organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-(Ethene-1,2-di­yl)bis­­(di­phenyl­phosphine selenide)

aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: zhphasha@uj.ac.za, mullera@uj.ac.za

(Received 14 November 2011; accepted 1 December 2011; online 7 December 2011)

In the title mol­ecule, C26H22P2Se2, both P atoms have distorted tetra­hedral environments, resulting in effective cone angles of 177 and 174°. Inversion twinning was detected and refined to a ratio of 0.35:0.65. Weak inter­molecular C—H⋯Se inter­actions are observed.

Related literature

For background to the steric and electronic effects of group 15 ligands, see: Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]); Muller et al. (2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]). For information on cone angles, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22P2Se2

  • Mr = 554.3

  • Orthorhombic, P 21 21 21

  • a = 9.0604 (9) Å

  • b = 14.3239 (14) Å

  • c = 17.9617 (18) Å

  • V = 2331.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 100 K

  • 0.26 × 0.21 × 0.04 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.479, Tmax = 0.879

  • 14567 measured reflections

  • 5814 independent reflections

  • 5356 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.053

  • S = 1.01

  • 5814 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2517 Friedel pairs

  • Flack parameter: 0.354 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Se2i 0.95 3.02 3.953 (2) 168
C21—H21⋯Se1ii 0.95 3.06 3.812 (2) 138
C17—H17⋯Se2iii 0.95 3.01 3.885 (3) 155
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The study of the transition metal phosphorous bond spans over several decades using various techniques such as crystallography, multi nuclear NMR and IR (Roodt et al., 2003). As part of this systematic investigation we have extended this study to selenium derivatives of the phosphorus ligands (see Muller et al., 2008). Reported as part of the above continuing study, the single-crystal structure of the bis-phosphorus containing compound, (SePPh2)2C2H2 where Ph = C6H5, is reported here.

The structure of the title compound (see Figure 1, Table 1) shows distorted tetrahedral environments for both the phosphorus centers. The PSe bond distances (2.1026 (6), 2.1054 (6) Å for Se1 and Se2 respectively) are marginally statistically different, possibly due to the weak C—H···Se intermolecular hydrogen bonding observed (see Figure 2, Table 2; comparison based on 1% normal distribution coefficient).

The phosphorus ligand bulkiness was evaluated by using an adaptation of the well known Tolman cone angle model (Tolman, 1977). Instead of using a CPK model, the actual geometry from the crystal structure was taken to determine an 'effective cone angle' (Otto et al. 2001). The SeP distances were also adjusted to 2.28 Å (the default value used by Tolman) to remove the effect of bond distance variation. Two different cone angles of 177° and 174° were obtained for P1and P2 respectively. The difference in cone angles may also be attributed to the weak interactions mentioned previously.

Related literature top

For background to the steric and electronic effects of group 15 ligands, see: Roodt et al. (2003); Muller et al. (2008). For information on cone angles, see: Tolman (1977); Otto (2001).

Experimental top

Trans-1,2-bis(diphenylphosphino)ethylene and KSeCN were purchased from Sigma-Aldrich and used without purification. Eqimolar amounts of KSeCN and the trans-1,2-bis(diphenylphosphino)ethylene compound (ca 0.04 mmol) were dissolved in the minimum amounts of methanol (10 - 20 ml). The KSeCN solution was added drop wise (5 min.) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give crystals suitable for a single-crystal X-ray study.

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 0.95 Å and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq. The Flack parameter (based on 2517 Friedel pairs) indicates racemic twinning of the compound. This refined to a 35.4:64.6 racemic twin. The highest residual electron density of 0.51 e.Å-3 is 0.98 Å from Se1 representing no physical meaning.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : View of the title compound indicating labelling and displacement ellipsoids (drawn at a 50% probability level).
[Figure 2] Fig. 2. : Partial packing diagram of the title compound illustrating the weak C–H···Se interactions stabilizing the crystal packing.
trans-(Ethene-1,2-diyl)bis(diphenylphosphine selenide) top
Crystal data top
C26H22P2Se2F(000) = 1104
Mr = 554.3Dx = 1.579 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5956 reflections
a = 9.0604 (9) Åθ = 2.3–28.2°
b = 14.3239 (14) ŵ = 3.32 mm1
c = 17.9617 (18) ÅT = 100 K
V = 2331.1 (4) Å3Plate, colourless
Z = 40.26 × 0.21 × 0.04 mm
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
5814 independent reflections
Graphite monochromator5356 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.028
ϕ and ω scansθmax = 28.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1012
Tmin = 0.479, Tmax = 0.879k = 1219
14567 measured reflectionsl = 2422
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0268P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5814 reflectionsΔρmax = 0.51 e Å3
272 parametersΔρmin = 0.48 e Å3
0 restraintsAbsolute structure: Flack (1983), 2517 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.354 (6)
Crystal data top
C26H22P2Se2V = 2331.1 (4) Å3
Mr = 554.3Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0604 (9) ŵ = 3.32 mm1
b = 14.3239 (14) ÅT = 100 K
c = 17.9617 (18) Å0.26 × 0.21 × 0.04 mm
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
5814 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5356 reflections with I > 2σ(I)
Tmin = 0.479, Tmax = 0.879Rint = 0.028
14567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.053Δρmax = 0.51 e Å3
S = 1.01Δρmin = 0.48 e Å3
5814 reflectionsAbsolute structure: Flack (1983), 2517 Friedel pairs
272 parametersAbsolute structure parameter: 0.354 (6)
0 restraints
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 20 s/frame. A total of 588 frames were collected with a frame width of 0.5° covering up to θ = 28.49° with 99.2% completeness accomplished.

Analytical data: 1H NMR (CDCl3, 400 MHz) δ 7.50–7.70 (m, 10H), 7.51–7.42 (m, 10H), 7.89 (t, 3J = 22.8 Hz, 2H); 13C {H} NMR (CDCl3, 100 MHz) δ 142.4 (ethylene), 132.1, 131.8, 129.0 (Ar); 31P {H} NMR (CDCl3, 160 MHz):δ = 28.58 (dd, 1JSe—P = 694.9, 814.8 Hz, 2P).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0685 (2)0.72411 (15)0.64399 (13)0.0134 (4)
C21.0826 (3)0.62874 (15)0.62917 (14)0.0185 (5)
H20.99750.59210.6190.022*
C31.2215 (3)0.58774 (15)0.62938 (15)0.0226 (5)
H31.2310.52280.61980.027*
C41.3460 (3)0.64076 (16)0.64339 (15)0.0197 (5)
H41.44070.61230.64340.024*
C51.3321 (3)0.73551 (16)0.65749 (14)0.0186 (5)
H51.41750.77210.66680.022*
C61.1940 (3)0.77686 (15)0.65806 (13)0.0173 (5)
H61.1850.84170.66810.021*
C70.9158 (2)0.89938 (15)0.62504 (14)0.0158 (5)
C80.9380 (3)0.92399 (16)0.55117 (14)0.0198 (5)
H80.9390.87710.51380.024*
C90.9588 (3)1.01653 (18)0.53168 (17)0.0265 (6)
H90.97431.0330.4810.032*
C100.9571 (3)1.08522 (17)0.58612 (17)0.0278 (6)
H100.97071.14880.57260.033*
C110.9357 (3)1.06180 (17)0.65944 (18)0.0282 (6)
H110.9351.10910.69650.034*
C120.9150 (3)0.96844 (16)0.67974 (16)0.0221 (5)
H120.90040.95220.73050.027*
C130.4690 (2)0.81404 (15)0.84948 (14)0.0156 (5)
C140.4717 (3)0.90052 (16)0.81243 (15)0.0212 (5)
H140.56220.92420.79350.025*
C150.3430 (3)0.95120 (17)0.80341 (16)0.0252 (6)
H150.34511.00950.77820.03*
C160.2105 (3)0.91681 (17)0.83126 (15)0.0250 (6)
H160.12210.95160.8250.03*
C170.2075 (3)0.83228 (17)0.86790 (15)0.0244 (5)
H170.11690.80880.88690.029*
C180.3369 (3)0.78136 (17)0.87717 (14)0.0211 (5)
H180.33430.72340.90290.025*
C190.5966 (2)0.63390 (15)0.88948 (14)0.0145 (5)
C200.6670 (3)0.59705 (15)0.95104 (14)0.0192 (5)
H200.7370.63360.97750.023*
C210.6355 (3)0.50619 (16)0.97447 (16)0.0245 (6)
H210.68520.48061.01640.029*
C220.5324 (3)0.45375 (16)0.93677 (16)0.0230 (6)
H220.50920.39250.95340.028*
C230.4621 (3)0.49016 (17)0.87437 (17)0.0243 (6)
H230.39230.45350.84790.029*
C240.4944 (3)0.58029 (17)0.85093 (16)0.0214 (5)
H240.44640.60530.80840.026*
C250.7048 (2)0.74177 (14)0.76513 (12)0.0142 (4)
H250.64310.7110.73010.017*
C260.8328 (2)0.77552 (14)0.74213 (13)0.0147 (4)
H260.89920.80020.7780.018*
P10.88646 (6)0.77673 (4)0.64539 (3)0.01278 (11)
P20.64250 (6)0.75184 (4)0.86038 (3)0.01338 (12)
Se10.73133 (2)0.712573 (15)0.574954 (15)0.01794 (6)
Se20.79614 (2)0.821665 (14)0.928447 (14)0.01582 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0146 (10)0.0147 (10)0.0108 (10)0.0023 (8)0.0025 (9)0.0012 (8)
C20.0186 (11)0.0144 (11)0.0226 (14)0.0001 (9)0.0022 (11)0.0013 (9)
C30.0248 (12)0.0135 (11)0.0295 (14)0.0039 (9)0.0034 (12)0.0008 (9)
C40.0178 (11)0.0191 (11)0.0224 (13)0.0056 (9)0.0008 (11)0.0032 (10)
C50.0155 (11)0.0190 (11)0.0213 (13)0.0012 (9)0.0027 (10)0.0005 (9)
C60.0200 (11)0.0127 (10)0.0193 (12)0.0014 (9)0.0001 (10)0.0049 (9)
C70.0123 (10)0.0174 (11)0.0178 (13)0.0019 (8)0.0017 (10)0.0017 (9)
C80.0250 (12)0.0168 (11)0.0176 (13)0.0007 (10)0.0004 (11)0.0001 (9)
C90.0265 (14)0.0257 (14)0.0274 (16)0.0004 (11)0.0010 (13)0.0078 (11)
C100.0263 (12)0.0147 (12)0.0423 (19)0.0005 (9)0.0028 (14)0.0064 (11)
C110.0316 (14)0.0149 (12)0.0379 (18)0.0000 (11)0.0067 (14)0.0048 (11)
C120.0249 (12)0.0184 (11)0.0230 (14)0.0000 (10)0.0028 (12)0.0010 (10)
C130.0182 (10)0.0151 (11)0.0136 (11)0.0030 (9)0.0024 (10)0.0028 (9)
C140.0209 (12)0.0174 (12)0.0252 (14)0.0010 (9)0.0023 (11)0.0023 (10)
C150.0269 (13)0.0172 (11)0.0317 (16)0.0059 (10)0.0039 (12)0.0034 (10)
C160.0239 (12)0.0254 (12)0.0259 (14)0.0100 (11)0.0037 (12)0.0062 (10)
C170.0193 (11)0.0306 (13)0.0232 (14)0.0027 (11)0.0034 (12)0.0003 (10)
C180.0241 (12)0.0227 (12)0.0165 (12)0.0032 (10)0.0061 (11)0.0039 (10)
C190.0153 (10)0.0114 (11)0.0168 (12)0.0026 (8)0.0044 (10)0.0009 (9)
C200.0184 (11)0.0187 (11)0.0206 (13)0.0023 (9)0.0001 (10)0.0001 (9)
C210.0328 (14)0.0183 (12)0.0225 (15)0.0018 (11)0.0029 (12)0.0048 (10)
C220.0283 (12)0.0149 (11)0.0257 (15)0.0027 (9)0.0049 (12)0.0054 (11)
C230.0233 (12)0.0208 (12)0.0288 (16)0.0062 (10)0.0010 (12)0.0026 (11)
C240.0216 (12)0.0219 (12)0.0207 (13)0.0009 (9)0.0024 (11)0.0029 (10)
C250.0189 (10)0.0106 (9)0.0130 (11)0.0014 (9)0.0008 (10)0.0000 (8)
C260.0165 (10)0.0135 (10)0.0140 (11)0.0019 (8)0.0014 (9)0.0001 (8)
P10.0135 (2)0.0126 (3)0.0122 (3)0.0001 (2)0.0011 (2)0.0005 (2)
P20.0148 (3)0.0124 (3)0.0130 (3)0.0017 (2)0.0019 (2)0.0009 (2)
Se10.01645 (10)0.01938 (11)0.01798 (12)0.00169 (8)0.00126 (11)0.00443 (9)
Se20.01802 (10)0.01372 (10)0.01572 (11)0.00030 (8)0.00040 (11)0.00065 (9)
Geometric parameters (Å, º) top
C1—C61.388 (3)C14—H140.95
C1—C21.398 (3)C15—C161.391 (4)
C1—P11.813 (2)C15—H150.95
C2—C31.389 (3)C16—C171.378 (4)
C2—H20.95C16—H160.95
C3—C41.383 (3)C17—C181.391 (3)
C3—H30.95C17—H170.95
C4—C51.386 (3)C18—H180.95
C4—H40.95C19—C201.381 (3)
C5—C61.384 (3)C19—C241.388 (3)
C5—H50.95C19—P21.817 (2)
C6—H60.95C20—C211.397 (3)
C7—C81.387 (3)C20—H200.95
C7—C121.394 (3)C21—C221.377 (4)
C7—P11.814 (2)C21—H210.95
C8—C91.384 (3)C22—C231.391 (4)
C8—H80.95C22—H220.95
C9—C101.387 (4)C23—C241.389 (3)
C9—H90.95C23—H230.95
C10—C111.373 (4)C24—H240.95
C10—H100.95C25—C261.322 (3)
C11—C121.399 (3)C25—P21.807 (2)
C11—H110.95C25—H250.95
C12—H120.95C26—P11.804 (2)
C13—C181.377 (3)C26—H260.95
C13—C141.406 (3)P1—Se12.1026 (6)
C13—P21.818 (2)P2—Se22.1054 (6)
C14—C151.383 (3)
C6—C1—C2119.4 (2)C17—C16—C15120.0 (2)
C6—C1—P1121.07 (16)C17—C16—H16120
C2—C1—P1119.47 (17)C15—C16—H16120
C3—C2—C1119.7 (2)C16—C17—C18120.1 (2)
C3—C2—H2120.1C16—C17—H17120
C1—C2—H2120.1C18—C17—H17120
C4—C3—C2120.5 (2)C13—C18—C17120.7 (2)
C4—C3—H3119.8C13—C18—H18119.6
C2—C3—H3119.8C17—C18—H18119.6
C3—C4—C5119.8 (2)C20—C19—C24119.7 (2)
C3—C4—H4120.1C20—C19—P2118.68 (18)
C5—C4—H4120.1C24—C19—P2121.57 (19)
C6—C5—C4120.1 (2)C19—C20—C21120.2 (2)
C6—C5—H5119.9C19—C20—H20119.9
C4—C5—H5119.9C21—C20—H20119.9
C5—C6—C1120.40 (19)C22—C21—C20119.9 (2)
C5—C6—H6119.8C22—C21—H21120
C1—C6—H6119.8C20—C21—H21120
C8—C7—C12119.6 (2)C21—C22—C23120.2 (2)
C8—C7—P1117.39 (19)C21—C22—H22119.9
C12—C7—P1123.0 (2)C23—C22—H22119.9
C9—C8—C7120.3 (2)C24—C23—C22119.8 (2)
C9—C8—H8119.8C24—C23—H23120.1
C7—C8—H8119.8C22—C23—H23120.1
C8—C9—C10120.0 (3)C19—C24—C23120.2 (3)
C8—C9—H9120C19—C24—H24119.9
C10—C9—H9120C23—C24—H24119.9
C11—C10—C9120.3 (2)C26—C25—P2122.73 (18)
C11—C10—H10119.8C26—C25—H25118.6
C9—C10—H10119.8P2—C25—H25118.6
C10—C11—C12120.2 (3)C25—C26—P1122.73 (18)
C10—C11—H11119.9C25—C26—H26118.6
C12—C11—H11119.9P1—C26—H26118.6
C7—C12—C11119.6 (3)C26—P1—C1104.75 (11)
C7—C12—H12120.2C26—P1—C7104.06 (11)
C11—C12—H12120.2C1—P1—C7105.45 (10)
C18—C13—C14119.0 (2)C26—P1—Se1113.27 (8)
C18—C13—P2123.07 (18)C1—P1—Se1114.70 (8)
C14—C13—P2117.87 (18)C7—P1—Se1113.58 (8)
C15—C14—C13120.2 (2)C25—P2—C19105.65 (10)
C15—C14—H14119.9C25—P2—C13101.97 (11)
C13—C14—H14119.9C19—P2—C13106.79 (11)
C14—C15—C16120.0 (2)C25—P2—Se2112.39 (8)
C14—C15—H15120C19—P2—Se2115.22 (8)
C16—C15—H15120C13—P2—Se2113.68 (8)
C6—C1—C2—C30.6 (4)P2—C25—C26—P1173.15 (11)
P1—C1—C2—C3178.8 (2)C25—C26—P1—C1129.02 (19)
C1—C2—C3—C40.7 (4)C25—C26—P1—C7120.51 (19)
C2—C3—C4—C50.1 (4)C25—C26—P1—Se13.3 (2)
C3—C4—C5—C60.4 (4)C6—C1—P1—C2684.4 (2)
C4—C5—C6—C10.5 (4)C2—C1—P1—C2695.0 (2)
C2—C1—C6—C50.0 (4)C6—C1—P1—C725.1 (2)
P1—C1—C6—C5179.38 (19)C2—C1—P1—C7155.5 (2)
C12—C7—C8—C90.2 (4)C6—C1—P1—Se1150.79 (18)
P1—C7—C8—C9179.00 (19)C2—C1—P1—Se129.8 (2)
C7—C8—C9—C100.2 (4)C8—C7—P1—C26170.97 (19)
C8—C9—C10—C110.4 (4)C12—C7—P1—C268.2 (2)
C9—C10—C11—C120.2 (4)C8—C7—P1—C179.1 (2)
C8—C7—C12—C110.4 (4)C12—C7—P1—C1101.8 (2)
P1—C7—C12—C11178.79 (19)C8—C7—P1—Se147.3 (2)
C10—C11—C12—C70.2 (4)C12—C7—P1—Se1131.83 (19)
C18—C13—C14—C150.7 (4)C26—C25—P2—C19126.76 (19)
P2—C13—C14—C15179.2 (2)C26—C25—P2—C13121.8 (2)
C13—C14—C15—C160.2 (4)C26—C25—P2—Se20.3 (2)
C14—C15—C16—C170.1 (4)C20—C19—P2—C25122.47 (19)
C15—C16—C17—C180.1 (4)C24—C19—P2—C2556.8 (2)
C14—C13—C18—C170.9 (4)C20—C19—P2—C13129.50 (19)
P2—C13—C18—C17179.33 (19)C24—C19—P2—C1351.2 (2)
C16—C17—C18—C130.6 (4)C20—C19—P2—Se22.2 (2)
C24—C19—C20—C210.0 (4)C24—C19—P2—Se2178.50 (18)
P2—C19—C20—C21179.30 (19)C18—C13—P2—C25125.2 (2)
C19—C20—C21—C221.0 (4)C14—C13—P2—C2556.3 (2)
C20—C21—C22—C231.6 (4)C18—C13—P2—C1914.6 (3)
C21—C22—C23—C241.1 (4)C14—C13—P2—C19166.89 (19)
C20—C19—C24—C230.4 (4)C18—C13—P2—Se2113.6 (2)
P2—C19—C24—C23179.7 (2)C14—C13—P2—Se264.9 (2)
C22—C23—C24—C190.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Se2i0.953.023.953 (2)168
C21—H21···Se1ii0.953.063.812 (2)138
C17—H17···Se2iii0.953.013.885 (3)155
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+3/2, y+1, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H22P2Se2
Mr554.3
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.0604 (9), 14.3239 (14), 17.9617 (18)
V3)2331.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.32
Crystal size (mm)0.26 × 0.21 × 0.04
Data collection
DiffractometerBruker APEX DUO 4K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.479, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
14567, 5814, 5356
Rint0.028
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.053, 1.01
No. of reflections5814
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.48
Absolute structureFlack (1983), 2517 Friedel pairs
Absolute structure parameter0.354 (6)

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Se2i0.953.023.953 (2)168
C21—H21···Se1ii0.953.063.812 (2)138
C17—H17···Se2iii0.953.013.885 (3)155
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+3/2, y+1, z+1/2; (iii) x1, y, z.
 

Acknowledgements

Research funds of the University of Johannesburg are gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds