organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethane-1,2-diaminium (R)-2-[4-(1-carboxyl­atoeth­­oxy)phen­­oxy]acetate

aEngineering Research Center of Pesticides of Heilongjiang University, Heilongjiang University, Harbin 150050, People's Republic of China, and College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 4 December 2011; accepted 19 December 2011; online 23 December 2011)

In the title compound, C2H10N22+·C11H10O62−, the two acetate groups of the cation form dihedral angles of 74.2 (4) and 63.9 (5)° with the central benzene ring. In the crystal, N—H⋯O hydrogen bonds link the cations and anions into layers parallel to the ab plane.

Related literature

For the synthesis of the title chiral carb­oxy­lic acid, see: Bezwada et al. (2007[Bezwada, R. S. (2007). US Patent 2007/0141113 A1.]). For the structure of a similar achiral carb­oxy­lic acid, see: Gong et al. (2010[Gong, Y.-N., Liu, C.-B., Ding, Y., Xiong, Z.-Q. & Xiong, L. M. (2010). J. Coord. Chem. 63, 1865-1872.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10N22+·C11H10O62−

  • Mr = 300.31

  • Monoclinic, P 21

  • a = 10.066 (2) Å

  • b = 6.7887 (14) Å

  • c = 11.050 (2) Å

  • β = 99.30 (3)°

  • V = 745.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.62 × 0.10 × 0.06 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.937, Tmax = 0.994

  • 7250 measured reflections

  • 3288 independent reflections

  • 1855 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.176

  • S = 1.01

  • 3288 reflections

  • 209 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H33⋯O2i 0.90 (1) 1.86 (2) 2.736 (5) 164 (4)
N1—H32⋯O3 0.91 (1) 1.88 (1) 2.784 (5) 174 (5)
N1—H31⋯O3ii 0.90 (1) 1.94 (3) 2.764 (5) 150 (5)
N2—H34⋯O5 0.90 (1) 1.86 (2) 2.736 (5) 166 (5)
N2—H35⋯O5iii 0.90 (1) 1.94 (3) 2.748 (5) 148 (5)
N2—H36⋯O6iv 0.90 (1) 1.84 (1) 2.736 (5) 172 (5)
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chiral ligands became one of the focus in supramolecular research due to their wide applications in catalytic and pharmaceutical industry. There are many reports about aromatic carboxylic acid, such as 4-carboxyphenoxyacetic acid (Gong et al., 2010). However, structural reports about chiral carboxylic acids are rare. Herein, we report the synthesis and structure of a new chiral aromatic carboxylic acid derivative.

The asymmertric unit of title compound contains one (R)-2-(4-(1-carboxyethoxy)phenoxy)acetate anion and one ethane-1,2-diaminium cation (Fig. 1). Two acetate groups of the anion twist towards the same side of the benzenyl plane with the torsion angles of 105.8 (4) and 116.1 (5) °, respectively. A double layers structure parallel to the ab plane is built up by N—H···O hydrogen bonds linking the anions and cations (Fig. 2, Table 1).

Related literature top

For the synthesis of the title chiral carboxylic acid, see: Bezwada et al. (2007). For the structure of a similar achiral carboxylic acid, see: Gong et al. (2010).

Experimental top

(R)-2-(4-(carboxymethoxy)phenoxy)propanoic acid was prepared by the reaction of R-(+)-2-(4-hydroxy-phenoxy)propionic acid and methyl chloroacetate under alkaline condition (Bezwada et al., 2007). (R)-2-(4-(carboxymethoxy)phenoxy)propanoic acid (0.048 g, 0.2 mmol) and ethylenediamine (1 mL, 0.2 mol / L) were dissolved in ethanol (15 mL). After stirring for 1 hour, the solution was filtered, and the filtrate was allowed to stand in a desiccator at room temperature for a few days. Colourless block crystals of title compound were obtained.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 – 0.98 Å, and with Uiso(H) = 1.2Ueq(C). N-bound H atoms were located in a differece Fourier map and were refined with restraint N—H = 0.90 (1) Å, and Uiso(H) = 1.5Ueq(N). In the absence of any significant anomalous scatterers in the molecule, 1444 sets of Friedel pairs were merged before the final refinement and the absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial packing view showing the intermolecular hydrogen bonds as dashed lines.
Ethane-1,2-diaminium (R)-2-[4-(1-carboxylatoethoxy)phenoxy]acetate top
Crystal data top
C2H10N22+·C11H10O62F(000) = 320
Mr = 300.31Dx = 1.338 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4706 reflections
a = 10.066 (2) Åθ = 3.0–27.6°
b = 6.7887 (14) ŵ = 0.11 mm1
c = 11.050 (2) ÅT = 293 K
β = 99.30 (3)°Needle, colorless
V = 745.2 (3) Å30.62 × 0.10 × 0.06 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3288 independent reflections
Radiation source: fine-focus sealed tube1855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1312
Tmin = 0.937, Tmax = 0.994k = 88
7250 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.081P)2]
where P = (Fo2 + 2Fc2)/3
3288 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.40 e Å3
7 restraintsΔρmin = 0.21 e Å3
Crystal data top
C2H10N22+·C11H10O62V = 745.2 (3) Å3
Mr = 300.31Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.066 (2) ŵ = 0.11 mm1
b = 6.7887 (14) ÅT = 293 K
c = 11.050 (2) Å0.62 × 0.10 × 0.06 mm
β = 99.30 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3288 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1855 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.994Rint = 0.066
7250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0667 restraints
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.40 e Å3
3288 reflectionsΔρmin = 0.21 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2605 (4)0.7401 (6)0.3560 (4)0.0435 (9)
C20.3465 (5)0.8903 (5)0.3366 (4)0.0501 (11)
H20.31451.01870.32610.060*
C30.4808 (4)0.8504 (6)0.3325 (4)0.0505 (11)
H30.53870.95250.31990.061*
C40.5296 (4)0.6592 (6)0.3471 (4)0.0481 (10)
C50.4409 (4)0.5082 (6)0.3668 (4)0.0508 (11)
H50.47180.37900.37610.061*
C60.3102 (5)0.5494 (6)0.3723 (4)0.0506 (10)
H60.25280.44810.38720.061*
C70.0731 (4)0.9589 (6)0.3553 (4)0.0491 (10)
H70.13211.04000.41480.059*
C80.0612 (4)1.0535 (6)0.2292 (4)0.0462 (10)
C90.0588 (6)0.9415 (10)0.3946 (6)0.0858 (17)
H9A0.04920.87210.47120.129*
H9B0.11910.87040.33370.129*
H9C0.09451.07050.40450.129*
C100.7100 (5)0.4428 (7)0.3237 (4)0.0550 (11)
H10A0.69200.36350.39220.066*
H10B0.80680.44690.32670.066*
C110.6471 (4)0.3445 (6)0.2061 (4)0.0477 (10)
C120.2339 (4)0.5461 (6)0.0488 (4)0.0479 (10)
H12A0.30120.57380.12000.057*
H12B0.24070.64610.01260.057*
C130.2592 (4)0.3446 (6)0.0019 (4)0.0519 (11)
H13A0.26580.24780.06340.062*
H13B0.18380.30850.06420.062*
N10.0972 (3)0.5515 (5)0.0840 (3)0.0455 (8)
H310.025 (3)0.541 (8)0.024 (3)0.068*
H320.086 (5)0.678 (3)0.106 (4)0.068*
H330.066 (4)0.455 (5)0.128 (4)0.068*
N20.3835 (4)0.3422 (5)0.0555 (3)0.0475 (8)
H340.446 (4)0.367 (8)0.010 (3)0.071*
H350.392 (5)0.237 (5)0.103 (4)0.071*
H360.369 (5)0.441 (5)0.111 (4)0.071*
O10.1245 (3)0.7630 (4)0.3592 (3)0.0525 (8)
O20.0518 (4)1.2367 (4)0.2264 (3)0.0759 (11)
O30.0581 (3)0.9464 (4)0.1361 (3)0.0542 (7)
O40.6629 (3)0.6369 (4)0.3379 (3)0.0578 (8)
O50.5970 (3)0.4524 (4)0.1170 (3)0.0576 (8)
O60.6516 (4)0.1649 (5)0.2056 (3)0.0761 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (3)0.043 (2)0.032 (2)0.006 (2)0.0121 (18)0.0019 (17)
C20.075 (3)0.0274 (19)0.047 (3)0.0075 (18)0.009 (2)0.0032 (16)
C30.058 (3)0.044 (2)0.051 (3)0.010 (2)0.013 (2)0.008 (2)
C40.062 (3)0.042 (2)0.040 (2)0.007 (2)0.005 (2)0.0107 (19)
C50.065 (3)0.050 (3)0.038 (2)0.001 (2)0.011 (2)0.0002 (18)
C60.068 (3)0.040 (2)0.045 (3)0.012 (2)0.011 (2)0.001 (2)
C70.057 (2)0.047 (2)0.048 (3)0.005 (2)0.020 (2)0.002 (2)
C80.051 (2)0.038 (2)0.052 (3)0.004 (2)0.014 (2)0.0020 (19)
C90.085 (4)0.080 (4)0.100 (5)0.011 (3)0.038 (3)0.022 (3)
C100.061 (3)0.051 (2)0.053 (3)0.001 (2)0.009 (2)0.005 (2)
C110.063 (3)0.042 (2)0.040 (3)0.006 (2)0.013 (2)0.001 (2)
C120.058 (3)0.045 (2)0.041 (2)0.003 (2)0.0112 (19)0.004 (2)
C130.053 (3)0.046 (2)0.059 (3)0.0021 (19)0.014 (2)0.009 (2)
N10.052 (2)0.0373 (17)0.048 (2)0.0015 (17)0.0123 (16)0.0024 (17)
N20.057 (2)0.0417 (18)0.043 (2)0.0041 (18)0.0071 (17)0.0041 (16)
O10.0629 (18)0.0382 (14)0.060 (2)0.0010 (14)0.0213 (15)0.0086 (13)
O20.118 (3)0.0369 (17)0.079 (3)0.0101 (18)0.033 (2)0.0051 (15)
O30.0700 (19)0.0511 (16)0.0407 (18)0.0024 (15)0.0066 (14)0.0018 (14)
O40.0515 (17)0.0547 (18)0.067 (2)0.0070 (15)0.0098 (15)0.0218 (15)
O50.076 (2)0.0496 (16)0.0442 (18)0.0125 (16)0.0013 (15)0.0015 (15)
O60.125 (3)0.0359 (17)0.072 (2)0.0122 (19)0.027 (2)0.0036 (15)
Geometric parameters (Å, º) top
C1—C21.377 (6)C9—H9C0.9600
C1—O11.384 (5)C10—O41.418 (5)
C1—C61.389 (6)C10—C111.507 (6)
C2—C31.387 (6)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.387 (6)C11—O61.221 (5)
C3—H30.9300C11—O51.264 (5)
C4—O41.371 (5)C12—N11.489 (5)
C4—C51.399 (6)C12—C131.516 (5)
C5—C61.356 (6)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—H60.9300C13—N21.468 (6)
C7—O11.426 (5)C13—H13A0.9700
C7—C91.467 (6)C13—H13B0.9700
C7—C81.522 (6)N1—H310.904 (10)
C7—H70.9800N1—H320.907 (10)
C8—O21.247 (5)N1—H330.900 (10)
C8—O31.256 (5)N2—H340.898 (10)
C9—H9A0.9600N2—H350.900 (10)
C9—H9B0.9600N2—H360.900 (10)
C2—C1—O1124.8 (4)O4—C10—H10A108.8
C2—C1—C6119.2 (4)C11—C10—H10A108.8
O1—C1—C6116.0 (4)O4—C10—H10B108.8
C1—C2—C3120.1 (4)C11—C10—H10B108.8
C1—C2—H2120.0H10A—C10—H10B107.7
C3—C2—H2120.0O6—C11—O5125.9 (4)
C2—C3—C4120.5 (4)O6—C11—C10115.8 (4)
C2—C3—H3119.7O5—C11—C10118.3 (4)
C4—C3—H3119.7N1—C12—C13109.6 (3)
O4—C4—C3115.3 (4)N1—C12—H12A109.7
O4—C4—C5126.0 (4)C13—C12—H12A109.7
C3—C4—C5118.8 (4)N1—C12—H12B109.7
C6—C5—C4120.2 (4)C13—C12—H12B109.7
C6—C5—H5119.9H12A—C12—H12B108.2
C4—C5—H5119.9N2—C13—C12111.3 (3)
C5—C6—C1121.2 (4)N2—C13—H13A109.4
C5—C6—H6119.4C12—C13—H13A109.4
C1—C6—H6119.4N2—C13—H13B109.4
O1—C7—C9104.9 (4)C12—C13—H13B109.4
O1—C7—C8113.3 (4)H13A—C13—H13B108.0
C9—C7—C8111.3 (4)C12—N1—H31119 (3)
O1—C7—H7109.0C12—N1—H32105 (3)
C9—C7—H7109.0H31—N1—H3299 (4)
C8—C7—H7109.0C12—N1—H33122 (3)
O2—C8—O3124.5 (4)H31—N1—H3391 (4)
O2—C8—C7116.0 (4)H32—N1—H33118 (5)
O3—C8—C7119.6 (4)C13—N2—H34102 (3)
C7—C9—H9A109.5C13—N2—H35114 (3)
C7—C9—H9B109.5H34—N2—H35120 (5)
H9A—C9—H9B109.5C13—N2—H36102 (3)
C7—C9—H9C109.5H34—N2—H36115 (5)
H9A—C9—H9C109.5H35—N2—H36102 (4)
H9B—C9—H9C109.5C1—O1—C7117.4 (3)
O4—C10—C11113.9 (4)C4—O4—C10117.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H33···O2i0.90 (1)1.86 (2)2.736 (5)164 (4)
N1—H32···O30.91 (1)1.88 (1)2.784 (5)174 (5)
N1—H31···O3ii0.90 (1)1.94 (3)2.764 (5)150 (5)
N2—H34···O50.90 (1)1.86 (2)2.736 (5)166 (5)
N2—H35···O5iii0.90 (1)1.94 (3)2.748 (5)148 (5)
N2—H36···O6iv0.90 (1)1.84 (1)2.736 (5)172 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z; (iii) x+1, y1/2, z; (iv) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC2H10N22+·C11H10O62
Mr300.31
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)10.066 (2), 6.7887 (14), 11.050 (2)
β (°) 99.30 (3)
V3)745.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.62 × 0.10 × 0.06
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.937, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
7250, 3288, 1855
Rint0.066
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.176, 1.01
No. of reflections3288
No. of parameters209
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.21

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H33···O2i0.900 (10)1.858 (17)2.736 (5)164 (4)
N1—H32···O30.907 (10)1.880 (12)2.784 (5)174 (5)
N1—H31···O3ii0.904 (10)1.94 (3)2.764 (5)150 (5)
N2—H34···O50.898 (10)1.858 (17)2.736 (5)166 (5)
N2—H35···O5iii0.900 (10)1.94 (3)2.748 (5)148 (5)
N2—H36···O6iv0.900 (10)1.841 (14)2.736 (5)172 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z; (iii) x+1, y1/2, z; (iv) x+1, y+1/2, z.
 

Acknowledgements

The authors thank the Project of Innovation Service Platform of Heilongjiang Province (PG09J001) and Heilongjiang University for supporting this work.

References

First citationBezwada, R. S. (2007). US Patent 2007/0141113 A1.  Google Scholar
First citationGong, Y.-N., Liu, C.-B., Ding, Y., Xiong, Z.-Q. & Xiong, L. M. (2010). J. Coord. Chem. 63, 1865–1872.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds