organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o124-o125

2-Amino­pyridinium 2-meth­­oxy­carbonyl-4,6-di­nitro­phenolate

aCollege of Materials Science & Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
*Correspondence e-mail: xzj@hqu.edu.cn

(Received 18 October 2011; accepted 8 December 2011; online 14 December 2011)

In the title mol­ecular salt, C5H7N2+·C8H5N2O7, the 2-amino­pyridinium cation is essentially planar, with a maximium deviation of 0.015 (1) Å, while the 2-meth­oxy­carbonyl-4,6-dinitro­phenolate anion is slightly twisted away from planarity, with a maximium deviation of 0.187 (1) Å. Deprotonation of the hy­droxy O atom was observed. The cation and anion are connected by four bifurcated N—H⋯(O,O) hydrogen bonds, forming a mol­ecular proton-transfer adduct. The dihedral angle between the pyridinium ring in the cation and the benzene ring in the anion is 3.65 (6)°. Every adduct connects to six neighboring adducts by N—H⋯O and C—H⋯O hydrogen bonds, yielding extended layers parallel to the bc plane. There is a weak ππ inter­action between the benzene rings of two neighboring anions; the inter­planar spacing and the centroid–centroid separation are 3.309 (1) and 3.69 (1) Å, respectively.

Related literature

For the structures of mol­ecular proton-transfer adducts containing substituted pyridinium and an acid anion, see Gellert & Hsu (1988[Gellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311-313.]); Smith et al. (2000[Smith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505-1506.]); Jebas et al. (2006[Jebas, S. R., Balasubramanian, T., Peschar, R. & Fraanje, J. (2006). Acta Cryst. E62, o2606-o2607.]); Rademeyer (2007[Rademeyer, M. (2007). Acta Cryst. E63, o545-o546.]); Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o691-o692.],b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1418-o1419.],c[Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o2323-o2324.]); Perpétuo & Janczak (2010[Perpétuo, G. J. & Janczak, J. (2010). Acta Cryst. C66, o225-o228.]). For comparable structures, see: Jebas et al. (2006[Jebas, S. R., Balasubramanian, T., Peschar, R. & Fraanje, J. (2006). Acta Cryst. E62, o2606-o2607.]); Perpétuo & Janczak (2010[Perpétuo, G. J. & Janczak, J. (2010). Acta Cryst. C66, o225-o228.]); Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o691-o692.]). For the synthesis of 3,5-dinitro­methyl salicylate, see: Bartlett & Trachten (1958[Bartlett, P. D. & Trachten, E. N. (1958). J. Am. Chem. Soc. 80, 5808-5812.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C8H5N2O7

  • Mr = 336.27

  • Monoclinic, P 21 /n

  • a = 7.4088 (3) Å

  • b = 19.1779 (6) Å

  • c = 9.9784 (4) Å

  • β = 98.2825 (15)°

  • V = 1403.00 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.35 × 0.35 × 0.26 mm

Data collection
  • Rigaku R-AXIS SPIDER IP diffractometer

  • Absorption correction: ψ scan (TEXRAY; Molecular Structure Corporation, 1999)[Molecular Structure Corporation (1999). TEXRAY. MSC, The Woodlands, Texas, USA.] Tmin = 0.951, Tmax = 0.969

  • 21789 measured reflections

  • 3200 independent reflections

  • 2760 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.09

  • 3200 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01A⋯O3 0.90 1.88 2.6864 (13) 148
N1—H01A⋯O2 0.90 2.23 2.8783 (14) 130
N2—H02A⋯O3 0.88 2.01 2.7592 (14) 142
N2—H02A⋯O4 0.88 2.45 3.2082 (15) 144
N2—H02B⋯O6i 0.87 2.24 3.0537 (14) 155
C4—H4A⋯O7ii 0.93 2.57 3.2052 (16) 126
C5—H5A⋯O5iii 0.93 2.42 3.2604 (17) 151
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y, z+1.

Data collection: RAPID-AUTO (Rigaku, 2008[Rigaku (2008). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structures of many molecular proton transfer adducts containing substituted pyridinium and an acid anion have been reported in the past decades (Gellert & Hsu, 1988; Smith et al., 2000; Jebas et al., 2006; Rademeyer, 2007; Hemamalini & Fun, 2010a,b, c). As a substituted pyridinium, 2-aminopyridine has attracted great attention due to its various hydrogen bonds (Gellert & Hsu, 1988; Jebas et al., 2006; Perpétuo & Janczak, 2010; Hemamalini & Fun, 2010a). We report here the synthesis and crystal structure of 2-aminopyridinium 3,5-dinitromethyl salicylate (I).

In the title compound, proton transfer has occurred from the hydroxyl group. As illustrated in Figure 1, the title molecule consists of a protonated 2-aminopyridinium cation and a 3,5-dinitromethyl salicylate anion. The cation and the anion are linked via two N—H···O(hydroxy), one N—H···O(carboxy) and one N—H···O(nitro group) hydrogen bonds to form an ion pair. The dihedral angle between the pyridinium ring in the cation and the benzene ring in the anion is 3.65 (6)°.

The bond lengths and angles in (I) are similar to those in other 2-aminopyridinium complexes (Jebas et al., 2006; Perpétuo & Janczak, 2010; Hemamalini & Fun, 2010a).

As shown in Figure 2, the adduct at (x, y, z) connects to two neighboring adducts [at (0.5-x, 0.5+y, 0.5-z) and at (0.5-x, -0.5+y, 0.5-z)] through two N2-H···O6A (symmetry code A, 0.5-x, 0.5+y, 0.5-z) hydrogen bonds, forming a spiral chain. At the same time, the adduct at (x, y, z) interacts with two neighboring adducts via two C4-H···O7B (symmetry code B, 0.5-x, 0.5+y, 1.5-z) hydrogen bonds, also resulting in a spiral chain. A further C5-H···O5D (symmetry code D, x, y, 1+z) hydrogen bond connects the adduct to another two adducts. Therefore, every adduct connects to six neighboring adducts by these N-H···O and Caryl-H···O hydrogen bonds to yield an extended undulating two-dimensional network (Figure 2).

The benzene ring of the anion at (x, y, z) and the benzene ring in the anion at (1-x, 1-y, 1-z) are almost parallel, with a dihedral angle of 0.00 (6)° between them. The interplanar spacing is about 3.309 (1) Å, the centroid-centroid separation is 3.69 (1) Å, indicating a weak π-π interaction between these rings (Figure 3).

Related literature top

For the structures of molecular proton-transfer adducts containing substituted pyridinium and an acid anion, see Gellert & Hsu (1988); Smith et al. (2000); Jebas et al. (2006); Rademeyer (2007); Hemamalini & Fun (2010a,b,c); Perpétuo & Janczak (2010). For comparable structures, see: Jebas et al. (2006); Perpétuo & Janczak (2010); Hemamalini & Fun (2010a). For the synthesis of 3,5-dinitromethyl salicylate, see: Bartlett & Trachten (1958).

Experimental top

Reagents and solvents were used as obtained without further purification. 3,5-dinitromethyl salicylate was synthesized according to literature methods (Bartlett & Trachten, 1958). Ni(OAc)2.4H2O (0.0498g, 0.2 mmol) was dissolved in 10 mL of methanol to yield solution A. 3,5-dinitromethyl salicylate (0.0484 g, 0.2 mmol) and 2-aminopyridine (0.0188 g , 0.2 mmol) were dissolved in 10 mL of acetone to yield solution B. Solution A was slowly added to solution B. The mixture was stirred for 4 h at room temperature. After filtration, the green filtrate was allowed to stand at room temperature for several days. The yellow block crystals of the title compound (I) were obtained by slow evaporation.

Refinement top

The pyridinium H atom and H atoms in the NH2 group were located in a Fourier map and their positions refined. This resulted in the best placement of these atoms in the hydrogen-bonding network. All other H atoms were placed in calculated positions and refined using a riding model [C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C-H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms].

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2008); cell refinement: RAPID-AUTO (Rigaku, 2008); data reduction: RAPID-AUTO (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines
[Figure 2] Fig. 2. The extended 2D network of compound (I) formed by N-H···O and C-H···O hydrogen bonds
2-Aminopyridinium 2-methoxycarbonyl-4,6-dinitrophenolate top
Crystal data top
C5H7N2+·C8H5N2O7F(000) = 696
Mr = 336.27Dx = 1.592 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3200 reflections
a = 7.4088 (3) Åθ = 3.2–27.5°
b = 19.1779 (6) ŵ = 0.13 mm1
c = 9.9784 (4) ÅT = 293 K
β = 98.2825 (15)°Block, pale yellow
V = 1403.00 (9) Å30.35 × 0.35 × 0.26 mm
Z = 4
Data collection top
Rigaku R-AXIS SPIDER IP
diffractometer
3200 independent reflections
Radiation source: fine-focus sealed tube2760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scanθmax = 27.5°, θmin = 3.2°
Absorption correction: ψ scan
(TEXRAY; Molecular Structure Corporation, 1999)
h = 99
Tmin = 0.951, Tmax = 0.969k = 2424
21789 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.3452P]
where P = (Fo2 + 2Fc2)/3
3200 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C5H7N2+·C8H5N2O7V = 1403.00 (9) Å3
Mr = 336.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4088 (3) ŵ = 0.13 mm1
b = 19.1779 (6) ÅT = 293 K
c = 9.9784 (4) Å0.35 × 0.35 × 0.26 mm
β = 98.2825 (15)°
Data collection top
Rigaku R-AXIS SPIDER IP
diffractometer
3200 independent reflections
Absorption correction: ψ scan
(TEXRAY; Molecular Structure Corporation, 1999)
2760 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.969Rint = 0.024
21789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.09Δρmax = 0.32 e Å3
3200 reflectionsΔρmin = 0.30 e Å3
221 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02842 (16)0.69774 (6)0.60013 (13)0.0241 (3)
C20.11062 (17)0.75222 (6)0.66522 (14)0.0289 (3)
H2A0.16390.78970.61510.035*
C30.11154 (18)0.74967 (7)0.80192 (14)0.0311 (3)
H3A0.16570.78560.84450.037*
C40.03148 (18)0.69327 (7)0.87924 (13)0.0307 (3)
H4A0.02990.69190.97260.037*
C50.04326 (17)0.64096 (7)0.81366 (12)0.0267 (3)
H5A0.09520.60290.86250.032*
C60.29417 (15)0.45835 (6)0.52321 (11)0.0210 (2)
C70.22285 (16)0.51541 (6)0.43454 (12)0.0222 (2)
C80.25155 (16)0.50645 (6)0.29470 (12)0.0228 (2)
C90.34193 (16)0.45058 (6)0.24919 (11)0.0232 (2)
H9A0.35710.44730.15850.028*
C100.41023 (15)0.39918 (6)0.34032 (12)0.0215 (2)
C110.38567 (16)0.40290 (6)0.47609 (12)0.0214 (2)
H11A0.43140.36760.53550.026*
C120.27237 (16)0.46104 (6)0.66889 (12)0.0237 (2)
C130.3255 (2)0.40100 (9)0.87787 (14)0.0451 (4)
H13A0.33990.35380.90980.068*
H13B0.20930.41850.89420.068*
H13C0.42090.42940.92500.068*
N10.04300 (14)0.64367 (5)0.67753 (10)0.0233 (2)
H01A0.08710.60720.63660.044 (5)*
N20.01983 (16)0.69663 (6)0.46755 (11)0.0301 (3)
H02A0.02120.65920.42980.043 (5)*
H02B0.05600.73300.41890.043 (5)*
N30.18614 (16)0.55870 (6)0.19326 (11)0.0312 (3)
N40.50832 (14)0.34132 (5)0.29295 (10)0.0241 (2)
O10.33525 (16)0.40289 (5)0.73434 (9)0.0380 (3)
O20.20907 (15)0.50859 (5)0.72572 (9)0.0361 (2)
O30.14378 (14)0.56716 (5)0.47530 (9)0.0347 (2)
O40.12739 (17)0.61428 (5)0.22518 (11)0.0425 (3)
O50.1928 (3)0.54493 (9)0.07588 (12)0.1015 (8)
O60.52421 (14)0.33865 (5)0.17125 (9)0.0329 (2)
O70.57286 (14)0.29666 (5)0.37464 (10)0.0342 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0235 (5)0.0210 (5)0.0277 (6)0.0042 (4)0.0030 (5)0.0003 (4)
C20.0288 (6)0.0210 (6)0.0366 (7)0.0003 (5)0.0031 (5)0.0011 (5)
C30.0305 (6)0.0267 (6)0.0367 (7)0.0006 (5)0.0073 (5)0.0103 (5)
C40.0331 (7)0.0338 (7)0.0255 (6)0.0029 (5)0.0057 (5)0.0063 (5)
C50.0288 (6)0.0273 (6)0.0237 (6)0.0016 (5)0.0028 (5)0.0001 (5)
C60.0221 (5)0.0229 (6)0.0181 (5)0.0014 (4)0.0027 (4)0.0004 (4)
C70.0239 (5)0.0221 (5)0.0206 (5)0.0005 (4)0.0029 (4)0.0010 (4)
C80.0257 (6)0.0229 (6)0.0194 (5)0.0001 (4)0.0014 (4)0.0028 (4)
C90.0258 (6)0.0264 (6)0.0175 (5)0.0016 (4)0.0034 (4)0.0008 (4)
C100.0226 (5)0.0203 (5)0.0219 (6)0.0007 (4)0.0046 (4)0.0027 (4)
C110.0225 (5)0.0210 (5)0.0206 (5)0.0017 (4)0.0028 (4)0.0012 (4)
C120.0248 (6)0.0258 (6)0.0206 (5)0.0007 (4)0.0034 (4)0.0004 (4)
C130.0604 (10)0.0566 (10)0.0200 (7)0.0201 (8)0.0117 (6)0.0107 (6)
N10.0261 (5)0.0209 (5)0.0233 (5)0.0003 (4)0.0053 (4)0.0014 (4)
N20.0410 (6)0.0236 (5)0.0261 (5)0.0033 (4)0.0062 (5)0.0037 (4)
N30.0399 (6)0.0313 (6)0.0224 (5)0.0076 (5)0.0046 (5)0.0052 (4)
N40.0256 (5)0.0230 (5)0.0244 (5)0.0013 (4)0.0061 (4)0.0022 (4)
O10.0586 (7)0.0379 (5)0.0194 (4)0.0191 (5)0.0117 (4)0.0066 (4)
O20.0546 (6)0.0321 (5)0.0237 (4)0.0117 (4)0.0125 (4)0.0005 (4)
O30.0507 (6)0.0296 (5)0.0246 (5)0.0156 (4)0.0084 (4)0.0011 (4)
O40.0678 (7)0.0245 (5)0.0355 (5)0.0100 (5)0.0088 (5)0.0069 (4)
O50.1943 (19)0.0906 (11)0.0208 (6)0.0938 (13)0.0190 (8)0.0151 (6)
O60.0432 (5)0.0334 (5)0.0237 (4)0.0050 (4)0.0097 (4)0.0060 (4)
O70.0433 (5)0.0269 (5)0.0340 (5)0.0102 (4)0.0117 (4)0.0055 (4)
Geometric parameters (Å, º) top
C1—N21.3338 (16)C9—C101.3864 (16)
C1—N11.3543 (16)C9—H9A0.9300
C1—C21.4136 (17)C10—C111.3945 (15)
C2—C31.3659 (19)C10—N41.4429 (15)
C2—H2A0.9300C11—H11A0.9300
C3—C41.409 (2)C12—O21.2041 (15)
C3—H3A0.9300C12—O11.3414 (15)
C4—C51.3586 (18)C13—O11.4448 (15)
C4—H4A0.9300C13—H13A0.9600
C5—N11.3591 (15)C13—H13B0.9600
C5—H5A0.9300C13—H13C0.9600
C6—C111.3796 (16)N1—H01A0.8952
C6—C71.4578 (16)N2—H02A0.8838
C6—C121.4864 (15)N2—H02B0.8702
C7—O31.2498 (14)N3—O51.2087 (16)
C7—C81.4516 (16)N3—O41.2112 (15)
C8—C91.3748 (17)N4—O71.2307 (14)
C8—N31.4568 (15)N4—O61.2378 (13)
N2—C1—N1118.87 (11)C9—C10—N4119.04 (10)
N2—C1—C2123.56 (11)C11—C10—N4119.99 (10)
N1—C1—C2117.56 (11)C6—C11—C10120.65 (10)
C3—C2—C1119.79 (12)C6—C11—H11A119.7
C3—C2—H2A120.1C10—C11—H11A119.7
C1—C2—H2A120.1O2—C12—O1122.13 (11)
C2—C3—C4120.81 (12)O2—C12—C6126.26 (11)
C2—C3—H3A119.6O1—C12—C6111.61 (10)
C4—C3—H3A119.6O1—C13—H13A109.5
C5—C4—C3118.15 (12)O1—C13—H13B109.5
C5—C4—H4A120.9H13A—C13—H13B109.5
C3—C4—H4A120.9O1—C13—H13C109.5
C4—C5—N1120.74 (12)H13A—C13—H13C109.5
C4—C5—H5A119.6H13B—C13—H13C109.5
N1—C5—H5A119.6C1—N1—C5122.92 (10)
C11—C6—C7121.65 (10)C1—N1—H01A118.4
C11—C6—C12119.21 (10)C5—N1—H01A118.6
C7—C6—C12119.11 (10)C1—N2—H02A120.2
O3—C7—C8123.18 (11)C1—N2—H02B119.0
O3—C7—C6122.99 (10)H02A—N2—H02B120.7
C8—C7—C6113.83 (10)O5—N3—O4120.90 (12)
C9—C8—C7123.75 (10)O5—N3—C8117.84 (11)
C9—C8—N3115.83 (10)O4—N3—C8121.25 (11)
C7—C8—N3120.41 (10)O7—N4—O6122.57 (10)
C8—C9—C10119.11 (10)O7—N4—C10118.96 (10)
C8—C9—H9A120.4O6—N4—C10118.47 (10)
C10—C9—H9A120.4C12—O1—C13116.11 (10)
C9—C10—C11120.97 (10)
N2—C1—C2—C3179.20 (12)C9—C10—C11—C60.67 (17)
N1—C1—C2—C31.62 (18)N4—C10—C11—C6179.18 (10)
C1—C2—C3—C40.03 (19)C11—C6—C12—O2173.68 (12)
C2—C3—C4—C51.28 (19)C7—C6—C12—O24.57 (18)
C3—C4—C5—N10.98 (19)C11—C6—C12—O15.50 (16)
C11—C6—C7—O3178.03 (11)C7—C6—C12—O1176.25 (10)
C12—C6—C7—O30.17 (18)N2—C1—N1—C5178.80 (11)
C11—C6—C7—C82.18 (16)C2—C1—N1—C51.97 (17)
C12—C6—C7—C8179.61 (10)C4—C5—N1—C10.68 (18)
O3—C7—C8—C9178.46 (12)C9—C8—N3—O510.0 (2)
C6—C7—C8—C91.76 (17)C7—C8—N3—O5170.96 (17)
O3—C7—C8—N30.49 (18)C9—C8—N3—O4169.76 (12)
C6—C7—C8—N3179.30 (10)C7—C8—N3—O49.27 (19)
C7—C8—C9—C100.18 (18)C9—C10—N4—O7178.17 (11)
N3—C8—C9—C10179.17 (10)C11—C10—N4—O71.68 (16)
C8—C9—C10—C111.12 (17)C9—C10—N4—O61.80 (16)
C8—C9—C10—N4178.74 (10)C11—C10—N4—O6178.35 (10)
C7—C6—C11—C101.09 (17)O2—C12—O1—C131.0 (2)
C12—C6—C11—C10179.29 (10)C6—C12—O1—C13178.21 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01A···O30.901.882.6864 (13)148
N1—H01A···O20.902.232.8783 (14)130
N2—H02A···O30.882.012.7592 (14)142
N2—H02A···O40.882.453.2082 (15)144
N2—H02B···O6i0.872.243.0537 (14)155
C4—H4A···O7ii0.932.573.2052 (16)126
C5—H5A···O5iii0.932.423.2604 (17)151
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C8H5N2O7
Mr336.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.4088 (3), 19.1779 (6), 9.9784 (4)
β (°) 98.2825 (15)
V3)1403.00 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.35 × 0.35 × 0.26
Data collection
DiffractometerRigaku R-AXIS SPIDER IP
diffractometer
Absorption correctionψ scan
(TEXRAY; Molecular Structure Corporation, 1999)
Tmin, Tmax0.951, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
21789, 3200, 2760
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.09
No. of reflections3200
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.30

Computer programs: RAPID-AUTO (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEX (McArdle, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01A···O30.901.882.6864 (13)148.1
N1—H01A···O20.902.232.8783 (14)129.5
N2—H02A···O30.882.012.7592 (14)142.1
N2—H02A···O40.882.453.2082 (15)144.3
N2—H02B···O6i0.872.243.0537 (14)155.1
C4—H4A···O7ii0.932.573.2052 (16)125.9
C5—H5A···O5iii0.932.423.2604 (17)150.5
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y, z+1.
 

Acknowledgements

This project was supported financially by the Natural Science Foundation of China (No. 50971063) and the Natural Science Foundation of Fujian Province (Nos. E0640006, 2003F006, 2010J01042).

References

First citationBartlett, P. D. & Trachten, E. N. (1958). J. Am. Chem. Soc. 80, 5808–5812.  CrossRef CAS Web of Science Google Scholar
First citationGellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311–313.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o691–o692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1418–o1419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o2323–o2324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJebas, S. R., Balasubramanian, T., Peschar, R. & Fraanje, J. (2006). Acta Cryst. E62, o2606–o2607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1999). TEXRAY. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationPerpétuo, G. J. & Janczak, J. (2010). Acta Cryst. C66, o225–o228.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRademeyer, M. (2007). Acta Cryst. E63, o545–o546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505–1506.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o124-o125
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds