metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(1-imino­eth­yl)phenolato-κ2N,O]nickel(II)

aDepartment of Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467044, People's Republic of China
*Correspondence e-mail: wangning7903@yahoo.com.cn

(Received 19 November 2011; accepted 29 November 2011; online 3 December 2011)

There are one and a half independent mol­ecules in the asymmetric unit of the title compound, [Ni(C8H8NO)2], one of which is situated on an inversion center. In both mol­ecules, the NiII ion is coordinated by two O and two N atoms from two Schiff base ligands in an approximate square-planar geometry. Inter­molecular N—H⋯O hydrogen bonds link three mol­ecules into centrosymmetric trimer. The crystal packing exhibits weak inter­molecular C—H⋯O hydrogen bonds and voids of 37 Å3.

Related literature

For general background to the use of Schiff bases in coord­in­ation chemistry, see: Haikarainen et al. (2001[Haikarainen, A., Sipila, J., Pietikainen, P., Pajunen, A. & Mutikainen, I. (2001). Bioorg. Med. Chem. 9, 1633-1638.]); Miyasaka et al. (2002[Miyasaka, H., Clerac, R., Ishii, T., Chang, H.-C., Kitagawa, S. & Yamashita, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1528-1534.]). For nickel complexes with Schiff base ligands, see: Liu et al. (2006[Liu, H.-Y., Gao, F., Lu, Z.-S. & Wang, H.-Y. (2006). Acta Cryst. E62, m1306-m1308.]); Wang (2010[Wang, N. (2010). Acta Cryst. E66, m1033.]). For the crystal structure of a similar copper(II) complex, see: Marongiu & Lingafelter (1971[Marongiu, G. & Lingafelter, E. C. (1971). Acta Cryst. B27, 1195-1201.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H8NO)2]

  • Mr = 327.02

  • Triclinic, [P \overline 1]

  • a = 9.1084 (10) Å

  • b = 11.3612 (16) Å

  • c = 11.8249 (18) Å

  • α = 101.006 (3)°

  • β = 93.049 (3)°

  • γ = 109.777 (3)°

  • V = 1121.1 (3) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.781, Tmax = 0.799

  • 6121 measured reflections

  • 4190 independent reflections

  • 2297 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.146

  • S = 0.99

  • 4190 reflections

  • 298 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.90 (1) 2.16 (2) 3.055 (6) 172 (6)
N1—H1⋯O3 0.90 (1) 2.25 (2) 3.138 (6) 168 (6)
C22—H22⋯O1ii 0.93 2.46 3.332 (6) 157 (6)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff bases are a kind of versatile ligands used in coordination chemistry (Haikarainen et al., 2001; Miyasaka et al., 2002). The complexes derived from Schiff bases have proved to be of significant interest in the areas of catalysis, magnetism, medicinal and material chemistry. In the present paper, the title compound (I) - a new Schiff base nickel(II) complex - is reported.

The molecule of (I) is mononuclear nickel(II) complex. The asymmetric unit of (I) contains two crystallographically independent molecules, one of which is situated on inversion center. The Ni atom is coordinated by two O and two N atoms from two Schiff base ligands, forming a square planar geometry. The bond lengths related to the Ni atoms are comparable to those observed in other nickel(II) complexes with Schiff bases (Liu et al., 2006; Wang, 2010), but shorter than the Cu–N and Cu–O bonds observed in a structurally similar copper(II) complex (Marongiu & Lingafelter, 1971).

Intermolecular N—H···O hydrogen bonds link three molecules in (I) into centrosymmetric trimer (Fig. 1). The crystal packing exhibits weak intermolecular C—H···O hydrogen bonds and voids of 37 Å3.

Related literature top

For general background to the use of Schiff bases in coordination chemistry, see: Haikarainen et al. (2001); Miyasaka et al. (2002). For nickel complexes with Schiff base ligands, see: Liu et al. (2006); Wang (2010). For the crystal structure of a similar copper(II) complex, see: Marongiu & Lingafelter (1971).

Experimental top

To a stirred ethanolic solution (30 ml) of 2-acetylphenol (0.136 g, 1 mmol) was added a few drops of 30% ammonia and an ethanolic solution (20 ml) of nickel(II) nitrate hexahydrate (0.291 g, 1 mmol). The final mixture was further stirred at room temperature for 1 h. The clear solution was set aside for a week, yielding red small block-shaped single crystals.

Refinement top

The amino H atoms were located in a difference Fourier map and were refined with distance restraints of N—H = 0.90 (1) Å. All other H atoms were positioned geometrically and were constrained as riding atoms, with C—H distances of 0.93–0.96 Å, and Uiso(H) set to 1.2 or 1.5Ueq(C) of the parent atom. Rotating group models were used for the methyl groups. The structure contains voids of 37 Å3.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The hydrogen-bonded (dashed lines) trimer in (I), showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related to the labeled ones by the symmetry operation (1 - x, 1 - y, 1 - z).
Bis[2-(1-iminoethyl)phenolato-κ2N,O]nickel(II) top
Crystal data top
[Ni(C8H8NO)2]Z = 3
Mr = 327.02F(000) = 510
Triclinic, P1Dx = 1.453 Mg m3
a = 9.1084 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3612 (16) ÅCell parameters from 772 reflections
c = 11.8249 (18) Åθ = 2.3–24.5°
α = 101.006 (3)°µ = 1.30 mm1
β = 93.049 (3)°T = 298 K
γ = 109.777 (3)°Block, red
V = 1121.1 (3) Å30.20 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4190 independent reflections
Radiation source: fine-focus sealed tube2297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 25.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.781, Tmax = 0.799k = 1313
6121 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0585P)2]
where P = (Fo2 + 2Fc2)/3
4190 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.48 e Å3
3 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ni(C8H8NO)2]γ = 109.777 (3)°
Mr = 327.02V = 1121.1 (3) Å3
Triclinic, P1Z = 3
a = 9.1084 (10) ÅMo Kα radiation
b = 11.3612 (16) ŵ = 1.30 mm1
c = 11.8249 (18) ÅT = 298 K
α = 101.006 (3)°0.20 × 0.20 × 0.18 mm
β = 93.049 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4190 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2297 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.799Rint = 0.044
6121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0623 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.48 e Å3
4190 reflectionsΔρmin = 0.39 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.0392 (3)
Ni20.35993 (9)0.05065 (7)0.23238 (6)0.0385 (3)
O10.1878 (5)0.0945 (3)0.2135 (3)0.0472 (11)
O20.5346 (5)0.1953 (3)0.2545 (3)0.0473 (11)
O30.4558 (5)0.4475 (3)0.3430 (3)0.0477 (11)
N10.2586 (6)0.1539 (4)0.3058 (4)0.0423 (12)
N20.4618 (6)0.0507 (4)0.1545 (4)0.0423 (12)
N30.4211 (6)0.6312 (4)0.5050 (4)0.0416 (12)
C10.0143 (7)0.0061 (6)0.3199 (5)0.0451 (15)
C20.0540 (7)0.1072 (6)0.2547 (5)0.0445 (16)
C30.0595 (8)0.2330 (6)0.2351 (6)0.0571 (18)
H30.03790.30090.19130.069*
C40.1993 (8)0.2566 (7)0.2789 (6)0.067 (2)
H40.27080.34030.26510.080*
C50.2365 (9)0.1581 (8)0.3436 (6)0.070 (2)
H50.33160.17520.37410.084*
C60.1317 (8)0.0350 (7)0.3621 (6)0.0594 (19)
H60.15810.03140.40390.071*
C70.1213 (7)0.1262 (6)0.3398 (5)0.0423 (15)
C80.0716 (8)0.2323 (6)0.4004 (6)0.065 (2)
H8A0.15360.31330.40470.098*
H8B0.05190.22160.47750.098*
H8C0.02260.22980.35790.098*
C90.7050 (7)0.1099 (6)0.1411 (5)0.0419 (15)
C100.6652 (7)0.2101 (6)0.2071 (5)0.0433 (15)
C110.7740 (8)0.3369 (6)0.2241 (6)0.0563 (18)
H110.75120.40470.26720.068*
C120.9132 (9)0.3605 (7)0.1774 (6)0.066 (2)
H120.98390.44440.19080.080*
C130.9520 (9)0.2637 (9)0.1111 (7)0.075 (2)
H131.04580.28160.07870.090*
C140.8479 (8)0.1411 (7)0.0948 (6)0.0613 (19)
H140.87300.07520.05080.074*
C150.5979 (7)0.0231 (5)0.1195 (5)0.0396 (15)
C160.6453 (8)0.1295 (6)0.0558 (5)0.0563 (18)
H16A0.56540.21060.05510.084*
H16B0.74300.12540.09410.084*
H16C0.65770.12040.02260.084*
C170.3474 (6)0.6042 (5)0.3019 (5)0.0354 (14)
C180.3980 (7)0.4986 (5)0.2679 (5)0.0412 (15)
C190.3859 (7)0.4450 (6)0.1502 (5)0.0491 (16)
H190.42050.37700.12710.059*
C200.3235 (8)0.4911 (6)0.0672 (6)0.0562 (18)
H200.31550.45320.01090.067*
C210.2730 (8)0.5925 (6)0.0987 (6)0.0567 (18)
H210.23140.62340.04220.068*
C220.2843 (7)0.6477 (6)0.2141 (6)0.0474 (16)
H220.24940.71590.23480.057*
C230.3618 (6)0.6684 (5)0.4228 (5)0.0368 (14)
C240.3106 (9)0.7818 (6)0.4540 (5)0.066 (2)
H24A0.33090.81430.53660.099*
H24B0.20000.75590.42910.099*
H24C0.36800.84770.41610.099*
H10.306 (7)0.2400 (13)0.325 (5)0.080*
H20.399 (6)0.134 (2)0.139 (5)0.080*
H3A0.434 (8)0.676 (5)0.578 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0459 (7)0.0321 (6)0.0439 (7)0.0225 (6)0.0028 (6)0.0035 (5)
Ni20.0378 (5)0.0330 (5)0.0473 (5)0.0168 (4)0.0084 (4)0.0063 (4)
O10.038 (2)0.038 (2)0.067 (3)0.018 (2)0.012 (2)0.006 (2)
O20.045 (3)0.037 (2)0.057 (3)0.016 (2)0.016 (2)0.001 (2)
O30.069 (3)0.041 (2)0.041 (3)0.034 (2)0.001 (2)0.003 (2)
N10.047 (3)0.035 (3)0.044 (3)0.017 (3)0.003 (3)0.004 (3)
N20.043 (3)0.036 (3)0.049 (3)0.015 (3)0.015 (3)0.006 (3)
N30.046 (3)0.038 (3)0.044 (3)0.024 (3)0.000 (3)0.003 (3)
C10.036 (4)0.054 (4)0.050 (4)0.022 (3)0.004 (3)0.014 (3)
C20.036 (4)0.046 (4)0.058 (4)0.018 (3)0.005 (3)0.023 (3)
C30.044 (4)0.053 (4)0.076 (5)0.016 (4)0.003 (4)0.020 (4)
C40.044 (5)0.069 (5)0.079 (6)0.001 (4)0.001 (4)0.033 (4)
C50.048 (5)0.088 (6)0.078 (6)0.024 (5)0.020 (4)0.025 (5)
C60.045 (4)0.073 (5)0.067 (5)0.026 (4)0.014 (4)0.021 (4)
C70.049 (4)0.053 (4)0.032 (4)0.031 (4)0.004 (3)0.005 (3)
C80.058 (5)0.069 (5)0.077 (5)0.038 (4)0.015 (4)0.004 (4)
C90.039 (4)0.047 (4)0.042 (4)0.019 (3)0.004 (3)0.008 (3)
C100.043 (4)0.045 (4)0.039 (4)0.012 (3)0.002 (3)0.010 (3)
C110.047 (4)0.049 (4)0.067 (5)0.012 (4)0.003 (4)0.012 (4)
C120.054 (5)0.065 (5)0.068 (5)0.001 (4)0.005 (4)0.023 (4)
C130.044 (5)0.102 (7)0.069 (6)0.010 (5)0.011 (4)0.020 (5)
C140.042 (4)0.080 (5)0.062 (5)0.024 (4)0.013 (4)0.011 (4)
C150.045 (4)0.045 (4)0.036 (4)0.024 (3)0.002 (3)0.013 (3)
C160.066 (5)0.056 (4)0.059 (4)0.038 (4)0.020 (4)0.010 (4)
C170.028 (3)0.032 (3)0.046 (4)0.012 (3)0.004 (3)0.006 (3)
C180.036 (4)0.038 (3)0.051 (4)0.015 (3)0.011 (3)0.011 (3)
C190.056 (4)0.047 (4)0.043 (4)0.021 (3)0.006 (3)0.004 (3)
C200.058 (4)0.059 (4)0.040 (4)0.010 (4)0.001 (4)0.006 (4)
C210.058 (5)0.059 (5)0.056 (5)0.019 (4)0.001 (4)0.026 (4)
C220.046 (4)0.045 (4)0.056 (5)0.018 (3)0.006 (3)0.019 (3)
C230.032 (3)0.030 (3)0.050 (4)0.013 (3)0.010 (3)0.007 (3)
C240.102 (6)0.063 (4)0.059 (5)0.062 (5)0.017 (4)0.013 (4)
Geometric parameters (Å, º) top
Ni1—O3i1.816 (4)C8—H8C0.9600
Ni1—O31.816 (4)C9—C141.398 (8)
Ni1—N31.853 (5)C9—C101.417 (8)
Ni1—N3i1.853 (5)C9—C151.459 (8)
Ni2—O11.817 (4)C10—C111.414 (8)
Ni2—O21.822 (4)C11—C121.374 (9)
Ni2—N11.847 (5)C11—H110.9300
Ni2—N21.856 (5)C12—C131.382 (10)
O1—C21.310 (7)C12—H120.9300
O2—C101.315 (7)C13—C141.364 (9)
O3—C181.326 (6)C13—H130.9300
N1—C71.289 (7)C14—H140.9300
N1—H10.902 (10)C15—C161.501 (7)
N2—C151.283 (7)C16—H16A0.9600
N2—H20.899 (10)C16—H16B0.9600
N3—C231.294 (7)C16—H16C0.9600
N3—H3A0.897 (10)C17—C221.406 (7)
C1—C61.400 (8)C17—C181.422 (7)
C1—C21.420 (8)C17—C231.453 (7)
C1—C71.454 (8)C18—C191.391 (8)
C2—C31.418 (8)C19—C201.378 (8)
C3—C41.361 (9)C19—H190.9300
C3—H30.9300C20—C211.375 (8)
C4—C51.383 (9)C20—H200.9300
C4—H40.9300C21—C221.371 (8)
C5—C61.369 (9)C21—H210.9300
C5—H50.9300C22—H220.9300
C6—H60.9300C23—C241.502 (7)
C7—C81.498 (8)C24—H24A0.9600
C8—H8A0.9600C24—H24B0.9600
C8—H8B0.9600C24—H24C0.9600
O3i—Ni1—O3180.000 (1)C10—C9—C15120.8 (5)
O3i—Ni1—N386.81 (18)O2—C10—C11116.8 (6)
O3—Ni1—N393.19 (18)O2—C10—C9125.4 (5)
O3i—Ni1—N3i93.19 (18)C11—C10—C9117.9 (6)
O3—Ni1—N3i86.81 (18)C12—C11—C10120.3 (7)
N3—Ni1—N3i180.000 (2)C12—C11—H11119.8
O1—Ni2—O2178.57 (18)C10—C11—H11119.8
O1—Ni2—N193.24 (19)C11—C12—C13122.3 (7)
O2—Ni2—N187.0 (2)C11—C12—H12118.9
O1—Ni2—N287.43 (19)C13—C12—H12118.9
O2—Ni2—N292.39 (19)C14—C13—C12117.7 (7)
N1—Ni2—N2178.2 (2)C14—C13—H13121.2
C2—O1—Ni2127.8 (4)C12—C13—H13121.2
C10—O2—Ni2127.8 (4)C13—C14—C9123.1 (7)
C18—O3—Ni1129.2 (4)C13—C14—H14118.4
C7—N1—Ni2131.3 (4)C9—C14—H14118.4
C7—N1—H1108 (4)N2—C15—C9120.5 (5)
Ni2—N1—H1121 (4)N2—C15—C16119.1 (5)
C15—N2—Ni2132.2 (4)C9—C15—C16120.4 (5)
C15—N2—H2118 (4)C15—C16—H16A109.5
Ni2—N2—H2110 (4)C15—C16—H16B109.5
C23—N3—Ni1131.0 (4)H16A—C16—H16B109.5
C23—N3—H3A119 (4)C15—C16—H16C109.5
Ni1—N3—H3A110 (4)H16A—C16—H16C109.5
C6—C1—C2119.1 (6)H16B—C16—H16C109.5
C6—C1—C7120.2 (6)C22—C17—C18118.0 (5)
C2—C1—C7120.6 (5)C22—C17—C23119.9 (5)
O1—C2—C3117.3 (6)C18—C17—C23122.1 (5)
O1—C2—C1125.5 (5)O3—C18—C19117.8 (5)
C3—C2—C1117.2 (6)O3—C18—C17123.3 (5)
C4—C3—C2121.7 (7)C19—C18—C17118.9 (5)
C4—C3—H3119.2C20—C19—C18121.1 (6)
C2—C3—H3119.2C20—C19—H19119.5
C3—C4—C5121.0 (7)C18—C19—H19119.5
C3—C4—H4119.5C21—C20—C19120.8 (6)
C5—C4—H4119.5C21—C20—H20119.6
C6—C5—C4119.2 (7)C19—C20—H20119.6
C6—C5—H5120.4C22—C21—C20119.4 (6)
C4—C5—H5120.4C22—C21—H21120.3
C5—C6—C1121.9 (7)C20—C21—H21120.3
C5—C6—H6119.0C21—C22—C17121.9 (6)
C1—C6—H6119.0C21—C22—H22119.1
N1—C7—C1121.0 (5)C17—C22—H22119.1
N1—C7—C8119.3 (6)N3—C23—C17121.1 (5)
C1—C7—C8119.7 (6)N3—C23—C24118.8 (5)
C7—C8—H8A109.5C17—C23—C24120.1 (5)
C7—C8—H8B109.5C23—C24—H24A109.5
H8A—C8—H8B109.5C23—C24—H24B109.5
C7—C8—H8C109.5H24A—C24—H24B109.5
H8A—C8—H8C109.5C23—C24—H24C109.5
H8B—C8—H8C109.5H24A—C24—H24C109.5
C14—C9—C10118.7 (6)H24B—C24—H24C109.5
C14—C9—C15120.5 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.90 (1)2.16 (2)3.055 (6)172 (6)
N1—H1···O30.90 (1)2.25 (2)3.138 (6)168 (6)
C22—H22···O1ii0.932.463.332 (6)157 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H8NO)2]
Mr327.02
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.1084 (10), 11.3612 (16), 11.8249 (18)
α, β, γ (°)101.006 (3), 93.049 (3), 109.777 (3)
V3)1121.1 (3)
Z3
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.781, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
6121, 4190, 2297
Rint0.044
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.146, 0.99
No. of reflections4190
No. of parameters298
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.39

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.897 (10)2.164 (15)3.055 (6)172 (6)
N1—H1···O30.902 (10)2.250 (18)3.138 (6)168 (6)
C22—H22···O1ii0.932.463.332 (6)157 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
 

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaikarainen, A., Sipila, J., Pietikainen, P., Pajunen, A. & Mutikainen, I. (2001). Bioorg. Med. Chem. 9, 1633–1638.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, H.-Y., Gao, F., Lu, Z.-S. & Wang, H.-Y. (2006). Acta Cryst. E62, m1306–m1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarongiu, G. & Lingafelter, E. C. (1971). Acta Cryst. B27, 1195–1201.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMiyasaka, H., Clerac, R., Ishii, T., Chang, H.-C., Kitagawa, S. & Yamashita, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1528–1534.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, N. (2010). Acta Cryst. E66, m1033.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds