organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5S)-5-Methyl-3-phenyl-2-sulfanyl­­idene-1,3-thia­zolidin-4-one

aDepartment of Biological & Chemical Engineering, Taizhou Vocational & Technical College, Taizhou 318000, People's Republic of China
*Correspondence e-mail: jiangjr@tzvtc.com

(Received 15 November 2011; accepted 29 November 2011; online 7 December 2011)

In the title mol­ecule, C10H9NOS2, the 2-sulfanyl­idene­thia­zolidin-4-one mean plane and phenyl ring form a dihedral angle of 81.7 (1)°. In the crystal, C—H⋯π inter­actions link mol­ecules into helical chains in [010].

Related literature

For related structures, see: Gattow et al. (1983[Gattow, G., Kiel, G. & Rach, W. (1983). Z. Anorg. Allg. Chem. 506, 145-152.]); Rang et al. (1997[Rang, K., Liao, F. L., Sandstorm, J. & Wang, S. L. (1997). Chirality, 9, 568-577.]). For applications of 2-sulfanyl­idene­thia­zolidin-4-one derivatives, see: Zidar et al. (2010[Zidar, N., Tomašić, T., Šink, R., Rupnik, V., Kovač, A., Turk, S., Patin, D., Blanot, D., Martel, C. C., Dessen, A., Müller-Premru, M., Zega, A., Gobec, S., Mašić, L. P. & Kikelj, D. (2010). J. Med. Chem. 53, 6584-6594.]); Powers et al. (2006[Powers, J. P., Piper, D. E., Li, Y., Mayorga, V., Anzola, J., Chen, J. M., Jaen, J. C., Lee, G., Liu, J., Peterson, M. G., Tonn, G. R., Ye, Q., Walker, N. P. & Wang, Z. (2006). J. Med. Chem. 49,1034-1046.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NOS2

  • Mr = 223.30

  • Orthorhombic, P 21 21 21

  • a = 6.8527 (4) Å

  • b = 8.6643 (5) Å

  • c = 17.5572 (15) Å

  • V = 1042.44 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 153 K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.872, Tmax = 0.919

  • 9028 measured reflections

  • 2777 independent reflections

  • 2561 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.064

  • S = 1.00

  • 2777 reflections

  • 128 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1155 Friedel pairs

  • Flack parameter: −0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cgi 1.00 2.47 3.4321 (16) 162
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2-sulfanylidenethiazolidin-4-one derivatives are known as compounds with potential antifungal activities (Zidar et al., 2010) and potential drugs-inhibitors of the HCV-RNA polymerase (Powers et al., 2006). Herewith we present the title compound (I), which is a new 2-sulfanylidenethiazolidin-4-one derivative.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds 3-(S)-(1-phenylethyl)-5-methyl-2-sulfanylidenethiazolidin-4-one (Rang et al., 1997) and 5-methyl-2-sulfanylidenethiazolidin-4-one (Gattow et al., 1983). The 2-sulfanylidenethiazolidin-4-one and phenyl rings form a dihedral angle of 81.7 (1)°. In the crystal structure, intermolecular C—H···π interactions (Table 1) link molecules into helical chains in [010].

Related literature top

For related structures, see: Gattow et al. (1983); Rang et al. (1997). For applications of 2-sulfanylidenethiazolidin-4-one derivatives, see: Zidar et al. (2010); Powers et al. (2006).

Experimental top

To 54 ml of concentrated ammonia in an ice-salt bath was added 13.95 g(0.15 mol) of benzylamine. carbon bisulfide 19.5 ml(24.6 g,0.323 mol) was added dropwise over a period 2 h and stirring continued for 4 h.The dithiocarbamate precipitated was allowed to stand overnight. It was filtered(warning:filtered to be immediately used), washed with cold ether and dried by suction. The sodium 2-bromopropionate solution was prepared by 15.3 g(0.1 mol) of 2-bromopropionic acid in 9 ml of water and 3.5 g(0.0875 mol)of sodium hydroxide in 6 ml of water,and adding saturated NaHCO3 solution until the solution was basic.The sodium 2-bromopropionate solution was stirred, cooled to 273 K and the dithiocarbamate added by batch about 10 min.After the mixture was stirred for 1 h at the same condition,it was allowed to warm up to r.t. and stand 30 min.Then a hot solution of concentrated HCl plus water(40 ml+27 ml)was added to it.The mixture was boiled for 10 min and cooled to r.t.The precipitate was filtered, washed with cold water and little cold ethanol.The crude product was recrystallized from ethanol to yield 13.6 g(61%) yellow needle-like compounds.

Refinement top

H atoms were placed in calculated positions [C—H = 0.95-1.00 Å] and refined in riding mode, with Uiso(H) = 1.2-1.5 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids.
(5S)-5-Methyl-3-phenyl-2-sulfanylidene-1,3-thiazolidin-4-one top
Crystal data top
C10H9NOS2F(000) = 464
Mr = 223.30Dx = 1.423 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3919 reflections
a = 6.8527 (4) Åθ = 2.3–29.1°
b = 8.6643 (5) ŵ = 0.48 mm1
c = 17.5572 (15) ÅT = 153 K
V = 1042.44 (12) Å3Block, colorless
Z = 40.30 × 0.20 × 0.18 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2777 independent reflections
Radiation source: fine-focus sealed tube2561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 28.5714 pixels mm-1θmax = 29.1°, θmin = 2.6°
phi and ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
k = 1110
Tmin = 0.872, Tmax = 0.919l = 2322
9028 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.086P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.014
2777 reflectionsΔρmax = 0.30 e Å3
128 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1155 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C10H9NOS2V = 1042.44 (12) Å3
Mr = 223.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.8527 (4) ŵ = 0.48 mm1
b = 8.6643 (5) ÅT = 153 K
c = 17.5572 (15) Å0.30 × 0.20 × 0.18 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2777 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
2561 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.919Rint = 0.029
9028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.30 e Å3
S = 1.00Δρmin = 0.17 e Å3
2777 reflectionsAbsolute structure: Flack (1983), 1155 Friedel pairs
128 parametersAbsolute structure parameter: 0.01 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11471 (5)0.55991 (4)0.42516 (2)0.02375 (9)
S20.13997 (6)0.70725 (4)0.57733 (2)0.02665 (10)
O10.53389 (18)0.27885 (14)0.46834 (6)0.0334 (3)
N30.36082 (17)0.47158 (13)0.52694 (6)0.0177 (2)
C20.2145 (2)0.57762 (16)0.51556 (8)0.0186 (3)
C40.4056 (2)0.37374 (17)0.46629 (8)0.0212 (3)
C50.2751 (2)0.40173 (16)0.39840 (8)0.0204 (3)
H50.19370.30750.38990.025*
C60.3913 (2)0.4338 (2)0.32607 (8)0.0285 (3)
H6A0.48890.35250.31880.034*
H6B0.45690.53390.33060.034*
H6C0.30270.43570.28230.034*
C70.4603 (2)0.45370 (16)0.59871 (7)0.0184 (3)
C80.3715 (2)0.36714 (18)0.65529 (8)0.0246 (3)
H80.24510.32490.64760.030*
C90.4698 (3)0.34305 (19)0.72335 (9)0.0285 (4)
H90.41120.28290.76240.034*
C100.6522 (2)0.40624 (18)0.73445 (8)0.0280 (3)
H100.71780.39090.78150.034*
C110.7409 (2)0.4923 (2)0.67723 (9)0.0274 (3)
H110.86710.53480.68520.033*
C120.6448 (2)0.51620 (16)0.60833 (8)0.0226 (3)
H120.70450.57420.56870.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02356 (17)0.02662 (18)0.02108 (17)0.00623 (15)0.00460 (16)0.00175 (15)
S20.02865 (19)0.02565 (18)0.02565 (19)0.00662 (16)0.00106 (18)0.00678 (16)
O10.0377 (7)0.0365 (7)0.0259 (6)0.0192 (6)0.0044 (5)0.0058 (5)
N30.0179 (5)0.0197 (5)0.0155 (5)0.0002 (5)0.0008 (5)0.0004 (4)
C20.0180 (6)0.0183 (6)0.0194 (6)0.0016 (5)0.0012 (5)0.0008 (5)
C40.0225 (8)0.0226 (7)0.0186 (7)0.0013 (6)0.0004 (6)0.0003 (6)
C50.0230 (7)0.0198 (7)0.0186 (6)0.0002 (6)0.0007 (6)0.0027 (6)
C60.0301 (8)0.0347 (8)0.0208 (7)0.0031 (8)0.0021 (6)0.0006 (7)
C70.0216 (6)0.0182 (7)0.0154 (6)0.0014 (5)0.0005 (5)0.0012 (5)
C80.0227 (7)0.0286 (7)0.0227 (7)0.0028 (7)0.0021 (6)0.0003 (6)
C90.0374 (9)0.0291 (8)0.0189 (7)0.0009 (7)0.0043 (7)0.0031 (6)
C100.0355 (9)0.0292 (8)0.0193 (7)0.0057 (7)0.0065 (7)0.0017 (6)
C110.0254 (7)0.0281 (8)0.0286 (8)0.0028 (6)0.0078 (6)0.0007 (6)
C120.0243 (7)0.0205 (6)0.0231 (7)0.0025 (6)0.0008 (6)0.0023 (6)
Geometric parameters (Å, º) top
S1—C21.7350 (14)C6—H6C0.9800
S1—C51.8184 (15)C7—C121.3856 (19)
S2—C21.6427 (14)C7—C81.386 (2)
O1—C41.2043 (17)C8—C91.387 (2)
N3—C21.3746 (17)C8—H80.9500
N3—C41.3951 (18)C9—C101.379 (2)
N3—C71.4412 (17)C9—H90.9500
C4—C51.510 (2)C10—C111.391 (2)
C5—C61.5245 (19)C10—H100.9500
C5—H51.0000C11—C121.393 (2)
C6—H6A0.9800C11—H110.9500
C6—H6B0.9800C12—H120.9500
C2—S1—C593.72 (7)H6A—C6—H6C109.5
C2—N3—C4117.10 (11)H6B—C6—H6C109.5
C2—N3—C7122.96 (11)C12—C7—C8121.67 (13)
C4—N3—C7119.87 (12)C12—C7—N3119.76 (12)
N3—C2—S2126.00 (10)C8—C7—N3118.49 (13)
N3—C2—S1111.18 (10)C7—C8—C9119.05 (15)
S2—C2—S1122.82 (9)C7—C8—H8120.5
O1—C4—N3123.54 (13)C9—C8—H8120.5
O1—C4—C5124.46 (13)C10—C9—C8120.14 (15)
N3—C4—C5112.01 (12)C10—C9—H9119.9
C4—C5—C6112.18 (12)C8—C9—H9119.9
C4—C5—S1105.97 (10)C9—C10—C11120.47 (14)
C6—C5—S1113.16 (10)C9—C10—H10119.8
C4—C5—H5108.5C11—C10—H10119.8
C6—C5—H5108.5C10—C11—C12120.01 (15)
S1—C5—H5108.5C10—C11—H11120.0
C5—C6—H6A109.5C12—C11—H11120.0
C5—C6—H6B109.5C7—C12—C11118.64 (14)
H6A—C6—H6B109.5C7—C12—H12120.7
C5—C6—H6C109.5C11—C12—H12120.7
C4—N3—C2—S2178.34 (11)C2—S1—C5—C40.78 (10)
C7—N3—C2—S24.66 (19)C2—S1—C5—C6124.12 (11)
C4—N3—C2—S11.17 (15)C2—N3—C7—C12102.04 (16)
C7—N3—C2—S1175.83 (10)C4—N3—C7—C1281.04 (17)
C5—S1—C2—N30.14 (11)C2—N3—C7—C881.10 (18)
C5—S1—C2—S2179.39 (9)C4—N3—C7—C895.83 (16)
C2—N3—C4—O1177.98 (14)C12—C7—C8—C90.2 (2)
C7—N3—C4—O14.9 (2)N3—C7—C8—C9177.02 (13)
C2—N3—C4—C51.81 (17)C7—C8—C9—C100.8 (2)
C7—N3—C4—C5175.29 (12)C8—C9—C10—C111.1 (2)
O1—C4—C5—C654.3 (2)C9—C10—C11—C120.5 (2)
N3—C4—C5—C6125.48 (13)C8—C7—C12—C110.8 (2)
O1—C4—C5—S1178.26 (13)N3—C7—C12—C11177.60 (13)
N3—C4—C5—S11.53 (14)C10—C11—C12—C70.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cgi1.002.473.4321 (16)162
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H9NOS2
Mr223.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)153
a, b, c (Å)6.8527 (4), 8.6643 (5), 17.5572 (15)
V3)1042.44 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2008)
Tmin, Tmax0.872, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
9028, 2777, 2561
Rint0.029
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.064, 1.00
No. of reflections2777
No. of parameters128
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.17
Absolute structureFlack (1983), 1155 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cgi1.002.473.4321 (16)162
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

We are very grateful to the Foundation of Taizhou Vocational and Technical College (grant No. 2010ZD09) for financial support.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGattow, G., Kiel, G. & Rach, W. (1983). Z. Anorg. Allg. Chem. 506, 145-152.  CSD CrossRef CAS Web of Science Google Scholar
First citationPowers, J. P., Piper, D. E., Li, Y., Mayorga, V., Anzola, J., Chen, J. M., Jaen, J. C., Lee, G., Liu, J., Peterson, M. G., Tonn, G. R., Ye, Q., Walker, N. P. & Wang, Z. (2006). J. Med. Chem. 49,1034–1046.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRang, K., Liao, F. L., Sandstorm, J. & Wang, S. L. (1997). Chirality, 9, 568-577.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZidar, N., Tomašić, T., Šink, R., Rupnik, V., Kovač, A., Turk, S., Patin, D., Blanot, D., Martel, C. C., Dessen, A., Müller-Premru, M., Zega, A., Gobec, S., Mašić, L. P. & Kikelj, D. (2010). J. Med. Chem. 53, 6584-6594.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds