organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-[Bi­phenyl-4,4′-diylbis(­­oxy)]diphthalic acid

aDepartment of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
*Correspondence e-mail: wjli@sas.ustb.edu.cn

(Received 21 November 2011; accepted 10 December 2011; online 21 December 2011)

In the title mol­ecule, C28H18O10, the two central benzene rings form a dihedral angle of 31.0 (1)°. In the phthalic acid fragments, the carb­oxy groups in the meta positions are approximately coplanar with the attached benzene rings, being inclined to their planes at 2.7 (1) and 10.3 (1)°, while the carb­oxy groups in the ortho positions are twisted from the benzene ring planes by 83.5 (1) and 75.4 (1)°. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane. Weak C—H⋯O hydrogen bonds and ππ inter­actions between the aromatic rings [centroid–centroid distance = 3.7674 (3) Å] further consolidate the crystal packing.

Related literature

For applications of metal-organic frameworks with semi-rigid carb­oxy­lic acid ligands, see: Li et al. (2008[Li, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Wei, G.-H., Zhang, L.-P. & Su, Z.-M. (2008). Cryst. Growth Des. 8, 1610-1616.]); Chen et al. (2008[Chen, X.-L., Zhang, B., Hu, H.-M., Fu, F., Wu, X.-L., Qin, T., Yang, M.-L., Xue, G.-L. & Wang, J.-W. (2008). Cryst. Growth Des. 8, 3706-3712.]). For background to the synthesis of various semi-rigid multicarboxyl­ate ligands, see: Maglio et al. (1997[Maglio, G., Palumbo, R., Schioppa, A. & Tesauro, D. (1997). Polymer, 38, 5849-5856.]).

[Scheme 1]

Experimental

Crystal data
  • C28H18O10

  • Mr = 514.42

  • Orthorhombic, P n a 21

  • a = 21.5817 (7) Å

  • b = 11.2676 (4) Å

  • c = 9.5025 (3) Å

  • V = 2310.76 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.39 × 0.32 × 0.28 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.969

  • 5587 measured reflections

  • 2857 independent reflections

  • 2352 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.118

  • S = 1.08

  • 2857 reflections

  • 343 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O7i 0.82 1.85 2.649 (4) 164
O8—H8A⋯O1ii 0.82 1.85 2.659 (4) 169
O3—H3⋯O6iii 0.82 1.76 2.575 (4) 172
O5—H5⋯O4iv 0.82 1.92 2.732 (4) 169
C11—H11⋯O6v 0.93 2.46 3.284 (5) 148
C13—H13⋯O3vi 0.93 2.51 3.438 (6) 173
C16—H16⋯O6v 0.93 2.54 3.431 (6) 161
Symmetry codes: (i) x, y+1, z+2; (ii) x, y-1, z-2; (iii) [-x+1, -y+2, z+{\script{3\over 2}}]; (iv) [-x+1, -y+2, z-{\script{3\over 2}}]; (v) x, y, z+1; (vi) x, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Various semirigid multicarboxylate ligands are being used in design of metal-organic frameworks (MOFs) having various potential applications (Chen et al., 2008; Li et al., 2008). Herewith we report the synthesis (Maglio et al., 1997) and single-crystal structure of the title compound - a new semirigid multicarboxylate ligand containing two semirigid phthalic acid groups.

In the title molecule (Fig.1), two central benzene rings form a dihedral angle of 31.0 (1)°. In the phthalic acid fragments, the carboxy groups in meta positions are approximately coplanar with the attached benzene rings being inclined to their planes at 2.7 (1) and 10.3 (1)°, respectively, while carboxy groups in ortho positions are twisted from the benzene rings at 83.5 (1) and 75.4 (1)°, respectively. In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to bc plane. Weak intermolecular C—H···O hydrogen bonds (Table 1) and ππ interactions between the aromatic rings [centroid-centroid distance of 3.7674 (3) Å] consolidate further the crystal packing.

Related literature top

For applications of metal-organic frameworks with semi-rigid carboxylic acid ligands, see: Li et al. (2008); Chen et al. (2008). For background to the synthesis of various semi-rigid multicarboxylate ligands, see: Maglio et al. (1997).

Experimental top

To a solution of 4,4'-biphenol(1.62 g,0.01 mol) and anhydrous Na2CO3(2.12 g,0.02 mol) in DMF(25 ml)stirred for 30 min, 3-nitropthalonitrile(3.46 g,0.02 mol) was added.The resulting mixture was stirred for 48 h. Then the mixture was poured into water (500 ml), and a slightly yellow solid was yielded and isolated by filtration. The crude product was dried in air, yielding 3,3'-(4,4'-biphenylenebis(oxy))diphthalonitrile. The mixture of 3,3'-(4,4'-biphenylenebis(oxy))diphthalonitrile (3.6 g, 0.01 mol) and NaOH (3.2 g, 0.08 mol) in distilled water (150 ml) was refluxed until the solution turned clear Then, the solution was cooled drown to room temperature and filtered. After the pH value of the filtrate was adjusted to about 4–5 with HCl (6.0 mol/L), the filtrate was kept undisturbed at room temperature. After about one day, a large amount of yellow solid of (I) was collected by filtration. A mixture containing Zn(NO3)2.6H2O (0.0595 g, 0.2 mmol), (I)(0.0514 g, 0.1 mmol), and H2O (15 ml) was sealed in a Teflon-lined stainless steel reactor and heated at 120 for 3 days. Unfortunately, X-ray quality single crystals of (I) were only obtained.

Refinement top

All hydrogen atoms were positioned geometrically and included in the refinement using a riding-model approximation [aromatic C–H = 0.93 Å, O–H = 0.82 Å] with Uiso(H) = 1.2Ueq(C, O). In the absence of any significant anomalous scatterers in the molecule, the 689 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
3,3'-[Biphenyl-4,4'-diylbis(oxy)]diphthalic acid top
Crystal data top
C28H18O10Dx = 1.479 Mg m3
Mr = 514.42Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1882 reflections
a = 21.5817 (7) Åθ = 3.0–29.1°
b = 11.2676 (4) ŵ = 0.11 mm1
c = 9.5025 (3) ÅT = 293 K
V = 2310.76 (13) Å3Block, yellow
Z = 40.39 × 0.32 × 0.28 mm
F(000) = 1064
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2857 independent reflections
Radiation source: fine-focus sealed tube2352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 825
Tmin = 0.957, Tmax = 0.969k = 139
5587 measured reflectionsl = 511
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.1818P]
where P = (Fo2 + 2Fc2)/3
2857 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C28H18O10V = 2310.76 (13) Å3
Mr = 514.42Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 21.5817 (7) ŵ = 0.11 mm1
b = 11.2676 (4) ÅT = 293 K
c = 9.5025 (3) Å0.39 × 0.32 × 0.28 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2857 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2352 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.969Rint = 0.024
5587 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.118H-atom parameters constrained
S = 1.08Δρmax = 0.18 e Å3
2857 reflectionsΔρmin = 0.16 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30406 (19)1.3782 (3)1.6071 (4)0.0542 (10)
C20.41811 (18)1.3386 (3)1.4287 (4)0.0450 (9)
C30.30093 (19)1.3259 (3)1.4624 (4)0.0527 (10)
C40.35348 (17)1.3116 (3)1.3805 (4)0.0445 (9)
C50.34704 (19)1.2629 (3)1.2462 (4)0.0515 (10)
C60.2897 (2)1.2302 (4)1.1958 (5)0.0638 (12)
H60.28601.19801.10610.077*
C70.2378 (2)1.2454 (4)1.2786 (5)0.0691 (13)
H70.19901.22361.24440.083*
C80.2431 (2)1.2924 (4)1.4110 (5)0.0609 (11)
H80.20811.30201.46670.073*
C90.40425 (18)1.1761 (4)1.0552 (4)0.0509 (10)
C100.3961 (2)1.0575 (4)1.0751 (4)0.0666 (13)
H100.38701.02791.16410.080*
C110.4016 (2)0.9812 (3)0.9611 (5)0.0609 (12)
H110.39630.90010.97490.073*
C120.41474 (16)1.0225 (3)0.8286 (4)0.0446 (9)
C130.4236 (2)1.1432 (3)0.8129 (5)0.0589 (11)
H130.43351.17380.72480.071*
C140.4178 (2)1.2195 (3)0.9266 (5)0.0596 (11)
H140.42331.30070.91420.071*
C150.41748 (16)0.9389 (3)0.7056 (4)0.0438 (9)
C160.4346 (2)0.8221 (3)0.7200 (4)0.0616 (11)
H160.44690.79500.80820.074*
C170.4343 (2)0.7437 (4)0.6092 (5)0.0624 (11)
H170.44640.66530.62270.075*
C180.41619 (17)0.7812 (3)0.4798 (4)0.0467 (9)
C190.3990 (2)0.8959 (3)0.4610 (5)0.0639 (12)
H190.38650.92170.37240.077*
C200.3997 (2)0.9744 (3)0.5721 (4)0.0606 (12)
H200.38811.05290.55710.073*
C210.42764 (16)0.6151 (3)0.1051 (4)0.0410 (8)
C220.3124 (2)0.5020 (3)0.0191 (4)0.0539 (10)
C230.31384 (17)0.5530 (3)0.1252 (4)0.0458 (9)
C240.36704 (17)0.6045 (3)0.1821 (4)0.0421 (8)
C250.36412 (17)0.6571 (3)0.3145 (4)0.0466 (9)
C260.30915 (18)0.6577 (4)0.3882 (4)0.0587 (11)
H260.30740.69290.47670.070*
C270.25716 (19)0.6067 (4)0.3322 (5)0.0656 (12)
H270.22020.60800.38240.079*
C280.2594 (2)0.5534 (4)0.2014 (4)0.0598 (11)
H280.22410.51770.16460.072*
O10.35545 (15)1.4066 (3)1.6566 (3)0.0855 (10)
O20.25406 (16)1.3930 (3)1.6720 (3)0.0896 (11)
H20.26121.42181.74960.134*
O30.44618 (13)1.2493 (2)1.4775 (4)0.0628 (8)
H30.48111.26881.50230.094*
O40.43977 (14)1.4384 (2)1.4219 (4)0.0752 (10)
O50.46202 (13)0.5243 (2)0.0978 (4)0.0697 (9)
H50.49360.54060.05370.105*
O60.44146 (14)0.7116 (2)0.0561 (4)0.0679 (9)
O70.26478 (17)0.4490 (3)0.0584 (4)0.0890 (11)
O80.35855 (15)0.5180 (3)0.0969 (3)0.0740 (9)
H8A0.35250.48630.17330.111*
O90.40081 (14)1.2559 (3)1.1684 (3)0.0626 (8)
O100.41860 (12)0.7034 (2)0.3652 (3)0.0551 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (2)0.072 (2)0.039 (2)0.0091 (19)0.004 (2)0.016 (2)
C20.059 (2)0.0429 (19)0.0327 (19)0.0044 (19)0.0064 (19)0.0080 (16)
C30.059 (2)0.057 (2)0.042 (2)0.0023 (18)0.004 (2)0.014 (2)
C40.045 (2)0.054 (2)0.035 (2)0.0003 (16)0.0065 (18)0.0138 (17)
C50.050 (2)0.060 (2)0.044 (2)0.0032 (18)0.002 (2)0.0131 (19)
C60.062 (3)0.082 (3)0.047 (3)0.013 (2)0.013 (2)0.022 (2)
C70.052 (3)0.098 (3)0.057 (3)0.011 (2)0.009 (2)0.024 (3)
C80.049 (2)0.083 (3)0.051 (3)0.004 (2)0.001 (2)0.019 (2)
C90.054 (2)0.060 (2)0.039 (2)0.0010 (19)0.003 (2)0.016 (2)
C100.101 (4)0.074 (3)0.025 (2)0.001 (2)0.008 (2)0.006 (2)
C110.082 (3)0.054 (2)0.047 (3)0.000 (2)0.005 (2)0.009 (2)
C120.0415 (19)0.0541 (19)0.038 (2)0.0004 (16)0.0004 (18)0.0093 (19)
C130.081 (3)0.061 (2)0.035 (2)0.013 (2)0.005 (2)0.012 (2)
C140.076 (3)0.053 (2)0.050 (3)0.010 (2)0.005 (2)0.012 (2)
C150.039 (2)0.054 (2)0.038 (2)0.0012 (16)0.0011 (18)0.0119 (18)
C160.075 (3)0.071 (2)0.038 (2)0.026 (2)0.013 (2)0.009 (2)
C170.077 (3)0.057 (2)0.053 (3)0.019 (2)0.001 (2)0.011 (2)
C180.044 (2)0.053 (2)0.043 (2)0.0015 (17)0.006 (2)0.0169 (19)
C190.094 (3)0.066 (2)0.031 (2)0.005 (2)0.008 (2)0.002 (2)
C200.089 (3)0.049 (2)0.044 (3)0.003 (2)0.002 (2)0.0033 (19)
C210.047 (2)0.0430 (19)0.0329 (19)0.0040 (16)0.0014 (17)0.0074 (17)
C220.057 (3)0.065 (2)0.039 (2)0.001 (2)0.010 (2)0.009 (2)
C230.051 (2)0.0537 (19)0.033 (2)0.0001 (16)0.0028 (19)0.0076 (17)
C240.048 (2)0.0423 (16)0.036 (2)0.0029 (16)0.0074 (17)0.0066 (17)
C250.047 (2)0.0537 (19)0.039 (2)0.0015 (16)0.0073 (19)0.0128 (18)
C260.058 (3)0.083 (3)0.035 (2)0.005 (2)0.011 (2)0.024 (2)
C270.049 (2)0.097 (3)0.051 (3)0.012 (2)0.016 (2)0.024 (2)
C280.054 (2)0.081 (3)0.045 (2)0.009 (2)0.005 (2)0.016 (2)
O10.060 (2)0.141 (3)0.055 (2)0.0096 (19)0.0108 (16)0.046 (2)
O20.070 (2)0.148 (3)0.0512 (19)0.008 (2)0.0082 (17)0.042 (2)
O30.0580 (17)0.0637 (16)0.067 (2)0.0040 (14)0.0070 (15)0.0019 (16)
O40.075 (2)0.0582 (16)0.092 (3)0.0139 (15)0.032 (2)0.0110 (17)
O50.0570 (17)0.0566 (14)0.096 (3)0.0102 (13)0.0271 (18)0.0128 (17)
O60.0712 (19)0.0516 (15)0.081 (2)0.0075 (13)0.0242 (17)0.0159 (15)
O70.083 (2)0.132 (3)0.0516 (18)0.042 (2)0.0072 (18)0.037 (2)
O80.067 (2)0.111 (2)0.0439 (18)0.0010 (16)0.0045 (16)0.0348 (17)
O90.0624 (18)0.0821 (18)0.0433 (17)0.0121 (14)0.0023 (15)0.0300 (14)
O100.0456 (14)0.0718 (16)0.0479 (17)0.0056 (12)0.0097 (13)0.0281 (14)
Geometric parameters (Å, º) top
C1—O11.246 (5)C16—C171.375 (6)
C1—O21.254 (5)C16—H160.9300
C1—C31.497 (6)C17—C181.357 (6)
C2—O41.219 (4)C17—H170.9300
C2—O31.263 (4)C18—C191.357 (5)
C2—C41.499 (5)C18—O101.399 (4)
C3—C41.385 (5)C19—C201.378 (6)
C3—C81.392 (5)C19—H190.9300
C4—C51.396 (5)C20—H200.9300
C5—C61.377 (6)C21—O61.220 (4)
C5—O91.378 (5)C21—O51.266 (4)
C6—C71.381 (6)C21—C241.504 (5)
C6—H60.9300C22—O71.246 (5)
C7—C81.370 (6)C22—O81.253 (5)
C7—H70.9300C22—C231.487 (5)
C8—H80.9300C23—C281.380 (5)
C9—C141.349 (6)C23—C241.395 (5)
C9—C101.361 (6)C24—C251.392 (5)
C9—O91.404 (4)C25—O101.373 (4)
C10—C111.388 (6)C25—C261.378 (5)
C10—H100.9300C26—C271.368 (6)
C11—C121.372 (6)C26—H260.9300
C11—H110.9300C27—C281.381 (6)
C12—C131.382 (5)C27—H270.9300
C12—C151.503 (5)C28—H280.9300
C13—C141.386 (5)O2—H20.8200
C13—H130.9300O3—H30.8200
C14—H140.9300O5—H50.8200
C15—C161.374 (5)O8—H8A0.8200
C15—C201.384 (6)
O1—C1—O2123.1 (4)C15—C16—C17122.5 (4)
O1—C1—C3119.2 (4)C15—C16—H16118.8
O2—C1—C3117.7 (4)C17—C16—H16118.8
O4—C2—O3124.7 (4)C18—C17—C16119.7 (4)
O4—C2—C4121.8 (3)C18—C17—H17120.1
O3—C2—C4113.4 (3)C16—C17—H17120.1
C4—C3—C8120.3 (4)C17—C18—C19119.6 (4)
C4—C3—C1121.7 (4)C17—C18—O10120.0 (3)
C8—C3—C1118.0 (4)C19—C18—O10120.3 (4)
C3—C4—C5118.6 (4)C18—C19—C20120.5 (4)
C3—C4—C2124.5 (3)C18—C19—H19119.7
C5—C4—C2116.8 (3)C20—C19—H19119.7
C6—C5—O9123.7 (4)C19—C20—C15121.3 (4)
C6—C5—C4120.8 (4)C19—C20—H20119.3
O9—C5—C4115.4 (3)C15—C20—H20119.3
C5—C6—C7119.9 (4)O6—C21—O5123.8 (3)
C5—C6—H6120.1O6—C21—C24118.0 (3)
C7—C6—H6120.1O5—C21—C24118.2 (3)
C8—C7—C6120.2 (4)O7—C22—O8123.2 (4)
C8—C7—H7119.9O7—C22—C23118.6 (4)
C6—C7—H7119.9O8—C22—C23118.2 (4)
C7—C8—C3120.2 (4)C28—C23—C24119.7 (3)
C7—C8—H8119.9C28—C23—C22117.9 (4)
C3—C8—H8119.9C24—C23—C22122.3 (3)
C14—C9—C10120.6 (4)C25—C24—C23119.3 (3)
C14—C9—O9118.3 (3)C25—C24—C21116.4 (3)
C10—C9—O9121.0 (4)C23—C24—C21124.1 (3)
C9—C10—C11119.3 (4)O10—C25—C26123.9 (3)
C9—C10—H10120.4O10—C25—C24116.1 (3)
C11—C10—H10120.4C26—C25—C24120.0 (3)
C12—C11—C10121.6 (3)C27—C26—C25120.4 (4)
C12—C11—H11119.2C27—C26—H26119.8
C10—C11—H11119.2C25—C26—H26119.8
C11—C12—C13117.5 (3)C26—C27—C28120.2 (4)
C11—C12—C15120.6 (3)C26—C27—H27119.9
C13—C12—C15121.8 (3)C28—C27—H27119.9
C12—C13—C14120.9 (4)C23—C28—C27120.3 (4)
C12—C13—H13119.6C23—C28—H28119.9
C14—C13—H13119.6C27—C28—H28119.9
C9—C14—C13120.1 (3)C1—O2—H2109.5
C9—C14—H14120.0C2—O3—H3109.5
C13—C14—H14120.0C21—O5—H5109.5
C16—C15—C20116.3 (3)C22—O8—H8A109.5
C16—C15—C12122.2 (3)C5—O9—C9119.5 (3)
C20—C15—C12121.4 (3)C25—O10—C18118.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O7i0.821.852.649 (4)164
O8—H8A···O1ii0.821.852.659 (4)169
O3—H3···O6iii0.821.762.575 (4)172
O5—H5···O4iv0.821.922.732 (4)169
C11—H11···O6v0.932.463.284 (5)148
C13—H13···O3vi0.932.513.438 (6)173
C16—H16···O6v0.932.543.431 (6)161
Symmetry codes: (i) x, y+1, z+2; (ii) x, y1, z2; (iii) x+1, y+2, z+3/2; (iv) x+1, y+2, z3/2; (v) x, y, z+1; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formulaC28H18O10
Mr514.42
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)21.5817 (7), 11.2676 (4), 9.5025 (3)
V3)2310.76 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.39 × 0.32 × 0.28
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.957, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
5587, 2857, 2352
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.118, 1.08
No. of reflections2857
No. of parameters343
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O7i0.821.852.649 (4)163.6
O8—H8A···O1ii0.821.852.659 (4)168.5
O3—H3···O6iii0.821.762.575 (4)171.6
O5—H5···O4iv0.821.922.732 (4)169.0
C11—H11···O6v0.932.463.284 (5)147.5
C13—H13···O3vi0.932.513.438 (6)172.5
C16—H16···O6v0.932.543.431 (6)160.7
Symmetry codes: (i) x, y+1, z+2; (ii) x, y1, z2; (iii) x+1, y+2, z+3/2; (iv) x+1, y+2, z3/2; (v) x, y, z+1; (vi) x, y, z1.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (grant No. 21101013) and the Foundation of University of Science and Technology Beijing (grant Nos. 00009805 and 06113004).

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-L., Zhang, B., Hu, H.-M., Fu, F., Wu, X.-L., Qin, T., Yang, M.-L., Xue, G.-L. & Wang, J.-W. (2008). Cryst. Growth Des. 8, 3706–3712.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Wei, G.-H., Zhang, L.-P. & Su, Z.-M. (2008). Cryst. Growth Des. 8, 1610–1616.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaglio, G., Palumbo, R., Schioppa, A. & Tesauro, D. (1997). Polymer, 38, 5849–5856.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds