organic compounds
4-[(Hydroxy)(4-methylphenyl)methylidene]isochroman-1,3-dione
aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, bLaboratoire de Chimie Bio-organique et Phytochimie, Université de Ouagadougou 03 BP 7021 Ouagadougou 03, Burkina Faso, and cUniversité de Provence, Laboratoire de Spectrométrie et Dynamique Moléculaire, case 542 Avenue Escadrille Normandie Niemen, F-13397 Marseille, Cedex 20, France.
*Correspondence e-mail: abou_akoun@yahoo.fr
In the title compound, C17H12O4, the six-membered heterocyclic ring adopts a distorted screw-boat conformation. The molecular structure exhibits an S(6) ring motif, owing to an intramolecular O—H⋯O hydrogen bond. In the crystal, weak C—H⋯O contacts generate an infinite chain along the c axis. There are also π–π stacking interactions between neighbouring isochromanedione benzene rings, with a centroid–centroid distance of 3.755 (1) Å, and C—O⋯π interactions with an O⋯centroid distance of 3.964 (2) Å.
Related literature
For the biological activity of isochromanones, see: Bianchi et al., (2004); Buntin et al. (2008). For π–π stacking interactions, see: Janiak (2000). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97, publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811050975/fj2488sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811050975/fj2488Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811050975/fj2488Isup3.cml
To a solution of p-Toluoyl chloride (4.10-2 mole) in dried tetrahydrofuran (150 ml), was added dried triethylamine (0.12 mole) and homophtalic anhydride (4.10-2 mole) by small portions over 30 min. The mixture was then refluxed for 3 h and poured in 300 ml of chloroform. The solution was acidified with dilute hydrochloric acid until the pH was 2 - 3. The organic layer was extracted, washed with water, dried over MgSO4 and the solvent removed. The crude product was recrystallized from chloroform-hexane (1/1, v/v) mixture. Yellow crystals of the title compound were obtained in a good yield: 85%; M.pt. 387–388 K.
H atoms were placed in calculated positions [O—H = 0.82 Å and C—H = 0.93 (aromatic) or 0.96 Å (methyl group)] and refined using a riding model approximation with Uiso(H) constrained to 1.2 (aromatic) or 1.5 (methyle, O—H) times Ueq of the respective parent atom.
Data collection: COLLECT (Hooft, 1998); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).C17H12O4 | F(000) = 584 |
Mr = 280.27 | Dx = 1.413 Mg m−3 |
Monoclinic, P21/c | Melting point = 387–388 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 15.6767 (6) Å | Cell parameters from 12419 reflections |
b = 5.9655 (2) Å | θ = 2.9–29.0° |
c = 14.4589 (4) Å | µ = 0.10 mm−1 |
β = 102.961 (1)° | T = 298 K |
V = 1317.74 (8) Å3 | Prism, yellow |
Z = 4 | 0.40 × 0.34 × 0.10 mm |
Nonius KappaCCD diffractometer | 2684 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.053 |
Graphite monochromator | θmax = 29.0°, θmin = 2.9° |
ϕ and ω scans | h = −21→20 |
12419 measured reflections | k = −7→7 |
3304 independent reflections | l = −19→19 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.057 | H-atom parameters constrained |
wR(F2) = 0.150 | w = 1/[σ2(Fo2) + (0.0625P)2 + 0.424P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3304 reflections | Δρmax = 0.20 e Å−3 |
193 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
48 constraints | Extinction coefficient: 0.11 (2) |
Primary atom site location: structure-invariant direct methods |
C17H12O4 | V = 1317.74 (8) Å3 |
Mr = 280.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.6767 (6) Å | µ = 0.10 mm−1 |
b = 5.9655 (2) Å | T = 298 K |
c = 14.4589 (4) Å | 0.40 × 0.34 × 0.10 mm |
β = 102.961 (1)° |
Nonius KappaCCD diffractometer | 2684 reflections with I > 2σ(I) |
12419 measured reflections | Rint = 0.053 |
3304 independent reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.150 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.20 e Å−3 |
3304 reflections | Δρmin = −0.16 e Å−3 |
193 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. The 2 reflections [(-5 2 1), (2 0 0)] whith (Iobs-Icalc)/Sigma(I) superior to 10, are not used in the refinement. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.85227 (9) | 0.2252 (2) | 0.70711 (8) | 0.0608 (4) | |
C5 | 0.83327 (9) | 0.3569 (2) | 0.51682 (9) | 0.0361 (3) | |
C4 | 0.88171 (10) | 0.4900 (3) | 0.59015 (10) | 0.0420 (4) | |
O3 | 0.77485 (10) | −0.0788 (3) | 0.66859 (10) | 0.0690 (4) | |
O4 | 0.69333 (9) | −0.1556 (2) | 0.50349 (10) | 0.0632 (4) | |
H4 | 0.7147 | −0.1802 | 0.5597 | 0.095* | |
C15 | 0.59439 (11) | 0.3609 (3) | 0.27099 (12) | 0.0484 (4) | |
H15 | 0.5656 | 0.4979 | 0.2599 | 0.058* | |
C1 | 0.78494 (10) | 0.1628 (3) | 0.54105 (10) | 0.0405 (4) | |
C6 | 0.83808 (10) | 0.4128 (3) | 0.42383 (10) | 0.0401 (4) | |
H6 | 0.8110 | 0.3211 | 0.3738 | 0.048* | |
C9 | 0.92667 (11) | 0.6800 (3) | 0.57079 (12) | 0.0514 (4) | |
H9 | 0.9579 | 0.7670 | 0.6204 | 0.062* | |
C16 | 0.63851 (10) | 0.3071 (3) | 0.36170 (12) | 0.0454 (4) | |
H16 | 0.6403 | 0.4089 | 0.4108 | 0.054* | |
C11 | 0.68042 (10) | 0.1011 (3) | 0.38016 (11) | 0.0412 (4) | |
C10 | 0.72372 (10) | 0.0383 (3) | 0.47841 (12) | 0.0441 (4) | |
C12 | 0.67731 (11) | −0.0477 (3) | 0.30589 (13) | 0.0515 (4) | |
H12 | 0.7043 | −0.1870 | 0.3173 | 0.062* | |
C8 | 0.92474 (12) | 0.7385 (3) | 0.47832 (13) | 0.0530 (4) | |
H8 | 0.9519 | 0.8693 | 0.4648 | 0.064* | |
C3 | 0.89085 (12) | 0.4261 (3) | 0.68931 (11) | 0.0532 (5) | |
O2 | 0.93083 (11) | 0.5246 (3) | 0.75773 (9) | 0.0782 (5) | |
C14 | 0.59194 (10) | 0.2147 (3) | 0.19552 (12) | 0.0487 (4) | |
C13 | 0.63411 (12) | 0.0107 (3) | 0.21485 (13) | 0.0567 (5) | |
H13 | 0.6334 | −0.0896 | 0.1654 | 0.068* | |
C7 | 0.88200 (11) | 0.6007 (3) | 0.40553 (11) | 0.0461 (4) | |
H7 | 0.8831 | 0.6360 | 0.3432 | 0.055* | |
C2 | 0.80260 (12) | 0.0934 (3) | 0.63907 (12) | 0.0504 (4) | |
C17 | 0.54283 (14) | 0.2771 (4) | 0.09711 (14) | 0.0719 (6) | |
H17A | 0.4814 | 0.2511 | 0.0913 | 0.108* | |
H17B | 0.5634 | 0.1874 | 0.0514 | 0.108* | |
H17C | 0.5524 | 0.4327 | 0.0859 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0781 (9) | 0.0731 (9) | 0.0303 (6) | 0.0141 (7) | 0.0104 (5) | 0.0079 (5) |
C5 | 0.0390 (7) | 0.0374 (8) | 0.0311 (7) | 0.0060 (5) | 0.0063 (5) | −0.0008 (5) |
C4 | 0.0461 (8) | 0.0458 (9) | 0.0313 (7) | 0.0105 (6) | 0.0029 (6) | −0.0061 (6) |
O3 | 0.0837 (10) | 0.0700 (9) | 0.0572 (8) | 0.0078 (7) | 0.0242 (7) | 0.0287 (7) |
O4 | 0.0656 (8) | 0.0478 (7) | 0.0736 (9) | −0.0084 (6) | 0.0102 (7) | 0.0191 (6) |
C15 | 0.0448 (8) | 0.0428 (9) | 0.0566 (10) | 0.0044 (7) | 0.0092 (7) | 0.0052 (7) |
C1 | 0.0452 (8) | 0.0419 (8) | 0.0357 (7) | 0.0064 (6) | 0.0116 (6) | 0.0047 (6) |
C6 | 0.0435 (8) | 0.0450 (8) | 0.0306 (7) | −0.0051 (6) | 0.0056 (6) | −0.0029 (6) |
C9 | 0.0527 (9) | 0.0473 (9) | 0.0474 (9) | −0.0001 (7) | −0.0031 (7) | −0.0147 (7) |
C16 | 0.0481 (8) | 0.0383 (8) | 0.0491 (9) | 0.0034 (6) | 0.0094 (7) | −0.0026 (6) |
C11 | 0.0382 (7) | 0.0355 (8) | 0.0482 (8) | −0.0021 (6) | 0.0064 (6) | 0.0002 (6) |
C10 | 0.0463 (8) | 0.0371 (8) | 0.0509 (9) | 0.0039 (6) | 0.0149 (7) | 0.0069 (6) |
C12 | 0.0520 (9) | 0.0383 (9) | 0.0606 (10) | 0.0032 (7) | 0.0048 (8) | −0.0059 (7) |
C8 | 0.0551 (10) | 0.0438 (9) | 0.0567 (10) | −0.0094 (7) | 0.0053 (8) | −0.0031 (7) |
C3 | 0.0648 (11) | 0.0583 (11) | 0.0328 (8) | 0.0203 (8) | 0.0030 (7) | −0.0057 (7) |
O2 | 0.1091 (12) | 0.0797 (10) | 0.0345 (6) | 0.0199 (9) | −0.0081 (7) | −0.0154 (6) |
C14 | 0.0380 (8) | 0.0586 (10) | 0.0478 (9) | −0.0055 (7) | 0.0060 (6) | 0.0021 (7) |
C13 | 0.0563 (10) | 0.0564 (11) | 0.0544 (10) | −0.0008 (8) | 0.0059 (8) | −0.0161 (8) |
C7 | 0.0487 (9) | 0.0504 (9) | 0.0380 (8) | −0.0070 (7) | 0.0069 (6) | 0.0024 (6) |
C2 | 0.0563 (10) | 0.0564 (10) | 0.0414 (8) | 0.0153 (8) | 0.0169 (7) | 0.0108 (7) |
C17 | 0.0641 (12) | 0.0963 (17) | 0.0503 (11) | −0.0034 (11) | 0.0024 (9) | 0.0090 (10) |
O1—C2 | 1.360 (2) | C9—H9 | 0.9300 |
O1—C3 | 1.392 (2) | C16—C11 | 1.391 (2) |
C5—C4 | 1.404 (2) | C16—H16 | 0.9300 |
C5—C6 | 1.404 (2) | C11—C12 | 1.386 (2) |
C5—C1 | 1.469 (2) | C11—C10 | 1.479 (2) |
C4—C9 | 1.396 (2) | C12—C13 | 1.383 (3) |
C4—C3 | 1.459 (2) | C12—H12 | 0.9300 |
O3—C2 | 1.229 (2) | C8—C7 | 1.384 (2) |
O4—C10 | 1.3316 (19) | C8—H8 | 0.9300 |
O4—H4 | 0.8200 | C3—O2 | 1.199 (2) |
C15—C16 | 1.376 (2) | C14—C13 | 1.383 (3) |
C15—C14 | 1.391 (2) | C14—C17 | 1.505 (2) |
C15—H15 | 0.9300 | C13—H13 | 0.9300 |
C1—C10 | 1.380 (2) | C7—H7 | 0.9300 |
C1—C2 | 1.443 (2) | C17—H17A | 0.9600 |
C6—C7 | 1.372 (2) | C17—H17B | 0.9600 |
C6—H6 | 0.9300 | C17—H17C | 0.9600 |
C9—C8 | 1.376 (3) | ||
C2—O1—C3 | 124.49 (13) | C1—C10—C11 | 126.59 (14) |
C4—C5—C6 | 116.93 (14) | C13—C12—C11 | 120.05 (16) |
C4—C5—C1 | 119.11 (13) | C13—C12—H12 | 120.0 |
C6—C5—C1 | 123.87 (13) | C11—C12—H12 | 120.0 |
C9—C4—C5 | 121.33 (14) | C9—C8—C7 | 119.32 (16) |
C9—C4—C3 | 117.80 (15) | C9—C8—H8 | 120.3 |
C5—C4—C3 | 120.78 (16) | C7—C8—H8 | 120.3 |
C10—O4—H4 | 109.5 | O2—C3—O1 | 115.94 (16) |
C16—C15—C14 | 121.40 (16) | O2—C3—C4 | 126.9 (2) |
C16—C15—H15 | 119.3 | O1—C3—C4 | 117.10 (15) |
C14—C15—H15 | 119.3 | C13—C14—C15 | 117.73 (15) |
C10—C1—C2 | 116.26 (15) | C13—C14—C17 | 121.93 (18) |
C10—C1—C5 | 126.02 (13) | C15—C14—C17 | 120.32 (17) |
C2—C1—C5 | 117.72 (14) | C12—C13—C14 | 121.58 (16) |
C7—C6—C5 | 121.07 (14) | C12—C13—H13 | 119.2 |
C7—C6—H6 | 119.5 | C14—C13—H13 | 119.2 |
C5—C6—H6 | 119.5 | C6—C7—C8 | 121.13 (15) |
C8—C9—C4 | 119.92 (15) | C6—C7—H7 | 119.4 |
C8—C9—H9 | 120.0 | C8—C7—H7 | 119.4 |
C4—C9—H9 | 120.0 | O3—C2—O1 | 114.97 (15) |
C15—C16—C11 | 120.24 (16) | O3—C2—C1 | 125.20 (18) |
C15—C16—H16 | 119.9 | O1—C2—C1 | 119.82 (16) |
C11—C16—H16 | 119.9 | C14—C17—H17A | 109.5 |
C12—C11—C16 | 118.97 (15) | C14—C17—H17B | 109.5 |
C12—C11—C10 | 120.72 (14) | H17A—C17—H17B | 109.5 |
C16—C11—C10 | 120.24 (15) | C14—C17—H17C | 109.5 |
O4—C10—C1 | 121.84 (15) | H17A—C17—H17C | 109.5 |
O4—C10—C11 | 111.50 (14) | H17B—C17—H17C | 109.5 |
C6—C5—C4—C9 | 5.1 (2) | C16—C11—C12—C13 | 0.9 (3) |
C1—C5—C4—C9 | −178.11 (14) | C10—C11—C12—C13 | 177.89 (16) |
C6—C5—C4—C3 | −171.19 (14) | C4—C9—C8—C7 | −3.5 (3) |
C1—C5—C4—C3 | 5.6 (2) | C2—O1—C3—O2 | 178.20 (16) |
C4—C5—C1—C10 | 168.82 (15) | C2—O1—C3—C4 | −4.3 (2) |
C6—C5—C1—C10 | −14.7 (2) | C9—C4—C3—O2 | 3.0 (3) |
C4—C5—C1—C2 | −11.4 (2) | C5—C4—C3—O2 | 179.43 (17) |
C6—C5—C1—C2 | 165.14 (14) | C9—C4—C3—O1 | −174.25 (14) |
C4—C5—C6—C7 | −5.5 (2) | C5—C4—C3—O1 | 2.2 (2) |
C1—C5—C6—C7 | 177.88 (14) | C16—C15—C14—C13 | 1.2 (2) |
C5—C4—C9—C8 | −0.7 (2) | C16—C15—C14—C17 | 179.69 (16) |
C3—C4—C9—C8 | 175.73 (16) | C11—C12—C13—C14 | −1.1 (3) |
C14—C15—C16—C11 | −1.4 (3) | C15—C14—C13—C12 | 0.1 (3) |
C15—C16—C11—C12 | 0.3 (2) | C17—C14—C13—C12 | −178.41 (18) |
C15—C16—C11—C10 | −176.67 (15) | C5—C6—C7—C8 | 1.5 (3) |
C2—C1—C10—O4 | −10.7 (2) | C9—C8—C7—C6 | 3.2 (3) |
C5—C1—C10—O4 | 169.10 (15) | C3—O1—C2—O3 | 179.33 (15) |
C2—C1—C10—C11 | 165.94 (15) | C3—O1—C2—C1 | −1.8 (2) |
C5—C1—C10—C11 | −14.3 (3) | C10—C1—C2—O3 | 8.2 (2) |
C12—C11—C10—O4 | −52.7 (2) | C5—C1—C2—O3 | −171.65 (16) |
C16—C11—C10—O4 | 124.25 (16) | C10—C1—C2—O1 | −170.55 (14) |
C12—C11—C10—C1 | 130.41 (18) | C5—C1—C2—O1 | 9.6 (2) |
C16—C11—C10—C1 | −52.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O3 | 0.82 | 1.75 | 2.485 (2) | 148 |
C7—H7···O2i | 0.93 | 2.57 | 3.299 (2) | 136 |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C17H12O4 |
Mr | 280.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 15.6767 (6), 5.9655 (2), 14.4589 (4) |
β (°) | 102.961 (1) |
V (Å3) | 1317.74 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.40 × 0.34 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12419, 3304, 2684 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.682 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.150, 1.08 |
No. of reflections | 3304 |
No. of parameters | 193 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.16 |
Computer programs: COLLECT (Hooft, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O3 | 0.82 | 1.75 | 2.485 (2) | 148 |
C7—H7···O2i | 0.93 | 2.57 | 3.299 (2) | 136 |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Acknowledgements
We thank the Laboratoire de Physique des Interactions Ioniques et Spectropôle, Université de Provence, and Université Paul Cézanne, Faculté des Sciences et Techniques de Saint Jérôme, Marseille, France, for the use of their diffractometer.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufnam, T. S. (2004). J. Agric. Food Chem. 52, 1923–1927. Web of Science CrossRef PubMed CAS Google Scholar
Buntin, K., Rachid, S., Scharfe, M., Blöcker, H., Weissman, K. J. & Müller, R. (2008). Angew. Chem. Int. Ed. Engl. 47, 4595–4599. CrossRef PubMed CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cremer, D. & Pople, J. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title molecule is related to the isochromanone derivatives that are generally known as regulators of plant growth (Bianchi et al., 2004). Depending on their chemical structure and concentration they can act either as inhibitors or stimulators in these processes. Some substituted isochromanones isolated from myxobacteria strains were introduced as anti-fungal agents (Buntin et al., 2008).
The structure of the title compound (I) (Fig. 1) consists of two essentially planar benzene rings with the maximum deviations from the best planes of 0.035 (1) Å for atom C6 (benzene ring C4—C9) and 0.008 (2) Å for atoms C12 and C15 (benzene ring C11—C16). An S(6) ring motifs (Bernstein et al., 1995), arising from the intramolecular hydrogen bond O—H···O, generates a planar pseudo six-membered ring (maximum deviation from planarity being ∓0.055 (2) Å for atoms C1 and C10) to result in a tricyclic ring (Fig. 1). The dihedral angles between two benzene rings is 58.99 (8)° and that between the pseudo six-membered ring and benzene rings are 13.75 (8) ° (ring C4—C9) and 53.96 (8)° (ring C11—C16). The heterocyclic ring O1/C1—C5 adopts a distorted screw-boat conformation as judged from the puckering parameters (Cremer & Pople, 1975): Q = 0.0974 (17) Å, θ = 69.6 (1)° and ϕ = 132.6 (1)°. Furthermore, intermolecular C—H···O hydrogen bonds (Table 1) link molecules into infinite chains along the [001] (Fig. 2).
The supramolecular aggregation is completed by the presence of C—O···π interactions (O3···Cg3[x,1/2 - y,-3/2 + z] = 3.964 (2) Å, C2—O3···Cg3 = 83.89 (12)°, where Cg3 is the centroid of the benzene ring C11—C16 and π–π stacking between two parallel isochromandione-benzene C4—C9 rings; in the latter, the centroid···centroid distance, (Cg2···Cg2(-x,2 - y,-z) of 3.755 (1) Å), is less than 3.8 Å, the maximum regarded as relevant for π–π interactions (Janiak, 2000) (Fig.3).