metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(3-fluoro­benzoato-κO)(3-fluoro­benzoato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)cobalt(II)

aCollege of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, 028042 Tongliao, Inner Mongolia, People's Republic of China
*Correspondence e-mail: WXH1009@126.com

(Received 25 November 2011; accepted 1 December 2011; online 7 December 2011)

In the title compound, [Co(C7H4FO2)2(C12H8N2)(H2O)], the CoII ion is coordinated by two O atoms from one 3-fluoro­benzoate (fb) ligand and one O atom from another fb ligand, two N atoms from the 1,10-phenanthroline ligand and a water mol­ecule in a distorted octa­hedral geometry. An intra­molecular O—H⋯O hydrogen bond occurs. Inter­molecular O—H⋯O hydrogen bonds link pairs of mol­ecules into centrosymmetric dimers. Weak inter­molecular C—H⋯O and C—H⋯F hydrogen bonds and ππ inter­actions between the aromatic rings [shortest centroid–centroid distance = 3.4962 (2) Å] further stabilize the crystal packing.

Related literature

For the crystal structures of related metal complexes with 3-fluoro­benzoic acid, see: Sevryugina et al. (2007[Sevryugina, Y., Hietsoi, O. & Petrukhina, M. A. (2007). Chem. Commun. 691, 3853-3855.]); Motokawa et al. (2008[Motokawa, N., Miyasaka, H., Yamashita, M. & Dunbar, K. R. (2008). Angew. Chem. Int. Ed. Engl. 47, 7760-7763.]); Wein et al. (2009[Wein, A. N., Cordeiro, R., Owens, N., Olivier, H., Hardcastle, K. I. & Eichler, J. F. (2009). J. Fluorine Chem. 130, 197-203.]); Yin (2011[Yin, X. (2011). Acta Cryst. E67, m564-m565.]); Miyasaka et al. (2011[Miyasaka, H., Motokawa, N., Atsuumi, R., Kamo, H., Asai, Y. & Yamashita, M. (2011). Dalton Trans. 40, 673-682.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H4FO2)2(C12H8N2)(H2O)]

  • Mr = 535.35

  • Triclinic, [P \overline 1]

  • a = 8.6517 (7) Å

  • b = 12.1233 (10) Å

  • c = 12.6752 (10) Å

  • α = 64.045 (1)°

  • β = 88.879 (1)°

  • γ = 72.892 (1)°

  • V = 1133.22 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.792, Tmax = 0.908

  • 4724 measured reflections

  • 3980 independent reflections

  • 3119 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.03

  • 3980 reflections

  • 333 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O4 0.85 (1) 1.76 (1) 2.584 (3) 165 (3)
O5—H2⋯O1i 0.85 (1) 1.89 (1) 2.734 (3) 176 (3)
C22—H22⋯O5ii 0.93 2.52 3.332 (4) 147
C5—H5A⋯F2iii 0.93 2.55 3.303 (4) 138
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y, -z; (iii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the design and synthesis of metal complexes based on 3-fluorobenzoic acid have attracted much attention (Sevryugina et al., 2007; Motokawa et al., 2008; Wein et al., 2009; Yin, 2011; Miyasaka et al., 2011). We report herein the crystal structure of the title compound (I) (Fig. 1) based on 3-fluorobenzoic acid and 1,10-phenanthroline.

In the crystal structure, the adjacent mononuclear units are linked into a centrosymmetric dimer structure via O—H···O hydrogen bonds (Fig. 2). Furthermore, intramolecular weak intermolecular C—H···O(F) hydrogen bonds (Table 1) and ππ interactions between the aromatic rings [shortest centroid–centroid distance = 3.4962 (2) Å] stabilize the crystal structure.

Related literature top

For the crystal structures of related metal complexes with 3-fluorobenzoic acid, see: Sevryugina et al. (2007); Motokawa et al. (2008); Wein et al. (2009); Yin (2011); Miyasaka et al. (2011).

Experimental top

A mixture of Co(CH3COO)2.4H2O (0.1 mmol), 3-fluorobenzoic acid (0.2 mmol), Et3N (0.1 ml), EtOH (10 ml) and H2O (5 ml) was sealed in a 25 ml Teflon-lined stainless-steel reactor, heated to 393 K for 72 h, and then slowly cooled to room temperature. Purple block crystals suitable for X-ray diffraction analysis were collected by filtration.

Refinement top

H atoms attached to C atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding atoms, with Uiso(H) = 1.2 Ueq(C). The water H atoms were located in a difference map and refined with O—H bond length restrained to 0.85 (1) Å, and with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The dimer structure of (I). All H atoms have been omitted for clarity. The dashed lines indicate the O—H···O hydrogen bonds.
Aqua(3-fluorobenzoato-κO)(3-fluorobenzoato- κ2O,O')(1,10-phenanthroline-κ2N,N')cobalt(II) top
Crystal data top
[Co(C7H4FO2)2(C12H8N2)(H2O)]Z = 2
Mr = 535.35F(000) = 546
Triclinic, P1Dx = 1.569 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6517 (7) ÅCell parameters from 2450 reflections
b = 12.1233 (10) Åθ = 2.6–26.0°
c = 12.6752 (10) ŵ = 0.82 mm1
α = 64.045 (1)°T = 298 K
β = 88.879 (1)°Block, purple
γ = 72.892 (1)°0.30 × 0.20 × 0.12 mm
V = 1133.22 (16) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3980 independent reflections
Radiation source: fine-focus sealed tube3119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 910
Tmin = 0.792, Tmax = 0.908k = 1410
4724 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.055P)2 + 0.0202P]
where P = (Fo2 + 2Fc2)/3
3980 reflections(Δ/σ)max < 0.001
333 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Co(C7H4FO2)2(C12H8N2)(H2O)]γ = 72.892 (1)°
Mr = 535.35V = 1133.22 (16) Å3
Triclinic, P1Z = 2
a = 8.6517 (7) ÅMo Kα radiation
b = 12.1233 (10) ŵ = 0.82 mm1
c = 12.6752 (10) ÅT = 298 K
α = 64.045 (1)°0.30 × 0.20 × 0.12 mm
β = 88.879 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3980 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3119 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.908Rint = 0.032
4724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.73 e Å3
3980 reflectionsΔρmin = 0.39 e Å3
333 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.51799 (4)0.24471 (3)0.12214 (3)0.03633 (15)
F21.0969 (3)0.26008 (18)0.56566 (17)0.0808 (7)
F10.1529 (3)0.3143 (2)0.60217 (19)0.0947 (8)
O50.6418 (3)0.32022 (19)0.02002 (18)0.0433 (5)
O30.7374 (2)0.12837 (18)0.22283 (17)0.0447 (5)
O10.4668 (2)0.41857 (18)0.16171 (17)0.0471 (5)
O20.4068 (2)0.24361 (19)0.27285 (18)0.0495 (5)
O40.9083 (2)0.2289 (2)0.12131 (18)0.0584 (6)
N20.4584 (3)0.0844 (2)0.13322 (19)0.0356 (5)
N10.3025 (3)0.3333 (2)0.0037 (2)0.0407 (6)
C80.8765 (3)0.1430 (3)0.2093 (2)0.0376 (6)
C250.3329 (3)0.1120 (3)0.0540 (2)0.0343 (6)
C10.4124 (3)0.3528 (3)0.2530 (2)0.0380 (7)
C20.3542 (3)0.4031 (3)0.3406 (2)0.0381 (7)
C91.0117 (3)0.0474 (3)0.3071 (2)0.0364 (6)
C40.2237 (4)0.3823 (3)0.5107 (3)0.0573 (8)
C210.2827 (3)0.0175 (3)0.0433 (3)0.0414 (7)
C260.2505 (3)0.2470 (3)0.0217 (2)0.0354 (6)
C240.5326 (4)0.0398 (3)0.2070 (3)0.0442 (7)
H240.61900.06090.26210.053*
C100.9929 (4)0.0668 (3)0.3921 (3)0.0443 (7)
H100.89810.08700.38810.053*
C180.1238 (3)0.2816 (3)0.1082 (3)0.0435 (7)
C30.2792 (3)0.3340 (3)0.4326 (3)0.0455 (7)
H30.26680.25700.44110.055*
C150.2255 (4)0.4583 (3)0.0715 (3)0.0526 (8)
H150.25830.51900.05980.063*
C200.1565 (4)0.0568 (3)0.0480 (3)0.0523 (8)
H200.12510.00580.05750.063*
C220.3644 (4)0.1114 (3)0.1232 (3)0.0519 (8)
H220.33480.17780.12010.062*
C141.1547 (3)0.0739 (3)0.3155 (3)0.0468 (7)
H141.16890.14960.25810.056*
C111.1172 (4)0.1490 (3)0.4818 (3)0.0524 (8)
C70.3732 (4)0.5164 (3)0.3303 (3)0.0509 (8)
H70.42540.56160.26920.061*
C131.2761 (4)0.0106 (3)0.4081 (3)0.0590 (9)
H131.37120.00860.41340.071*
C170.0479 (4)0.4149 (3)0.1789 (3)0.0569 (9)
H170.03590.44340.23870.068*
C230.4859 (4)0.1390 (3)0.2047 (3)0.0520 (8)
H230.53830.22440.25930.062*
C190.0811 (4)0.1834 (3)0.1213 (3)0.0536 (9)
H190.00000.20640.18120.064*
C50.2395 (4)0.4944 (3)0.5024 (3)0.0651 (10)
H5A0.20020.52400.55730.078*
C60.3151 (5)0.5636 (4)0.4105 (3)0.0647 (9)
H60.32680.64050.40270.078*
C160.0966 (4)0.5018 (3)0.1600 (3)0.0644 (10)
H160.04490.59000.20560.077*
C121.2573 (4)0.1229 (3)0.4924 (3)0.0601 (9)
H121.33840.18020.55550.072*
H10.7360 (17)0.299 (3)0.016 (2)0.071 (12)*
H20.613 (3)0.4010 (6)0.066 (2)0.067 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0391 (2)0.0317 (2)0.0372 (2)0.01239 (17)0.00096 (17)0.01383 (18)
F20.1046 (17)0.0410 (11)0.0648 (13)0.0093 (11)0.0002 (12)0.0042 (10)
F10.1097 (19)0.1022 (18)0.0730 (14)0.0412 (15)0.0432 (13)0.0369 (13)
O50.0520 (14)0.0336 (12)0.0385 (12)0.0135 (10)0.0016 (10)0.0112 (10)
O30.0381 (11)0.0401 (11)0.0451 (12)0.0147 (9)0.0004 (9)0.0082 (9)
O10.0589 (13)0.0363 (10)0.0421 (12)0.0120 (10)0.0096 (10)0.0162 (9)
O20.0576 (13)0.0451 (12)0.0556 (13)0.0235 (11)0.0142 (10)0.0269 (11)
O40.0484 (13)0.0549 (14)0.0503 (13)0.0234 (11)0.0023 (10)0.0004 (11)
N20.0351 (13)0.0318 (12)0.0375 (13)0.0105 (10)0.0061 (10)0.0138 (11)
N10.0438 (14)0.0316 (13)0.0421 (14)0.0111 (11)0.0003 (11)0.0131 (11)
C80.0397 (17)0.0350 (15)0.0408 (16)0.0129 (13)0.0036 (13)0.0188 (14)
C250.0331 (15)0.0353 (15)0.0389 (15)0.0129 (12)0.0101 (12)0.0196 (13)
C10.0315 (15)0.0375 (16)0.0377 (16)0.0058 (13)0.0031 (13)0.0137 (13)
C20.0343 (15)0.0349 (15)0.0370 (16)0.0031 (13)0.0038 (12)0.0137 (13)
C90.0354 (15)0.0351 (15)0.0377 (16)0.0078 (13)0.0048 (12)0.0177 (13)
C40.056 (2)0.059 (2)0.0445 (18)0.0064 (16)0.0076 (14)0.0200 (16)
C210.0423 (17)0.0457 (17)0.0499 (18)0.0216 (14)0.0171 (14)0.0290 (15)
C260.0329 (15)0.0396 (15)0.0377 (15)0.0136 (13)0.0068 (12)0.0197 (13)
C240.0495 (18)0.0344 (16)0.0424 (17)0.0117 (14)0.0068 (14)0.0130 (14)
C100.0444 (17)0.0380 (17)0.0479 (18)0.0106 (14)0.0030 (14)0.0186 (14)
C180.0347 (16)0.0515 (19)0.0453 (17)0.0140 (14)0.0047 (13)0.0225 (15)
C30.0464 (18)0.0393 (16)0.0444 (17)0.0081 (14)0.0039 (14)0.0168 (14)
C150.056 (2)0.0353 (17)0.058 (2)0.0092 (15)0.0075 (16)0.0157 (15)
C200.0493 (19)0.067 (2)0.067 (2)0.0310 (18)0.0162 (17)0.0461 (19)
C220.062 (2)0.0423 (19)0.068 (2)0.0268 (17)0.0216 (18)0.0329 (17)
C140.0410 (17)0.0512 (19)0.0459 (18)0.0136 (15)0.0075 (14)0.0205 (15)
C110.065 (2)0.0330 (17)0.0421 (18)0.0021 (16)0.0036 (16)0.0106 (15)
C70.060 (2)0.0481 (18)0.0477 (18)0.0203 (17)0.0085 (16)0.0227 (16)
C130.0378 (18)0.075 (3)0.056 (2)0.0111 (17)0.0021 (16)0.027 (2)
C170.0423 (18)0.062 (2)0.058 (2)0.0108 (17)0.0092 (16)0.0229 (18)
C230.062 (2)0.0299 (16)0.057 (2)0.0140 (15)0.0136 (17)0.0144 (15)
C190.0384 (18)0.080 (3)0.057 (2)0.0253 (18)0.0046 (15)0.040 (2)
C50.072 (2)0.067 (2)0.060 (2)0.009 (2)0.0108 (19)0.040 (2)
C60.079 (2)0.059 (2)0.065 (2)0.021 (2)0.011 (2)0.0368 (19)
C160.060 (2)0.047 (2)0.061 (2)0.0019 (18)0.0139 (18)0.0116 (18)
C120.048 (2)0.062 (2)0.050 (2)0.0102 (18)0.0089 (16)0.0242 (18)
Geometric parameters (Å, º) top
Co1—O32.0412 (19)C26—C181.397 (4)
Co1—O52.071 (2)C24—C231.388 (4)
Co1—N22.101 (2)C24—H240.9300
Co1—O22.118 (2)C10—C111.367 (4)
Co1—N12.147 (2)C10—H100.9300
Co1—O12.2930 (19)C18—C171.406 (4)
F2—C111.361 (4)C18—C191.420 (4)
F1—C41.354 (4)C3—H30.9300
O5—H10.8500 (11)C15—C161.403 (4)
O5—H20.8499 (11)C15—H150.9300
O3—C81.265 (3)C20—C191.353 (4)
O1—C11.261 (3)C20—H200.9300
O2—C11.250 (3)C22—C231.348 (4)
O4—C81.243 (3)C22—H220.9300
N2—C241.333 (3)C14—C131.375 (4)
N2—C251.354 (3)C14—H140.9300
N1—C151.330 (3)C11—C121.362 (5)
N1—C261.356 (3)C7—C61.390 (4)
C8—C91.500 (4)C7—H70.9300
C25—C211.397 (4)C13—C121.367 (5)
C25—C261.440 (4)C13—H130.9300
C1—C21.498 (4)C17—C161.352 (5)
C2—C71.382 (4)C17—H170.9300
C2—C31.385 (4)C23—H230.9300
C9—C141.384 (4)C19—H190.9300
C9—C101.387 (4)C5—C61.387 (5)
C4—C51.364 (5)C5—H5A0.9300
C4—C31.370 (4)C6—H60.9300
C21—C221.400 (4)C16—H160.9300
C21—C201.421 (4)C12—H120.9300
O3—Co1—O588.75 (8)C23—C24—H24118.7
O3—Co1—N291.47 (8)C11—C10—C9118.3 (3)
O5—Co1—N2113.37 (8)C11—C10—H10120.9
O3—Co1—O291.55 (8)C9—C10—H10120.9
O5—Co1—O2152.67 (8)C26—C18—C17116.3 (3)
N2—Co1—O293.94 (8)C26—C18—C19119.6 (3)
O3—Co1—N1165.19 (8)C17—C18—C19124.1 (3)
O5—Co1—N186.87 (9)C4—C3—C2118.1 (3)
N2—Co1—N177.36 (8)C4—C3—H3121.0
O2—Co1—N198.81 (8)C2—C3—H3121.0
O3—Co1—O1101.55 (8)N1—C15—C16122.3 (3)
O5—Co1—O194.09 (8)N1—C15—H15118.9
N2—Co1—O1149.92 (8)C16—C15—H15118.9
O2—Co1—O159.10 (7)C19—C20—C21121.3 (3)
N1—Co1—O192.87 (8)C19—C20—H20119.4
Co1—O5—H1101 (2)C21—C20—H20119.4
Co1—O5—H2121 (2)C23—C22—C21119.9 (3)
H1—O5—H2107.6 (19)C23—C22—H22120.1
C8—O3—Co1129.55 (18)C21—C22—H22120.1
C1—O1—Co186.01 (16)C13—C14—C9120.6 (3)
C1—O2—Co194.26 (17)C13—C14—H14119.7
C24—N2—C25117.4 (2)C9—C14—H14119.7
C24—N2—Co1127.2 (2)F2—C11—C12119.1 (3)
C25—N2—Co1115.39 (17)F2—C11—C10117.9 (3)
C15—N1—C26117.5 (2)C12—C11—C10123.0 (3)
C15—N1—Co1128.8 (2)C2—C7—C6120.6 (3)
C26—N1—Co1113.42 (17)C2—C7—H7119.7
O4—C8—O3124.8 (3)C6—C7—H7119.7
O4—C8—C9118.6 (2)C12—C13—C14120.2 (3)
O3—C8—C9116.6 (2)C12—C13—H13119.9
N2—C25—C21123.4 (3)C14—C13—H13119.9
N2—C25—C26116.4 (2)C16—C17—C18120.1 (3)
C21—C25—C26120.1 (2)C16—C17—H17119.9
O2—C1—O1120.6 (3)C18—C17—H17119.9
O2—C1—C2118.6 (3)C22—C23—C24119.9 (3)
O1—C1—C2120.9 (3)C22—C23—H23120.1
C7—C2—C3120.0 (3)C24—C23—H23120.1
C7—C2—C1121.2 (3)C20—C19—C18120.9 (3)
C3—C2—C1118.7 (3)C20—C19—H19119.5
C14—C9—C10119.3 (3)C18—C19—H19119.5
C14—C9—C8120.3 (2)C4—C5—C6118.7 (3)
C10—C9—C8120.4 (2)C4—C5—H5A120.6
F1—C4—C5118.2 (3)C6—C5—H5A120.6
F1—C4—C3118.5 (3)C5—C6—C7119.2 (3)
C5—C4—C3123.3 (3)C5—C6—H6120.4
C25—C21—C22116.8 (3)C7—C6—H6120.4
C25—C21—C20118.9 (3)C17—C16—C15119.7 (3)
C22—C21—C20124.3 (3)C17—C16—H16120.2
N1—C26—C18124.1 (3)C15—C16—H16120.2
N1—C26—C25116.8 (2)C11—C12—C13118.6 (3)
C18—C26—C25119.1 (3)C11—C12—H12120.7
N2—C24—C23122.6 (3)C13—C12—H12120.7
N2—C24—H24118.7
O5—Co1—O3—C823.8 (2)N2—C25—C21—C222.8 (4)
N2—Co1—O3—C8137.1 (2)C26—C25—C21—C22177.4 (3)
O2—Co1—O3—C8128.9 (2)N2—C25—C21—C20175.9 (3)
N1—Co1—O3—C896.5 (4)C26—C25—C21—C203.9 (4)
O1—Co1—O3—C870.2 (2)C15—N1—C26—C181.3 (4)
O3—Co1—O1—C183.30 (16)Co1—N1—C26—C18172.9 (2)
O5—Co1—O1—C1172.86 (16)C15—N1—C26—C25178.8 (3)
N2—Co1—O1—C130.6 (2)Co1—N1—C26—C257.0 (3)
O2—Co1—O1—C11.53 (15)N2—C25—C26—N12.2 (4)
N1—Co1—O1—C1100.08 (16)C21—C25—C26—N1177.9 (2)
O3—Co1—O2—C1101.01 (17)N2—C25—C26—C18177.7 (2)
O5—Co1—O2—C110.7 (3)C21—C25—C26—C182.1 (4)
N2—Co1—O2—C1167.41 (16)C25—N2—C24—C230.0 (4)
N1—Co1—O2—C189.61 (17)Co1—N2—C24—C23178.2 (2)
O1—Co1—O2—C11.54 (15)C14—C9—C10—C110.4 (4)
O3—Co1—N2—C2413.8 (2)C8—C9—C10—C11177.7 (2)
O5—Co1—N2—C24103.0 (2)N1—C26—C18—C170.3 (4)
O2—Co1—N2—C2477.9 (2)C25—C26—C18—C17179.7 (3)
N1—Co1—N2—C24176.0 (2)N1—C26—C18—C19178.7 (3)
O1—Co1—N2—C24102.6 (3)C25—C26—C18—C191.2 (4)
O3—Co1—N2—C25164.44 (18)F1—C4—C3—C2178.8 (3)
O5—Co1—N2—C2575.2 (2)C5—C4—C3—C20.3 (5)
O2—Co1—N2—C25103.90 (18)C7—C2—C3—C40.8 (4)
N1—Co1—N2—C255.74 (18)C1—C2—C3—C4178.8 (3)
O1—Co1—N2—C2579.2 (2)C26—N1—C15—C160.9 (5)
O3—Co1—N1—C15138.4 (3)Co1—N1—C15—C16172.2 (2)
O5—Co1—N1—C1565.4 (3)C25—C21—C20—C192.3 (4)
N2—Co1—N1—C15179.8 (3)C22—C21—C20—C19179.1 (3)
O2—Co1—N1—C1587.7 (3)C25—C21—C22—C230.5 (4)
O1—Co1—N1—C1528.6 (3)C20—C21—C22—C23178.1 (3)
O3—Co1—N1—C2635.0 (4)C10—C9—C14—C131.2 (4)
O5—Co1—N1—C26107.98 (19)C8—C9—C14—C13176.9 (3)
N2—Co1—N1—C266.82 (18)C9—C10—C11—F2179.2 (3)
O2—Co1—N1—C2698.91 (19)C9—C10—C11—C120.9 (5)
O1—Co1—N1—C26158.07 (19)C3—C2—C7—C61.1 (5)
Co1—O3—C8—O47.9 (4)C1—C2—C7—C6178.4 (3)
Co1—O3—C8—C9173.02 (16)C9—C14—C13—C120.8 (5)
C24—N2—C25—C212.5 (4)C26—C18—C17—C161.1 (5)
Co1—N2—C25—C21175.9 (2)C19—C18—C17—C16180.0 (3)
C24—N2—C25—C26177.7 (2)C21—C22—C23—C241.8 (5)
Co1—N2—C25—C263.9 (3)N2—C24—C23—C222.1 (5)
Co1—O2—C1—O12.8 (3)C21—C20—C19—C181.1 (5)
Co1—O2—C1—C2176.7 (2)C26—C18—C19—C202.8 (4)
Co1—O1—C1—O22.6 (2)C17—C18—C19—C20178.2 (3)
Co1—O1—C1—C2176.9 (2)F1—C4—C5—C6178.6 (3)
O2—C1—C2—C7173.0 (3)C3—C4—C5—C60.1 (5)
O1—C1—C2—C76.5 (4)C4—C5—C6—C70.4 (5)
O2—C1—C2—C37.4 (4)C2—C7—C6—C50.9 (5)
O1—C1—C2—C3173.1 (2)C18—C17—C16—C151.4 (5)
O4—C8—C9—C1417.7 (4)N1—C15—C16—C170.4 (5)
O3—C8—C9—C14163.2 (3)F2—C11—C12—C13179.6 (3)
O4—C8—C9—C10164.2 (3)C10—C11—C12—C131.3 (5)
O3—C8—C9—C1014.9 (4)C14—C13—C12—C110.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O40.85 (1)1.76 (1)2.584 (3)165 (3)
O5—H2···O1i0.85 (1)1.89 (1)2.734 (3)176 (3)
C22—H22···O5ii0.932.523.332 (4)147
C5—H5A···F2iii0.932.553.303 (4)138
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C7H4FO2)2(C12H8N2)(H2O)]
Mr535.35
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.6517 (7), 12.1233 (10), 12.6752 (10)
α, β, γ (°)64.045 (1), 88.879 (1), 72.892 (1)
V3)1133.22 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.30 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.792, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
4724, 3980, 3119
Rint0.032
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.03
No. of reflections3980
No. of parameters333
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O40.8500 (11)1.755 (8)2.584 (3)165 (3)
O5—H2···O1i0.8499 (11)1.886 (4)2.734 (3)176 (3)
C22—H22···O5ii0.932.523.332 (4)146.6
C5—H5A···F2iii0.932.553.303 (4)137.8
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x1, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21003070).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMiyasaka, H., Motokawa, N., Atsuumi, R., Kamo, H., Asai, Y. & Yamashita, M. (2011). Dalton Trans. 40, 673–682.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMotokawa, N., Miyasaka, H., Yamashita, M. & Dunbar, K. R. (2008). Angew. Chem. Int. Ed. Engl. 47, 7760–7763.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSevryugina, Y., Hietsoi, O. & Petrukhina, M. A. (2007). Chem. Commun. 691, 3853–3855.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWein, A. N., Cordeiro, R., Owens, N., Olivier, H., Hardcastle, K. I. & Eichler, J. F. (2009). J. Fluorine Chem. 130, 197–203.  CrossRef CAS Google Scholar
First citationYin, X. (2011). Acta Cryst. E67, m564–m565.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds