4315 (2)0.0917 (3)0.47550 (17)0.0197 (8)
H300.38860.06670.44980.024*
C310.4944 (2)0.1088 (3)0.45565 (17)0.0200 (8)
C320.5601 (2)0.1439 (3)0.49182 (19)0.0204 (8)
H320.60190.15360.47700.024*
C330.5614 (2)0.1642 (3)0.55158 (18)0.0177 (8)
H330.60500.18770.57730.021*
C340.5048 (2)0.1770 (3)0.85397 (17)0.0177 (8)
C350.5083 (2)0.1522 (3)0.91824 (17)0.0162 (8)
C360.4457 (2)0.1608 (3)0.94108 (17)0.0166 (8)
H360.40070.18210.91610.020*
C370.4497 (2)0.1380 (3)1.00013 (18)0.0191 (8)
H370.40840.14591.01590.023*
C380.5160 (2)0.1036 (3)1.03528 (17)0.0177 (8)
C390.5794 (2)0.0924 (3)1.01446 (18)0.0178 (8)
H390.62360.06881.03930.021*
C400.5748 (2)0.1175 (3)0.95534 (17)0.0158 (7)
H400.61670.11120.94020.019*
C410.4338 (2)0.3706 (3)0.68716 (17)0.0169 (8)
H410.45630.34430.65940.020*
C420.4208 (2)0.4623 (3)0.68388 (18)0.0186 (8)
H420.43560.49690.65520.022*
C430.3853 (2)0.5017 (3)0.72407 (17)0.0181 (8)
H430.37600.56320.72280.022*
C440.3640 (2)0.4473 (3)0.76622 (17)0.0160 (8)
C450.3807 (2)0.3564 (3)0.76707 (16)0.0148 (7)
H450.36720.32010.79570.018*
C460.3194 (2)0.4785 (3)0.80826 (17)0.0165 (8)
C470.4298 (2)0.0115 (3)0.69489 (17)0.0177 (8)
H470.45270.00990.66590.021*
C480.4153 (2)0.1015 (3)0.69599 (18)0.0197 (8)
H480.42910.14010.66880.024*
C490.3800 (2)0.1346 (3)0.73790 (17)0.0158 (7)
H490.36950.19550.73930.019*
C500.3606 (2)0.0748 (3)0.77775 (17)0.0153 (7)
C510.37847 (19)0.0150 (3)0.77445 (16)0.0141 (7)
H510.36620.05460.80190.017*
C520.3191 (2)0.1009 (3)0.82351 (18)0.0170 (8)
C530.2484 (2)0.0285 (3)0.56354 (19)0.0226 (9)
H530.24760.01890.58990.027*
C540.2425 (2)0.0093 (3)0.50311 (18)0.0210 (8)
H540.23870.04980.48960.025*
C550.2424 (2)0.0792 (3)0.46307 (19)0.0217 (9)
H550.23740.06760.42220.026*
C560.2497 (2)0.1665 (3)0.48470 (19)0.0205 (8)
C570.2559 (2)0.1792 (3)0.54637 (19)0.0210 (8)
H570.26080.23770.56120.025*
C580.2523 (2)0.2486 (3)0.4470 (2)0.0225 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0153 (2)0.0130 (2)0.0107 (2)0.00078 (17)0.00629 (16)0.00059 (18)
Cu20.0144 (2)0.0151 (2)0.0107 (2)0.00007 (17)0.00571 (16)0.00086 (18)
O10.0191 (13)0.0169 (14)0.0115 (12)0.0002 (11)0.0030 (10)0.0009 (11)
O20.0217 (14)0.0263 (16)0.0149 (13)0.0016 (12)0.0094 (11)0.0002 (12)
O30.0274 (15)0.0200 (15)0.0165 (13)0.0022 (12)0.0134 (11)0.0005 (11)
O40.0280 (15)0.0206 (15)0.0145 (13)0.0017 (12)0.0054 (11)0.0019 (11)
O50.0171 (13)0.0259 (16)0.0180 (14)0.0019 (11)0.0068 (11)0.0040 (12)
O60.0187 (13)0.0249 (16)0.0196 (14)0.0030 (11)0.0108 (11)0.0013 (12)
O70.0162 (13)0.0193 (15)0.0195 (14)0.0013 (11)0.0085 (11)0.0032 (12)
O80.0166 (13)0.0186 (14)0.0164 (13)0.0018 (11)0.0089 (10)0.0028 (11)
O90.0157 (13)0.0222 (15)0.0170 (13)0.0010 (11)0.0054 (10)0.0025 (11)
O100.0197 (13)0.0184 (14)0.0122 (12)0.0014 (11)0.0027 (10)0.0019 (11)
O110.0236 (15)0.0340 (18)0.0182 (14)0.0015 (13)0.0098 (12)0.0034 (13)
O120.0209 (14)0.0231 (16)0.0228 (15)0.0032 (12)0.0119 (12)0.0042 (12)
O130.0214 (14)0.0242 (16)0.0239 (15)0.0055 (12)0.0131 (12)0.0057 (12)
O140.0180 (13)0.0182 (15)0.0174 (13)0.0007 (11)0.0071 (11)0.0026 (11)
O150.0281 (16)0.0247 (17)0.0328 (17)0.0000 (13)0.0123 (13)0.0001 (14)
O160.040 (2)0.034 (2)0.054 (3)0.0011 (18)0.0187 (18)0.0092 (19)
O170.040 (2)0.040 (2)0.042 (2)0.0064 (17)0.0167 (18)0.0105 (18)
O180.043 (2)0.059 (3)0.069 (3)0.007 (2)0.027 (2)0.018 (2)
O190.072 (3)0.051 (3)0.050 (3)0.010 (2)0.044 (2)0.009 (2)
O200.084 (4)0.074 (4)0.067 (3)0.018 (3)0.025 (3)0.007 (3)
O210.0235 (15)0.0342 (19)0.0292 (17)0.0078 (14)0.0127 (13)0.0018 (14)
N10.0138 (14)0.0136 (16)0.0098 (14)0.0004 (12)0.0044 (11)0.0000 (12)
N20.0215 (17)0.0211 (19)0.036 (2)0.0017 (14)0.0130 (15)0.0129 (16)
N30.0147 (15)0.0164 (17)0.0146 (15)0.0005 (12)0.0057 (12)0.0011 (13)
N40.038 (2)0.0177 (18)0.031 (2)0.0012 (16)0.0239 (17)0.0020 (15)
N50.0141 (14)0.0155 (16)0.0132 (15)0.0022 (12)0.0057 (12)0.0020 (13)
N60.0244 (18)0.0207 (19)0.0290 (19)0.0005 (14)0.0173 (15)0.0058 (15)
N70.0133 (14)0.0209 (17)0.0125 (15)0.0016 (13)0.0053 (12)0.0017 (13)
N80.0205 (16)0.0224 (19)0.0272 (18)0.0018 (14)0.0165 (14)0.0060 (15)
N90.0206 (17)0.0243 (19)0.0238 (18)0.0021 (14)0.0099 (14)0.0004 (15)
N100.0273 (18)0.0180 (18)0.0258 (19)0.0023 (14)0.0063 (15)0.0045 (15)
F10.0254 (13)0.0538 (18)0.0112 (11)0.0005 (12)0.0097 (9)0.0023 (11)
F20.0291 (13)0.0410 (16)0.0115 (11)0.0004 (11)0.0087 (10)0.0009 (11)
F30.0334 (14)0.0382 (16)0.0124 (11)0.0017 (11)0.0109 (10)0.0032 (10)
F40.0273 (12)0.0346 (15)0.0124 (11)0.0016 (11)0.0091 (9)0.0040 (10)
C10.0189 (18)0.0104 (18)0.0155 (18)0.0002 (14)0.0057 (14)0.0016 (14)
C20.0180 (17)0.0128 (18)0.0119 (17)0.0001 (14)0.0053 (14)0.0021 (14)
C30.0154 (17)0.024 (2)0.0183 (19)0.0029 (16)0.0059 (15)0.0003 (16)
C40.0211 (19)0.033 (2)0.019 (2)0.0036 (18)0.0116 (16)0.0003 (18)
C50.025 (2)0.025 (2)0.0087 (17)0.0033 (17)0.0077 (15)0.0004 (15)
C60.0159 (18)0.037 (3)0.019 (2)0.0028 (17)0.0046 (15)0.0012 (18)
C70.0185 (19)0.030 (2)0.0167 (19)0.0016 (17)0.0090 (15)0.0013 (17)
C80.029 (2)0.0083 (18)0.0147 (18)0.0021 (15)0.0103 (15)0.0004 (14)
C90.0215 (18)0.0122 (18)0.0137 (17)0.0012 (14)0.0068 (14)0.0011 (14)
C100.0178 (18)0.020 (2)0.0175 (18)0.0034 (15)0.0048 (15)0.0006 (16)
C110.0170 (18)0.022 (2)0.0196 (19)0.0010 (15)0.0090 (15)0.0007 (16)
C120.026 (2)0.021 (2)0.0121 (18)0.0019 (16)0.0085 (15)0.0007 (15)
C130.0208 (19)0.028 (2)0.0157 (19)0.0051 (17)0.0048 (15)0.0025 (17)
C140.0210 (19)0.022 (2)0.0185 (19)0.0007 (16)0.0103 (15)0.0012 (16)
C150.0177 (17)0.0150 (19)0.0147 (18)0.0011 (14)0.0075 (14)0.0016 (15)
C160.0221 (19)0.0145 (19)0.0155 (18)0.0012 (15)0.0085 (15)0.0014 (15)
C170.0166 (17)0.0113 (18)0.0216 (19)0.0006 (14)0.0052 (15)0.0005 (15)
C180.0122 (16)0.019 (2)0.0143 (17)0.0000 (14)0.0028 (14)0.0020 (15)
C190.0138 (17)0.0172 (19)0.0122 (17)0.0020 (14)0.0037 (13)0.0004 (14)
C200.0102 (16)0.022 (2)0.0171 (18)0.0001 (15)0.0026 (14)0.0041 (16)
C210.0227 (19)0.023 (2)0.0122 (17)0.0046 (16)0.0088 (15)0.0015 (15)
C220.028 (2)0.021 (2)0.019 (2)0.0034 (17)0.0139 (16)0.0053 (17)
C230.0198 (18)0.016 (2)0.0180 (19)0.0019 (15)0.0054 (15)0.0041 (15)
C240.0136 (16)0.0150 (19)0.0131 (17)0.0008 (14)0.0042 (13)0.0005 (14)
C250.0136 (16)0.0154 (19)0.0119 (17)0.0019 (14)0.0057 (13)0.0001 (14)
C260.0128 (16)0.020 (2)0.0153 (18)0.0040 (15)0.0025 (14)0.0004 (15)
C270.0191 (18)0.0137 (19)0.0142 (18)0.0001 (14)0.0069 (14)0.0002 (14)
C280.0201 (18)0.0124 (18)0.0134 (17)0.0015 (14)0.0072 (14)0.0008 (14)
C290.0188 (18)0.017 (2)0.0186 (19)0.0007 (15)0.0088 (15)0.0000 (15)
C300.0232 (19)0.022 (2)0.0138 (18)0.0005 (16)0.0053 (15)0.0004 (16)
C310.028 (2)0.023 (2)0.0121 (18)0.0041 (17)0.0110 (15)0.0018 (16)
C320.023 (2)0.020 (2)0.024 (2)0.0022 (16)0.0150 (16)0.0030 (17)
C330.0196 (18)0.016 (2)0.0197 (19)0.0004 (15)0.0090 (15)0.0006 (15)
C340.0236 (19)0.0150 (19)0.0157 (18)0.0010 (15)0.0076 (15)0.0017 (15)
C350.0182 (18)0.0158 (19)0.0151 (18)0.0008 (15)0.0052 (14)0.0022 (15)
C360.0174 (18)0.0140 (19)0.0189 (19)0.0021 (14)0.0057 (15)0.0006 (15)
C370.0193 (19)0.021 (2)0.0197 (19)0.0003 (16)0.0105 (15)0.0043 (16)
C380.0230 (19)0.020 (2)0.0104 (17)0.0021 (16)0.0045 (14)0.0009 (15)
C390.0188 (18)0.017 (2)0.0176 (19)0.0002 (15)0.0044 (15)0.0014 (15)
C400.0159 (17)0.0143 (19)0.0190 (18)0.0020 (14)0.0075 (14)0.0026 (15)
C410.0184 (18)0.017 (2)0.0178 (18)0.0002 (15)0.0085 (15)0.0001 (15)
C420.0209 (19)0.017 (2)0.0204 (19)0.0002 (15)0.0106 (15)0.0024 (16)
C430.0179 (18)0.018 (2)0.0200 (19)0.0025 (15)0.0070 (15)0.0016 (16)
C440.0112 (16)0.023 (2)0.0148 (18)0.0029 (14)0.0051 (14)0.0044 (15)
C450.0132 (17)0.019 (2)0.0131 (17)0.0025 (14)0.0056 (13)0.0028 (15)
C460.0100 (16)0.023 (2)0.0161 (18)0.0015 (15)0.0034 (14)0.0052 (16)
C470.0168 (18)0.023 (2)0.0156 (18)0.0024 (15)0.0080 (14)0.0021 (16)
C480.0231 (19)0.022 (2)0.0162 (18)0.0056 (16)0.0084 (15)0.0005 (16)
C490.0174 (18)0.0138 (19)0.0156 (18)0.0033 (14)0.0036 (14)0.0017 (15)
C500.0124 (16)0.019 (2)0.0141 (17)0.0000 (14)0.0028 (14)0.0023 (15)
C510.0131 (16)0.019 (2)0.0107 (16)0.0025 (14)0.0041 (13)0.0009 (14)
C520.0120 (16)0.020 (2)0.0196 (19)0.0014 (15)0.0045 (14)0.0027 (16)
C530.0204 (19)0.024 (2)0.024 (2)0.0021 (17)0.0071 (16)0.0005 (17)
C550.0173 (18)0.029 (2)0.021 (2)0.0020 (16)0.0082 (16)0.0010 (17)
C540.0220 (19)0.021 (2)0.022 (2)0.0030 (16)0.0081 (16)0.0006 (17)
C560.0152 (18)0.024 (2)0.024 (2)0.0010 (16)0.0092 (15)0.0016 (17)
C570.0175 (18)0.024 (2)0.024 (2)0.0013 (16)0.0107 (16)0.0026 (17)
C580.0130 (18)0.027 (2)0.028 (2)0.0033 (16)0.0069 (16)0.0009 (18)
Geometric parameters (Å, º) top
Cu1—O11.933 (3)C12—C111.371 (6)
Cu1—O31.943 (3)C12—C131.375 (6)
Cu1—N12.044 (3)C13—C141.377 (5)
Cu1—N32.030 (3)C13—H130.9300
Cu2—O81.945 (3)C14—H140.9300
Cu2—O101.941 (3)C15—C161.384 (5)
Cu2—N52.021 (3)C15—H150.9300
Cu2—N72.034 (3)C16—H160.9300
O1—C11.281 (4)C17—C161.380 (5)
O2—C11.240 (4)C17—H170.9300
O3—C81.282 (5)C18—C171.389 (5)
O4—C81.249 (5)C18—C201.492 (5)
O5—C201.237 (5)C19—C181.388 (5)
O6—C261.235 (5)C19—H190.9300
O7—H710.917 (18)C20—N21.332 (5)
O7—H720.81 (2)C21—H210.9300
O8—C271.278 (4)C22—C211.371 (6)
O9—C271.249 (4)C22—H220.9300
O10—C341.285 (5)C23—C221.381 (5)
O11—C341.245 (5)C23—H230.9300
O12—C461.235 (5)C24—C231.395 (5)
O13—C521.241 (5)C24—C251.386 (5)
O14—H1410.93 (2)C25—H250.9300
O14—H1420.930 (18)C26—N41.326 (5)
O15—C581.237 (5)C26—C241.501 (5)
O16—H1610.601 (8)C27—C281.499 (5)
O16—H1620.618 (11)C28—C331.389 (5)
O17—H1710.633 (8)C29—C301.387 (5)
O17—H1720.73 (2)C29—C281.393 (5)
O18—H1810.812 (18)C29—H290.9300
O18—H1820.64 (2)C30—H300.9300
O19—H1910.745 (18)C31—C301.374 (6)
O19—H1920.742 (18)C32—C311.376 (6)
O20—H2010.770C32—C331.393 (5)
O20—H2020.640C32—H320.9300
O21—H2110.911 (18)C33—H330.9300
O21—H2120.90 (2)C34—C351.499 (5)
N1—C151.342 (5)C35—C401.391 (5)
N1—C191.345 (5)C36—C371.375 (5)
N2—H2A0.8600C36—C351.391 (5)
N2—H2B0.8600C36—H360.9300
N3—C211.348 (5)C37—H370.9300
N3—C251.342 (5)C38—C371.371 (5)
N4—H4A0.8600C38—C391.382 (5)
N4—H4B0.8600C39—H390.9300
N5—C411.335 (5)C40—C391.383 (5)
N5—C451.342 (5)C40—H400.9300
N6—C461.326 (5)C41—C421.385 (6)
N6—H6A0.8600C41—H410.9300
N6—H6B0.8600C42—H420.9300
N7—C511.337 (5)C43—C421.390 (5)
N7—C471.356 (5)C43—H430.9300
N8—C521.322 (5)C44—C431.391 (5)
N8—H8A0.8600C44—C461.493 (5)
N8—H8B0.8600C45—C441.388 (6)
N10—H10A0.8600C45—H450.9300
N10—H10B0.8600C47—C481.368 (6)
F1—C51.354 (4)C47—H470.9300
F2—C121.355 (4)C48—C491.382 (5)
F3—C311.358 (4)C48—H480.9300
F4—C381.361 (4)C49—H490.9300
C1—C21.502 (5)C50—C511.384 (5)
C2—C31.392 (5)C50—C491.386 (5)
C2—C71.388 (5)C50—C521.501 (5)
C3—C41.380 (5)C51—H510.9300
C3—H30.9300C53—N91.341 (6)
C4—C51.371 (6)C53—C541.386 (6)
C4—H40.9300C53—H530.9300
C6—C51.376 (6)C54—H540.9300
C6—C71.376 (6)C55—C541.385 (6)
C6—H60.9300C55—C561.384 (6)
C7—H70.9300C55—H550.9300
C8—C91.493 (5)C57—N91.340 (5)
C9—C101.392 (5)C57—C561.397 (6)
C9—C141.388 (5)C57—H570.9300
C10—C111.380 (5)C58—N101.334 (5)
C10—H100.9300C58—C561.504 (6)
C11—H110.9300
O1—Cu1—O3172.41 (12)N3—C21—H21118.3
O1—Cu1—N189.69 (12)C22—C21—H21118.3
O1—Cu1—N389.01 (12)C21—C22—C23119.2 (4)
O3—Cu1—N190.82 (12)C21—C22—H22120.4
O3—Cu1—N391.82 (12)C23—C22—H22120.4
N3—Cu1—N1169.64 (12)C22—C23—C24118.3 (4)
O8—Cu2—N594.10 (12)C22—C23—H23120.8
O8—Cu2—N789.75 (12)C24—C23—H23120.8
O10—Cu2—O8169.03 (11)C23—C24—C26122.1 (3)
O10—Cu2—N590.48 (12)C25—C24—C23118.8 (3)
O10—Cu2—N788.04 (12)C25—C24—C26119.1 (3)
N5—Cu2—N7166.71 (12)N3—C25—C24123.0 (3)
C1—O1—Cu1117.5 (2)N3—C25—H25118.5
C8—O3—Cu1116.8 (2)C24—C25—H25118.5
H72—O7—H71110 (4)O6—C26—N4123.1 (4)
C27—O8—Cu2121.3 (2)O6—C26—C24120.7 (4)
C34—O10—Cu2118.1 (2)N4—C26—C24116.2 (3)
H142—O14—H141106 (3)O8—C27—C28115.6 (3)
H161—O16—H16260 (9)O9—C27—O8123.9 (3)
H171—O17—H17267 (5)O9—C27—C28120.6 (3)
H181—O18—H18251 (4)C29—C28—C27119.7 (3)
H191—O19—H192100 (4)C33—C28—C27121.1 (3)
H201—O20—H20276C33—C28—C29119.2 (3)
H212—O21—H211106 (4)C28—C29—H29119.6
C15—N1—Cu1125.8 (3)C30—C29—C28120.7 (4)
C15—N1—C19117.9 (3)C30—C29—H29119.6
C19—N1—Cu1115.7 (2)C29—C30—H30121.0
C20—N2—H2A120.0C31—C30—C29117.9 (4)
C20—N2—H2B120.0C31—C30—H30121.0
H2A—N2—H2B120.0F3—C31—C30117.8 (4)
C21—N3—Cu1122.7 (3)F3—C31—C32118.4 (3)
C25—N3—Cu1120.1 (3)C30—C31—C32123.8 (4)
C25—N3—C21117.2 (3)C31—C32—C33117.2 (4)
C26—N4—H4A120.0C31—C32—H32121.4
C26—N4—H4B120.0C33—C32—H32121.4
H4A—N4—H4B120.0C28—C33—C32121.2 (4)
C41—N5—Cu2124.2 (3)C28—C33—H33119.4
C41—N5—C45118.2 (3)C32—C33—H33119.4
C45—N5—Cu2117.3 (3)O10—C34—C35115.3 (3)
C46—N6—H6A120.0O11—C34—O10124.1 (4)
C46—N6—H6B120.0O11—C34—C35120.6 (3)
H6A—N6—H6B120.0C36—C35—C34121.2 (3)
C47—N7—Cu2125.1 (3)C36—C35—C40119.2 (4)
C51—N7—Cu2117.9 (3)C40—C35—C34119.6 (3)
C51—N7—C47116.8 (3)C35—C36—H36119.6
C52—N8—H8A120.0C37—C36—C35120.7 (4)
C52—N8—H8B120.0C37—C36—H36119.6
H8A—N8—H8B120.0C36—C37—H37120.8
C57—N9—C53117.3 (4)C38—C37—C36118.5 (4)
C58—N10—H10A120.0C38—C37—H37120.8
C58—N10—H10B120.0F4—C38—C37119.1 (3)
H10A—N10—H10B120.0F4—C38—C39117.9 (3)
O1—C1—C2115.0 (3)C37—C38—C39123.0 (4)
O2—C1—O1124.2 (3)C38—C39—C40117.6 (4)
O2—C1—C2120.8 (3)C38—C39—H39121.2
C3—C2—C1120.4 (3)C40—C39—H39121.2
C7—C2—C1120.4 (3)C35—C40—H40119.5
C7—C2—C3119.2 (3)C39—C40—C35120.9 (4)
C2—C3—H3119.9C39—C40—H40119.5
C4—C3—C2120.2 (4)N5—C41—C42122.7 (4)
C4—C3—H3119.9N5—C41—H41118.6
C3—C4—H4120.6C42—C41—H41118.6
C5—C4—C3118.7 (4)C41—C42—C43119.0 (4)
C5—C4—H4120.6C41—C42—H42120.5
F1—C5—C4119.1 (3)C43—C42—H42120.5
F1—C5—C6118.3 (4)C42—C43—C44118.6 (4)
C4—C5—C6122.7 (4)C42—C43—H43120.7
C5—C6—C7118.1 (4)C44—C43—H43120.7
C5—C6—H6121.0C43—C44—C46124.6 (4)
C7—C6—H6121.0C45—C44—C43118.5 (3)
C2—C7—H7119.5C45—C44—C46116.8 (3)
C6—C7—C2121.1 (4)N5—C45—C44122.9 (4)
C6—C7—H7119.5N5—C45—H45118.5
O3—C8—C9115.9 (3)C44—C45—H45118.5
O4—C8—O3123.2 (3)O12—C46—N6122.6 (4)
O4—C8—C9120.9 (3)O12—C46—C44119.6 (4)
C10—C9—C8121.0 (3)N6—C46—C44117.7 (4)
C14—C9—C8120.1 (3)N7—C47—C48123.2 (4)
C14—C9—C10118.9 (3)N7—C47—H47118.4
C9—C10—H10119.5C48—C47—H47118.4
C11—C10—C9121.0 (4)C47—C48—C49119.4 (4)
C11—C10—H10119.5C47—C48—H48120.3
C10—C11—H11121.1C49—C48—H48120.3
C12—C11—C10117.8 (4)C48—C49—C50118.4 (4)
C12—C11—H11121.1C48—C49—H49120.8
F2—C12—C11118.6 (3)C50—C49—H49120.8
F2—C12—C13118.1 (4)C51—C50—C49118.7 (3)
C11—C12—C13123.3 (4)C51—C50—C52117.4 (3)
C12—C13—C14118.0 (4)C49—C50—C52123.9 (4)
C12—C13—H13121.0N7—C51—C50123.6 (4)
C14—C13—H13121.0N7—C51—H51118.2
C9—C14—H14119.5C50—C51—H51118.2
C13—C14—C9120.9 (4)O13—C52—N8122.7 (4)
C13—C14—H14119.5O13—C52—C50119.9 (4)
N1—C15—C16122.5 (3)N8—C52—C50117.4 (3)
N1—C15—H15118.7N9—C53—C54122.7 (4)
C16—C15—H15118.7N9—C53—H53118.7
C15—C16—H16120.3C54—C53—H53118.7
C17—C16—C15119.4 (4)C53—C54—H54120.3
C17—C16—H16120.3C55—C54—C53119.3 (4)
C16—C17—C18118.6 (4)C55—C54—H54120.3
C16—C17—H17120.7C54—C55—H55120.5
C18—C17—H17120.7C56—C55—C54119.1 (4)
C17—C18—C20123.7 (4)C56—C55—H55120.5
C19—C18—C17118.6 (3)C55—C56—C57117.5 (4)
C19—C18—C20117.7 (3)C55—C56—C58125.0 (4)
N1—C19—C18122.9 (3)C57—C56—C58117.5 (4)
N1—C19—H19118.5N9—C57—C56124.1 (4)
C18—C19—H19118.5N9—C57—H57118.0
O5—C20—N2122.8 (4)C56—C57—H57118.0
O5—C20—C18121.1 (4)O15—C58—N10122.1 (4)
N2—C20—C18116.1 (4)O15—C58—C56120.0 (4)
N3—C21—C22123.5 (4)N10—C58—C56117.9 (4)
N1—Cu1—O1—C186.0 (3)C13—C12—C11—C100.3 (7)
N3—Cu1—O1—C1104.3 (3)C11—C12—C13—C140.3 (7)
N1—Cu1—O3—C890.4 (3)C12—C13—C14—C91.1 (6)
N3—Cu1—O3—C899.6 (3)N1—C15—C16—C172.0 (6)
O1—Cu1—N1—C15150.7 (3)C18—C17—C16—C150.1 (6)
O1—Cu1—N1—C1938.8 (3)C19—C18—C17—C161.5 (5)
O3—Cu1—N1—C1521.8 (3)C20—C18—C17—C16176.8 (3)
O3—Cu1—N1—C19148.8 (3)C17—C18—C20—O5155.7 (4)
N3—Cu1—N1—C15126.5 (6)C17—C18—C20—N223.1 (5)
N3—Cu1—N1—C1944.0 (8)C19—C18—C20—O522.5 (5)
O1—Cu1—N3—C21151.1 (3)C19—C18—C20—N2158.6 (4)
O1—Cu1—N3—C2530.9 (3)N1—C19—C18—C171.3 (5)
O3—Cu1—N3—C2121.3 (3)N1—C19—C18—C20177.1 (3)
O3—Cu1—N3—C25156.7 (3)C23—C22—C21—N30.4 (6)
N1—Cu1—N3—C21126.0 (6)C24—C23—C22—C211.0 (6)
N1—Cu1—N3—C2552.0 (8)C25—C24—C23—C220.4 (6)
O10—Cu2—O8—C2722.5 (8)C26—C24—C23—C22178.1 (4)
N5—Cu2—O8—C2791.9 (3)C23—C24—C25—N30.9 (6)
N7—Cu2—O8—C27100.8 (3)C26—C24—C25—N3179.4 (3)
O8—Cu2—O10—C3412.8 (8)O6—C26—C24—C23153.3 (4)
N5—Cu2—O10—C34102.0 (3)O6—C26—C24—C2525.2 (5)
N7—Cu2—O10—C3491.2 (3)N4—C26—C24—C2326.7 (5)
O8—Cu2—N5—C4117.6 (3)N4—C26—C24—C25154.8 (4)
O8—Cu2—N5—C45156.3 (3)O8—C27—C28—C2910.3 (5)
O10—Cu2—N5—C41152.4 (3)O8—C27—C28—C33168.5 (4)
O10—Cu2—N5—C4533.7 (3)O9—C27—C28—C29168.0 (4)
N7—Cu2—N5—C41124.1 (5)O9—C27—C28—C3313.2 (6)
N7—Cu2—N5—C4549.7 (7)C30—C29—C28—C27177.8 (4)
O8—Cu2—N7—C4717.3 (3)C30—C29—C28—C331.0 (6)
O8—Cu2—N7—C51157.9 (3)C28—C29—C30—C310.3 (6)
O10—Cu2—N7—C47152.0 (3)C27—C28—C33—C32177.4 (4)
O10—Cu2—N7—C5132.8 (3)C29—C28—C33—C321.3 (6)
N5—Cu2—N7—C47124.3 (5)F3—C31—C30—C29179.2 (4)
N5—Cu2—N7—C5150.9 (7)C32—C31—C30—C291.5 (6)
Cu1—O1—C1—O25.2 (5)C33—C32—C31—F3179.5 (4)
Cu1—O1—C1—C2174.5 (2)C33—C32—C31—C301.2 (6)
Cu1—O3—C8—O46.3 (5)C31—C32—C33—C280.3 (6)
Cu1—O3—C8—C9172.4 (2)O10—C34—C35—C3616.3 (6)
Cu2—O8—C27—O99.5 (5)O10—C34—C35—C40161.8 (4)
Cu2—O8—C27—C28168.8 (2)O11—C34—C35—C36165.3 (4)
Cu2—O10—C34—O1115.2 (5)O11—C34—C35—C4016.6 (6)
Cu2—O10—C34—C35163.1 (3)C34—C35—C40—C39178.7 (4)
Cu1—N1—C15—C16172.5 (3)C36—C35—C40—C390.6 (6)
C19—N1—C15—C162.2 (5)C37—C36—C35—C34179.8 (4)
Cu1—N1—C19—C18171.8 (3)C37—C36—C35—C402.0 (6)
C15—N1—C19—C180.5 (5)C35—C36—C37—C382.4 (6)
Cu1—N3—C21—C22178.9 (3)F4—C38—C37—C36178.6 (4)
C25—N3—C21—C220.8 (6)C39—C38—C37—C361.4 (6)
Cu1—N3—C25—C24179.6 (3)F4—C38—C39—C40180.0 (3)
C21—N3—C25—C241.4 (5)C37—C38—C39—C400.0 (6)
C45—N5—C41—C422.0 (6)C35—C40—C39—C380.4 (6)
Cu2—N5—C41—C42175.8 (3)N5—C41—C42—C431.7 (6)
Cu2—N5—C45—C44174.8 (3)C44—C43—C42—C410.0 (6)
C41—N5—C45—C440.6 (5)C45—C44—C43—C421.4 (5)
Cu2—N7—C47—C48176.2 (3)C46—C44—C43—C42174.2 (3)
C51—N7—C47—C481.0 (5)C43—C44—C46—O12155.7 (4)
Cu2—N7—C51—C50175.3 (3)C43—C44—C46—N621.1 (6)
C47—N7—C51—C500.3 (5)C45—C44—C46—O1219.9 (5)
O1—C1—C2—C311.7 (5)C45—C44—C46—N6163.3 (4)
O1—C1—C2—C7169.0 (4)N5—C45—C44—C431.1 (6)
O2—C1—C2—C3168.6 (4)N5—C45—C44—C46174.8 (3)
O2—C1—C2—C710.7 (6)N7—C47—C48—C491.2 (6)
C1—C2—C3—C4179.6 (4)C47—C48—C49—C500.2 (6)
C7—C2—C3—C40.3 (6)C51—C50—C49—C480.9 (5)
C1—C2—C7—C6179.8 (4)C52—C50—C49—C48177.1 (3)
C3—C2—C7—C60.9 (6)C49—C50—C51—N71.3 (6)
C2—C3—C4—C50.3 (7)C52—C50—C51—N7176.9 (3)
C3—C4—C5—F1179.8 (4)C49—C50—C52—O13154.6 (4)
C3—C4—C5—C60.9 (7)C49—C50—C52—N825.3 (5)
C7—C6—C5—F1179.3 (4)C51—C50—C52—O1323.5 (5)
C7—C6—C5—C41.5 (7)C51—C50—C52—N8156.6 (4)
C5—C6—C7—C21.4 (7)C56—C57—N9—C530.1 (6)
O3—C8—C9—C10166.5 (4)C54—C53—N9—C570.4 (6)
O3—C8—C9—C1414.3 (5)C56—C55—C54—C531.4 (6)
O4—C8—C9—C1014.8 (6)N9—C53—C54—C551.1 (6)
O4—C8—C9—C14164.4 (4)C54—C55—C56—C570.9 (6)
C8—C9—C10—C11178.5 (4)C54—C55—C56—C58178.5 (4)
C14—C9—C10—C110.7 (6)N9—C57—C56—C550.1 (6)
C8—C9—C14—C13177.9 (4)N9—C57—C56—C58179.3 (4)
C10—C9—C14—C131.3 (6)O15—C58—C56—C55177.4 (4)
F2—C12—C13—C14179.8 (4)N10—C58—C56—C551.4 (6)
C9—C10—C11—C120.1 (6)O15—C58—C56—C573.3 (6)
F2—C12—C11—C10179.6 (4)N10—C58—C56—C57177.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O180.862.102.929 (6)163
N2—H2B···O4i0.862.132.914 (5)150
N4—H4A···O18ii0.862.273.090 (6)160
N4—H4B···O4iii0.862.122.909 (5)152
N6—H6A···O21iv0.862.002.849 (5)169
N6—H6B···O9v0.862.182.925 (4)145
N8—H8A···O160.862.443.285 (5)167
N8—H8B···O9vi0.862.072.890 (4)160
N10—H10A···O70.862.203.031 (5)163
N10—H10B···O12vii0.862.102.897 (5)155
O7—H71···O13vii0.92 (3)1.85 (3)2.762 (4)174 (3)
O7—H72···O14vii0.81 (5)2.02 (5)2.824 (4)174 (3)
O14—H141···N90.93 (4)1.93 (4)2.812 (4)158 (4)
O14—H142···O5viii0.93 (3)1.85 (3)2.782 (4)177 (5)
O16—H161···O190.60 (4)2.26 (3)2.845 (6)164 (8)
O17—H172···O6ix0.73 (5)2.21 (5)2.887 (5)156 (5)
O18—H182···O17x0.63 (6)2.30 (6)2.839 (6)145 (7)
O19—H191···O130.74 (5)2.06 (5)2.800 (6)172 (5)
O20—H201···O18viii0.772.072.611 (6)128
O20—H202···O150.642.142.710 (5)149
O21—H211···O20.91 (3)1.91 (3)2.807 (4)169 (4)
O21—H212···O16xi0.89 (4)1.88 (5)2.759 (5)168 (5)
C4—H4···Cg9xii0.932.813.555 (4)138
C29—H29···Cg9xii0.932.553.361 (5)146
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1, y+1/2, z+3/2; (vi) x+1, y1/2, z+3/2; (vii) x, y+1/2, z1/2; (viii) x, y+1/2, z+1/2; (ix) x+1, y+1, z+1; (x) x+1, y, z+1; (xi) x, y, z+1; (xii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formula[Cu(C7H4FO2)2(C6H6N2O)2(H2O)]·0.5C6H6N2O·3H2O
Mr719.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.4108 (4), 14.8908 (3), 22.8569 (5)
β (°) 105.247 (3)
V3)6045.7 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.24 × 0.20 × 0.19
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.825, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
103729, 15210, 11162
Rint0.060
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.160, 1.12
No. of reflections15210
No. of parameters900
No. of restraints34
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0469P)2 + 20.8651P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.27, 1.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O180.862.102.929 (6)163
N2—H2B···O4i0.862.132.914 (5)150
N4—H4A···O18ii0.862.273.090 (6)160
N4—H4B···O4iii0.862.122.909 (5)152
N6—H6A···O21iv0.862.002.849 (5)169
N6—H6B···O9v0.862.182.925 (4)145
N8—H8A···O160.862.443.285 (5)167
N8—H8B···O9vi0.862.072.890 (4)160
N10—H10A···O70.862.203.031 (5)163
N10—H10B···O12vii0.862.102.897 (5)155
O7—H71···O13vii0.92 (3)1.85 (3)2.762 (4)174 (3)
O7—H72···O14vii0.81 (5)2.02 (5)2.824 (4)174 (3)
O14—H141···N90.93 (4)1.93 (4)2.812 (4)158 (4)
O14—H142···O5viii0.93 (3)1.85 (3)2.782 (4)177 (5)
O16—H161···O190.60 (4)2.26 (3)2.845 (6)164 (8)
O17—H172···O6ix0.73 (5)2.21 (5)2.887 (5)156 (5)
O18—H182···O17x0.63 (6)2.30 (6)2.839 (6)145 (7)
O19—H191···O130.74 (5)2.06 (5)2.800 (6)172 (5)
O20—H201···O18viii0.772.07002.611 (6)128.00
O20—H202···O150.642.14002.710 (5)149.00
O21—H211···O20.91 (3)1.91 (3)2.807 (4)169 (4)
O21—H212···O16xi0.89 (4)1.88 (5)2.759 (5)168 (5)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1, y+1/2, z+3/2; (vi) x+1, y1/2, z+3/2; (vii) x, y+1/2, z1/2; (viii) x, y+1/2, z+1/2; (ix) x+1, y+1, z+1; (x) x+1, y, z+1; (xi) x, y, z+1.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for use of the diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 106 T472).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m619–m620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m52-m53
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds