organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(Hy­dr­oxy)(4-methyl­phen­yl)methyl­­idene]isochroman-1,3-dione

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, bLaboratoire de Chimie Bio-organique et Phytochimie, Université de Ouagadougou 03 BP 7021 Ouagadougou 03, Burkina Faso, and cUniversité de Provence, Laboratoire de Spectrométrie et Dynamique Moléculaire, case 542 Avenue Escadrille Normandie Niemen, F-13397 Marseille, Cedex 20, France.
*Correspondence e-mail: abou_akoun@yahoo.fr

(Received 22 November 2011; accepted 27 November 2011; online 3 December 2011)

In the title compound, C17H12O4, the six-membered heterocyclic ring adopts a distorted screw-boat conformation. The mol­ecular structure exhibits an S(6) ring motif, owing to an intra­molecular O—H⋯O hydrogen bond. In the crystal, weak C—H⋯O contacts generate an infinite chain along the c axis. There are also ππ stacking inter­actions between neighbouring isochromanedione benzene rings, with a centroid–centroid distance of 3.755 (1) Å, and C—O⋯π inter­actions with an O⋯centroid distance of 3.964 (2) Å.

Related literature

For the biological activity of isochromanones, see: Bianchi et al., (2004[Bianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufnam, T. S. (2004). J. Agric. Food Chem. 52, 1923-1927.]); Buntin et al. (2008[Buntin, K., Rachid, S., Scharfe, M., Blöcker, H., Weissman, K. J. & Müller, R. (2008). Angew. Chem. Int. Ed. Engl. 47, 4595-4599.]). For ππ stacking inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12O4

  • Mr = 280.27

  • Monoclinic, P 21 /c

  • a = 15.6767 (6) Å

  • b = 5.9655 (2) Å

  • c = 14.4589 (4) Å

  • β = 102.961 (1)°

  • V = 1317.74 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.40 × 0.34 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 12419 measured reflections

  • 3304 independent reflections

  • 2684 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.150

  • S = 1.08

  • 3304 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.82 1.75 2.485 (2) 148
C7—H7⋯O2i 0.93 2.57 3.299 (2) 136
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title molecule is related to the isochromanone derivatives that are generally known as regulators of plant growth (Bianchi et al., 2004). Depending on their chemical structure and concentration they can act either as inhibitors or stimulators in these processes. Some substituted isochromanones isolated from myxobacteria strains were introduced as anti-fungal agents (Buntin et al., 2008).

The structure of the title compound (I) (Fig. 1) consists of two essentially planar benzene rings with the maximum deviations from the best planes of 0.035 (1) Å for atom C6 (benzene ring C4—C9) and 0.008 (2) Å for atoms C12 and C15 (benzene ring C11—C16). An S(6) ring motifs (Bernstein et al., 1995), arising from the intramolecular hydrogen bond O—H···O, generates a planar pseudo six-membered ring (maximum deviation from planarity being 0.055 (2) Å for atoms C1 and C10) to result in a tricyclic ring (Fig. 1). The dihedral angles between two benzene rings is 58.99 (8)° and that between the pseudo six-membered ring and benzene rings are 13.75 (8) ° (ring C4—C9) and 53.96 (8)° (ring C11—C16). The heterocyclic ring O1/C1—C5 adopts a distorted screw-boat conformation as judged from the puckering parameters (Cremer & Pople, 1975): Q = 0.0974 (17) Å, θ = 69.6 (1)° and ϕ = 132.6 (1)°. Furthermore, intermolecular C—H···O hydrogen bonds (Table 1) link molecules into infinite chains along the [001] (Fig. 2).

The supramolecular aggregation is completed by the presence of C—O···π interactions (O3···Cg3[x,1/2 - y,-3/2 + z] = 3.964 (2) Å, C2—O3···Cg3 = 83.89 (12)°, where Cg3 is the centroid of the benzene ring C11—C16 and ππ stacking between two parallel isochromandione-benzene C4—C9 rings; in the latter, the centroid···centroid distance, (Cg2···Cg2(-x,2 - y,-z) of 3.755 (1) Å), is less than 3.8 Å, the maximum regarded as relevant for ππ interactions (Janiak, 2000) (Fig.3).

Related literature top

For the biological activity of isochromanones, see: Bianchi et al., (2004); Buntin et al. (2008). For ππ stacking interactions, see: Janiak (2000). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

To a solution of p-Toluoyl chloride (4.10-2 mole) in dried tetrahydrofuran (150 ml), was added dried triethylamine (0.12 mole) and homophtalic anhydride (4.10-2 mole) by small portions over 30 min. The mixture was then refluxed for 3 h and poured in 300 ml of chloroform. The solution was acidified with dilute hydrochloric acid until the pH was 2 - 3. The organic layer was extracted, washed with water, dried over MgSO4 and the solvent removed. The crude product was recrystallized from chloroform-hexane (1/1, v/v) mixture. Yellow crystals of the title compound were obtained in a good yield: 85%; M.pt. 387–388 K.

Refinement top

H atoms were placed in calculated positions [O—H = 0.82 Å and C—H = 0.93 (aromatic) or 0.96 Å (methyl group)] and refined using a riding model approximation with Uiso(H) constrained to 1.2 (aromatic) or 1.5 (methyle, O—H) times Ueq of the respective parent atom.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic labeling scheme with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. Dashed lines indicate an hydrogen bond.
[Figure 2] Fig. 2. Crystal packing, viewed down the b axis, showing parallel chains along the c direction. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 3] Fig. 3. A view of the crystal packing, showing C—O···π and ππ stacking interactions (dashed lines). The green dots are centroids of rings. H atoms have been omitted for clarity.
4-[(Hydroxy)(4-methylphenyl)methylidene]isochroman-1,3-dione top
Crystal data top
C17H12O4F(000) = 584
Mr = 280.27Dx = 1.413 Mg m3
Monoclinic, P21/cMelting point = 387–388 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.6767 (6) ÅCell parameters from 12419 reflections
b = 5.9655 (2) Åθ = 2.9–29.0°
c = 14.4589 (4) ŵ = 0.10 mm1
β = 102.961 (1)°T = 298 K
V = 1317.74 (8) Å3Prism, yellow
Z = 40.40 × 0.34 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
2684 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 29.0°, θmin = 2.9°
ϕ and ω scansh = 2120
12419 measured reflectionsk = 77
3304 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.424P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3304 reflectionsΔρmax = 0.20 e Å3
193 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
48 constraintsExtinction coefficient: 0.11 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C17H12O4V = 1317.74 (8) Å3
Mr = 280.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.6767 (6) ŵ = 0.10 mm1
b = 5.9655 (2) ÅT = 298 K
c = 14.4589 (4) Å0.40 × 0.34 × 0.10 mm
β = 102.961 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2684 reflections with I > 2σ(I)
12419 measured reflectionsRint = 0.053
3304 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.08Δρmax = 0.20 e Å3
3304 reflectionsΔρmin = 0.16 e Å3
193 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. The 2 reflections [(-5 2 1), (2 0 0)] whith (Iobs-Icalc)/Sigma(I) superior to 10, are not used in the refinement. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.85227 (9)0.2252 (2)0.70711 (8)0.0608 (4)
C50.83327 (9)0.3569 (2)0.51682 (9)0.0361 (3)
C40.88171 (10)0.4900 (3)0.59015 (10)0.0420 (4)
O30.77485 (10)0.0788 (3)0.66859 (10)0.0690 (4)
O40.69333 (9)0.1556 (2)0.50349 (10)0.0632 (4)
H40.71470.18020.55970.095*
C150.59439 (11)0.3609 (3)0.27099 (12)0.0484 (4)
H150.56560.49790.25990.058*
C10.78494 (10)0.1628 (3)0.54105 (10)0.0405 (4)
C60.83808 (10)0.4128 (3)0.42383 (10)0.0401 (4)
H60.81100.32110.37380.048*
C90.92667 (11)0.6800 (3)0.57079 (12)0.0514 (4)
H90.95790.76700.62040.062*
C160.63851 (10)0.3071 (3)0.36170 (12)0.0454 (4)
H160.64030.40890.41080.054*
C110.68042 (10)0.1011 (3)0.38016 (11)0.0412 (4)
C100.72372 (10)0.0383 (3)0.47841 (12)0.0441 (4)
C120.67731 (11)0.0477 (3)0.30589 (13)0.0515 (4)
H120.70430.18700.31730.062*
C80.92474 (12)0.7385 (3)0.47832 (13)0.0530 (4)
H80.95190.86930.46480.064*
C30.89085 (12)0.4261 (3)0.68931 (11)0.0532 (5)
O20.93083 (11)0.5246 (3)0.75773 (9)0.0782 (5)
C140.59194 (10)0.2147 (3)0.19552 (12)0.0487 (4)
C130.63411 (12)0.0107 (3)0.21485 (13)0.0567 (5)
H130.63340.08960.16540.068*
C70.88200 (11)0.6007 (3)0.40553 (11)0.0461 (4)
H70.88310.63600.34320.055*
C20.80260 (12)0.0934 (3)0.63907 (12)0.0504 (4)
C170.54283 (14)0.2771 (4)0.09711 (14)0.0719 (6)
H17A0.48140.25110.09130.108*
H17B0.56340.18740.05140.108*
H17C0.55240.43270.08590.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0781 (9)0.0731 (9)0.0303 (6)0.0141 (7)0.0104 (5)0.0079 (5)
C50.0390 (7)0.0374 (8)0.0311 (7)0.0060 (5)0.0063 (5)0.0008 (5)
C40.0461 (8)0.0458 (9)0.0313 (7)0.0105 (6)0.0029 (6)0.0061 (6)
O30.0837 (10)0.0700 (9)0.0572 (8)0.0078 (7)0.0242 (7)0.0287 (7)
O40.0656 (8)0.0478 (7)0.0736 (9)0.0084 (6)0.0102 (7)0.0191 (6)
C150.0448 (8)0.0428 (9)0.0566 (10)0.0044 (7)0.0092 (7)0.0052 (7)
C10.0452 (8)0.0419 (8)0.0357 (7)0.0064 (6)0.0116 (6)0.0047 (6)
C60.0435 (8)0.0450 (8)0.0306 (7)0.0051 (6)0.0056 (6)0.0029 (6)
C90.0527 (9)0.0473 (9)0.0474 (9)0.0001 (7)0.0031 (7)0.0147 (7)
C160.0481 (8)0.0383 (8)0.0491 (9)0.0034 (6)0.0094 (7)0.0026 (6)
C110.0382 (7)0.0355 (8)0.0482 (8)0.0021 (6)0.0064 (6)0.0002 (6)
C100.0463 (8)0.0371 (8)0.0509 (9)0.0039 (6)0.0149 (7)0.0069 (6)
C120.0520 (9)0.0383 (9)0.0606 (10)0.0032 (7)0.0048 (8)0.0059 (7)
C80.0551 (10)0.0438 (9)0.0567 (10)0.0094 (7)0.0053 (8)0.0031 (7)
C30.0648 (11)0.0583 (11)0.0328 (8)0.0203 (8)0.0030 (7)0.0057 (7)
O20.1091 (12)0.0797 (10)0.0345 (6)0.0199 (9)0.0081 (7)0.0154 (6)
C140.0380 (8)0.0586 (10)0.0478 (9)0.0055 (7)0.0060 (6)0.0021 (7)
C130.0563 (10)0.0564 (11)0.0544 (10)0.0008 (8)0.0059 (8)0.0161 (8)
C70.0487 (9)0.0504 (9)0.0380 (8)0.0070 (7)0.0069 (6)0.0024 (6)
C20.0563 (10)0.0564 (10)0.0414 (8)0.0153 (8)0.0169 (7)0.0108 (7)
C170.0641 (12)0.0963 (17)0.0503 (11)0.0034 (11)0.0024 (9)0.0090 (10)
Geometric parameters (Å, º) top
O1—C21.360 (2)C9—H90.9300
O1—C31.392 (2)C16—C111.391 (2)
C5—C41.404 (2)C16—H160.9300
C5—C61.404 (2)C11—C121.386 (2)
C5—C11.469 (2)C11—C101.479 (2)
C4—C91.396 (2)C12—C131.383 (3)
C4—C31.459 (2)C12—H120.9300
O3—C21.229 (2)C8—C71.384 (2)
O4—C101.3316 (19)C8—H80.9300
O4—H40.8200C3—O21.199 (2)
C15—C161.376 (2)C14—C131.383 (3)
C15—C141.391 (2)C14—C171.505 (2)
C15—H150.9300C13—H130.9300
C1—C101.380 (2)C7—H70.9300
C1—C21.443 (2)C17—H17A0.9600
C6—C71.372 (2)C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C9—C81.376 (3)
C2—O1—C3124.49 (13)C1—C10—C11126.59 (14)
C4—C5—C6116.93 (14)C13—C12—C11120.05 (16)
C4—C5—C1119.11 (13)C13—C12—H12120.0
C6—C5—C1123.87 (13)C11—C12—H12120.0
C9—C4—C5121.33 (14)C9—C8—C7119.32 (16)
C9—C4—C3117.80 (15)C9—C8—H8120.3
C5—C4—C3120.78 (16)C7—C8—H8120.3
C10—O4—H4109.5O2—C3—O1115.94 (16)
C16—C15—C14121.40 (16)O2—C3—C4126.9 (2)
C16—C15—H15119.3O1—C3—C4117.10 (15)
C14—C15—H15119.3C13—C14—C15117.73 (15)
C10—C1—C2116.26 (15)C13—C14—C17121.93 (18)
C10—C1—C5126.02 (13)C15—C14—C17120.32 (17)
C2—C1—C5117.72 (14)C12—C13—C14121.58 (16)
C7—C6—C5121.07 (14)C12—C13—H13119.2
C7—C6—H6119.5C14—C13—H13119.2
C5—C6—H6119.5C6—C7—C8121.13 (15)
C8—C9—C4119.92 (15)C6—C7—H7119.4
C8—C9—H9120.0C8—C7—H7119.4
C4—C9—H9120.0O3—C2—O1114.97 (15)
C15—C16—C11120.24 (16)O3—C2—C1125.20 (18)
C15—C16—H16119.9O1—C2—C1119.82 (16)
C11—C16—H16119.9C14—C17—H17A109.5
C12—C11—C16118.97 (15)C14—C17—H17B109.5
C12—C11—C10120.72 (14)H17A—C17—H17B109.5
C16—C11—C10120.24 (15)C14—C17—H17C109.5
O4—C10—C1121.84 (15)H17A—C17—H17C109.5
O4—C10—C11111.50 (14)H17B—C17—H17C109.5
C6—C5—C4—C95.1 (2)C16—C11—C12—C130.9 (3)
C1—C5—C4—C9178.11 (14)C10—C11—C12—C13177.89 (16)
C6—C5—C4—C3171.19 (14)C4—C9—C8—C73.5 (3)
C1—C5—C4—C35.6 (2)C2—O1—C3—O2178.20 (16)
C4—C5—C1—C10168.82 (15)C2—O1—C3—C44.3 (2)
C6—C5—C1—C1014.7 (2)C9—C4—C3—O23.0 (3)
C4—C5—C1—C211.4 (2)C5—C4—C3—O2179.43 (17)
C6—C5—C1—C2165.14 (14)C9—C4—C3—O1174.25 (14)
C4—C5—C6—C75.5 (2)C5—C4—C3—O12.2 (2)
C1—C5—C6—C7177.88 (14)C16—C15—C14—C131.2 (2)
C5—C4—C9—C80.7 (2)C16—C15—C14—C17179.69 (16)
C3—C4—C9—C8175.73 (16)C11—C12—C13—C141.1 (3)
C14—C15—C16—C111.4 (3)C15—C14—C13—C120.1 (3)
C15—C16—C11—C120.3 (2)C17—C14—C13—C12178.41 (18)
C15—C16—C11—C10176.67 (15)C5—C6—C7—C81.5 (3)
C2—C1—C10—O410.7 (2)C9—C8—C7—C63.2 (3)
C5—C1—C10—O4169.10 (15)C3—O1—C2—O3179.33 (15)
C2—C1—C10—C11165.94 (15)C3—O1—C2—C11.8 (2)
C5—C1—C10—C1114.3 (3)C10—C1—C2—O38.2 (2)
C12—C11—C10—O452.7 (2)C5—C1—C2—O3171.65 (16)
C16—C11—C10—O4124.25 (16)C10—C1—C2—O1170.55 (14)
C12—C11—C10—C1130.41 (18)C5—C1—C2—O19.6 (2)
C16—C11—C10—C152.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.752.485 (2)148
C7—H7···O2i0.932.573.299 (2)136
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H12O4
Mr280.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.6767 (6), 5.9655 (2), 14.4589 (4)
β (°) 102.961 (1)
V3)1317.74 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.34 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12419, 3304, 2684
Rint0.053
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.150, 1.08
No. of reflections3304
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: COLLECT (Hooft, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.752.485 (2)148
C7—H7···O2i0.932.573.299 (2)136
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

We thank the Laboratoire de Physique des Inter­actions Ioniques et Spectropôle, Université de Provence, and Université Paul Cézanne, Faculté des Sciences et Techniques de Saint Jérôme, Marseille, France, for the use of their diffractometer.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufnam, T. S. (2004). J. Agric. Food Chem. 52, 1923–1927.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBuntin, K., Rachid, S., Scharfe, M., Blöcker, H., Weissman, K. J. & Müller, R. (2008). Angew. Chem. Int. Ed. Engl. 47, 4595–4599.  CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds