organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Cyclo­propyl-1-(4-methyl­phenyl­sulfon­yl)piperidine-3,5-diol

aCollege of Chemistry and Engineering, Yunnan Normal University, Kunming, People's Republic of China
*Correspondence e-mail: sslwangyi@yahoo.cn

(Received 4 November 2011; accepted 18 December 2011; online 23 December 2011)

In the title compound, C15H21NO4S, both hy­droxy groups on the piperidine ring are located in axial positions, whereas the tosyl group and the cyclo­propane ring are in equatorial positions. An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, mol­ecules form inversion dimers via pairs of O—H⋯O hydrogen bonds, generating cyclic R44(8) motifs, as noted previously in related diols.

Related literature

Aza­cyclo­hexa­nediol (piperidine­diol) derivatives are widely found in natural products and are often incorporated into drugs, see: Nagahama et al. (2003[Nagahama, K., Yamato, M., Kato, S. & Takeuchi, K. (2003). J. Pharm. Sci. 93, 55-61.]); Fukushima et al. (2001[Fukushima, Y., Otsuka, H. & Ishikawa, M. (2001). Digestion, 64, 155-160.]). For related structures, see: Hidekazu et al. (2005[Hidekazu, O., Yukiko, M. & Hiroki, T. (2005). J. Org. Chem. 70, 5207-5214.]); Karin et al. (2006[Karin, L., Ann-Britt, L. F. & Jan-E, B. (2006). J. Org. Chem. 71, 8622-8625.]). Similar hydrogen bonding has been seen in related diols, see: Ferguson et al. (1993[Ferguson, G., Gallagher, J. F., Glidewell, C. & Zakaria, C. M. (1993). Acta Cryst. C49, 967-971.]).

[Scheme 1]

Experimental

Crystal data
  • C15H21NO4S

  • Mr = 311.39

  • Monoclinic, P 21 /n

  • a = 11.583 (5) Å

  • b = 5.598 (2) Å

  • c = 24.009 (9) Å

  • β = 102.905 (7)°

  • V = 1517.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.24 × 0.11 × 0.06 mm

Data collection
  • Rigaku MM007-HF CCD (Saturn 724+) diffractometer

  • Absorption correction: numerical (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.947, Tmax = 0.986

  • 9795 measured reflections

  • 2676 independent reflections

  • 2431 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.128

  • S = 1.23

  • 2676 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O4 0.84 2.08 2.804 (3) 145
O4—H4⋯O3i 0.84 2.01 2.837 (3) 167
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Azacyclohexanediol (piperidinediol) derivatives are widely found in natural products and often incorporated into drugs (Nagahama et al., 2003). We report here the crystal structure of the title compound, a 1,3-piperidinediol derivative.

Bond lengths and angles were normal. The distance of N1—C8 and N1—C12 are 1.471 (4) and 1.478 (4) Å, respectively, which are in good agreement with normal N—C bond lengths [reported values range from 1.33 to 1.52 Å]. As shown as in Fig. 1, the two hydroxy groups in piperidine ring adopt a cis conformation. The twist angles of hydroxy groups and the piperidine are 112.0 (3) and 110.3 (3), respectively. Thus, the orientation of both hydroxy groups are axial in reference to the piperidine ring. A comparison with analogous 1,3-cyclohexanediol systems, shows that our observed system is in good agreement with similar 1,3-cyclohexanediols (Hidekazu et al., 2005; Karin et al., 2006). The cyclopropane C13—C15 planes is nearly coplanar with the azacyclohexane ring. A centrosymmetric dimer is generated by intermolecular O—H—O hydrogen bonding, and this has been seen previously in related diols (Ferguson et al., 1993), as shown in Fig. 2.

Related literature top

Azacyclohexanediol (piperidinediol) derivatives are widely found in natural products and are often incorporated into drugs, see: Nagahama et al. (2003); Fukushima et al. (2001). For related structures, see: Hidekazu et al. (2005); Karin et al. (2006). Similar hydrogen bonding has been seen in related diols, see: Ferguson et al. (1993).

Experimental top

A mixture of N-(2-cyclopropylallyl)-4-methyl-N–(2-oxoethyl)benzenesulfonamide (1 mmol), ferric chloride hexahydrate (0.1mmol) was stirred in dichloromethane (5 ml) for 24 h. The mixture was concentrated and the residue was purified by flash column chromatography with silica gel to afford the title products (yield 55%). Single crystals suitable for X-ray diffraction were grown by slow diffusion of ether into a solution of the compound in dichloromethane.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93—0.98 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The dimeric unit showing the hydrogen bonding as dashed lines.
3-Cyclopropyl-1-(4-methylphenylsulfonyl)piperidine-3,5-diol top
Crystal data top
C15H21NO4SF(000) = 664
Mr = 311.39Dx = 1.363 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 345 reflections
a = 11.583 (5) Åθ = 2.2–27.5°
b = 5.598 (2) ŵ = 0.23 mm1
c = 24.009 (9) ÅT = 173 K
β = 102.905 (7)°Plate, colorless
V = 1517.5 (10) Å30.24 × 0.11 × 0.06 mm
Z = 4
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
2676 independent reflections
Radiation source: rotating anode2431 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.053
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 1.7°
Absorption correction: numerical
(CrystalClear; Rigaku, 2002)
h = 1313
Tmin = 0.947, Tmax = 0.986k = 66
9795 measured reflectionsl = 2825
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0211P)2 + 2.2306P]
where P = (Fo2 + 2Fc2)/3
2676 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C15H21NO4SV = 1517.5 (10) Å3
Mr = 311.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.583 (5) ŵ = 0.23 mm1
b = 5.598 (2) ÅT = 173 K
c = 24.009 (9) Å0.24 × 0.11 × 0.06 mm
β = 102.905 (7)°
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
2676 independent reflections
Absorption correction: numerical
(CrystalClear; Rigaku, 2002)
2431 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.986Rint = 0.053
9795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.23Δρmax = 0.42 e Å3
2676 reflectionsΔρmin = 0.32 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48729 (7)0.71212 (14)0.21603 (3)0.0254 (2)
O10.3693 (2)0.8072 (4)0.20391 (9)0.0309 (6)
O20.5867 (2)0.8711 (4)0.22413 (9)0.0333 (6)
O30.6103 (2)0.5720 (4)0.06890 (9)0.0323 (6)
H3B0.53880.59800.05350.049*
O40.3664 (2)0.4775 (4)0.04568 (9)0.0293 (5)
H40.37220.43910.01260.044*
N10.4962 (2)0.5392 (5)0.16189 (10)0.0239 (6)
C10.5488 (4)0.0129 (7)0.41161 (16)0.0499 (11)
H1A0.50120.05720.43900.075*
H1B0.63250.00490.43120.075*
H1C0.52310.14340.39500.075*
C20.5327 (3)0.1979 (6)0.36466 (13)0.0336 (8)
C30.6307 (3)0.3092 (6)0.35169 (13)0.0314 (8)
H3A0.70780.27420.37360.038*
C40.6166 (3)0.4712 (6)0.30688 (13)0.0291 (8)
H4A0.68390.54470.29760.035*
C50.5040 (3)0.5246 (6)0.27584 (12)0.0242 (7)
C60.4056 (3)0.4195 (6)0.28916 (14)0.0331 (8)
H6A0.32820.45840.26820.040*
C70.4216 (3)0.2568 (7)0.33361 (14)0.0390 (9)
H7A0.35430.18400.34290.047*
C80.6136 (3)0.4325 (6)0.16365 (13)0.0284 (8)
H8A0.62550.29080.18900.034*
H8B0.67680.54980.17880.034*
C90.6192 (3)0.3603 (6)0.10331 (13)0.0296 (8)
H9A0.69730.28230.10430.036*
C100.5208 (3)0.1832 (6)0.07993 (14)0.0298 (8)
H10A0.53670.03230.10180.036*
H10B0.52130.14740.03960.036*
C110.3986 (3)0.2754 (6)0.08316 (13)0.0262 (7)
C120.4001 (3)0.3648 (6)0.14376 (12)0.0255 (7)
H12A0.32310.44020.14450.031*
H12B0.41180.22810.17060.031*
C130.3070 (3)0.0790 (6)0.06840 (13)0.0308 (8)
H13A0.32190.06150.09480.037*
C140.2511 (3)0.0174 (7)0.00777 (14)0.0370 (9)
H14A0.23630.15340.00190.044*
H14B0.27230.11580.02270.044*
C150.1790 (3)0.1328 (7)0.04522 (15)0.0415 (9)
H15A0.15600.30210.03770.050*
H15B0.11990.03300.05850.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0328 (5)0.0215 (4)0.0217 (4)0.0001 (4)0.0057 (3)0.0003 (3)
O10.0350 (14)0.0271 (13)0.0300 (12)0.0092 (11)0.0062 (10)0.0013 (10)
O20.0402 (15)0.0251 (12)0.0354 (13)0.0088 (11)0.0105 (11)0.0012 (10)
O30.0342 (14)0.0349 (14)0.0274 (12)0.0003 (11)0.0057 (10)0.0043 (10)
O40.0428 (14)0.0237 (12)0.0214 (11)0.0061 (11)0.0074 (10)0.0032 (9)
N10.0276 (15)0.0247 (15)0.0201 (13)0.0006 (12)0.0066 (11)0.0001 (11)
C10.058 (3)0.050 (3)0.040 (2)0.000 (2)0.0071 (19)0.0173 (19)
C20.039 (2)0.038 (2)0.0236 (17)0.0013 (18)0.0070 (15)0.0045 (16)
C30.0287 (19)0.040 (2)0.0234 (16)0.0039 (16)0.0011 (14)0.0009 (15)
C40.0287 (19)0.0338 (19)0.0257 (17)0.0059 (16)0.0083 (14)0.0033 (15)
C50.0292 (18)0.0250 (17)0.0182 (15)0.0005 (15)0.0050 (13)0.0019 (13)
C60.0257 (19)0.044 (2)0.0289 (18)0.0042 (17)0.0041 (14)0.0028 (16)
C70.032 (2)0.051 (2)0.0355 (19)0.0083 (19)0.0124 (16)0.0103 (18)
C80.0316 (19)0.0290 (19)0.0243 (16)0.0032 (15)0.0058 (14)0.0022 (15)
C90.034 (2)0.0289 (19)0.0269 (17)0.0089 (15)0.0084 (15)0.0039 (14)
C100.040 (2)0.0239 (18)0.0265 (17)0.0053 (15)0.0102 (15)0.0025 (14)
C110.0379 (19)0.0191 (17)0.0216 (16)0.0025 (15)0.0064 (14)0.0030 (13)
C120.0289 (19)0.0237 (17)0.0238 (16)0.0004 (14)0.0056 (14)0.0006 (13)
C130.042 (2)0.0240 (18)0.0244 (17)0.0001 (16)0.0030 (15)0.0018 (14)
C140.045 (2)0.032 (2)0.0307 (19)0.0002 (18)0.0025 (16)0.0053 (16)
C150.038 (2)0.041 (2)0.046 (2)0.0009 (18)0.0112 (18)0.0024 (18)
Geometric parameters (Å, º) top
S1—O21.434 (2)C6—H6A0.9500
S1—O11.435 (2)C7—H7A0.9500
S1—N11.642 (3)C8—C91.519 (4)
S1—C51.754 (3)C8—H8A0.9900
O3—C91.435 (4)C8—H8B0.9900
O3—H3B0.8400C9—C101.520 (5)
O4—C111.442 (4)C9—H9A1.0000
O4—H40.8401C10—C111.526 (4)
N1—C121.471 (4)C10—H10A0.9900
N1—C81.478 (4)C10—H10B0.9900
C1—C21.511 (5)C11—C131.514 (5)
C1—H1A0.9800C11—C121.535 (4)
C1—H1B0.9800C12—H12A0.9900
C1—H1C0.9800C12—H12B0.9900
C2—C71.375 (5)C13—C151.493 (5)
C2—C31.389 (5)C13—C141.495 (4)
C3—C41.389 (4)C13—H13A1.0000
C3—H3A0.9500C14—C151.502 (5)
C4—C51.383 (4)C14—H14A0.9900
C4—H4A0.9500C14—H14B0.9900
C5—C61.382 (4)C15—H15A0.9900
C6—C71.384 (5)C15—H15B0.9900
O2—S1—O1119.80 (14)O3—C9—C10112.0 (3)
O2—S1—N1106.43 (13)C8—C9—C10109.8 (3)
O1—S1—N1106.46 (13)O3—C9—H9A108.9
O2—S1—C5108.78 (15)C8—C9—H9A108.9
O1—S1—C5108.30 (14)C10—C9—H9A108.9
N1—S1—C5106.28 (14)C9—C10—C11112.8 (3)
C9—O3—H3B109.5C9—C10—H10A109.0
C11—O4—H4109.0C11—C10—H10A109.0
C12—N1—C8111.8 (2)C9—C10—H10B109.0
C12—N1—S1116.65 (19)C11—C10—H10B109.0
C8—N1—S1115.8 (2)H10A—C10—H10B107.8
C2—C1—H1A109.5O4—C11—C13110.7 (3)
C2—C1—H1B109.5O4—C11—C10110.3 (2)
H1A—C1—H1B109.5C13—C11—C10110.6 (3)
C2—C1—H1C109.5O4—C11—C12106.4 (2)
H1A—C1—H1C109.5C13—C11—C12108.5 (3)
H1B—C1—H1C109.5C10—C11—C12110.1 (3)
C7—C2—C3118.9 (3)N1—C12—C11110.2 (2)
C7—C2—C1120.9 (3)N1—C12—H12A109.6
C3—C2—C1120.2 (3)C11—C12—H12A109.6
C4—C3—C2120.4 (3)N1—C12—H12B109.6
C4—C3—H3A119.8C11—C12—H12B109.6
C2—C3—H3A119.8H12A—C12—H12B108.1
C5—C4—C3119.5 (3)C15—C13—C1460.4 (2)
C5—C4—H4A120.3C15—C13—C11121.7 (3)
C3—C4—H4A120.3C14—C13—C11121.6 (3)
C6—C5—C4120.7 (3)C15—C13—H13A114.2
C6—C5—S1119.9 (2)C14—C13—H13A114.2
C4—C5—S1119.3 (2)C11—C13—H13A114.2
C5—C6—C7118.9 (3)C13—C14—C1559.8 (2)
C5—C6—H6A120.6C13—C14—H14A117.8
C7—C6—H6A120.6C15—C14—H14A117.8
C2—C7—C6121.6 (3)C13—C14—H14B117.8
C2—C7—H7A119.2C15—C14—H14B117.8
C6—C7—H7A119.2H14A—C14—H14B114.9
N1—C8—C9108.4 (3)C13—C15—C1459.9 (2)
N1—C8—H8A110.0C13—C15—H15A117.8
C9—C8—H8A110.0C14—C15—H15A117.8
N1—C8—H8B110.0C13—C15—H15B117.8
C9—C8—H8B110.0C14—C15—H15B117.8
H8A—C8—H8B108.4H15A—C15—H15B114.9
O3—C9—C8108.4 (3)
O2—S1—N1—C12177.7 (2)C12—N1—C8—C964.1 (3)
O1—S1—N1—C1248.9 (2)S1—N1—C8—C9159.1 (2)
C5—S1—N1—C1266.4 (2)N1—C8—C9—O363.8 (3)
O2—S1—N1—C847.6 (2)N1—C8—C9—C1058.8 (3)
O1—S1—N1—C8176.4 (2)O3—C9—C10—C1166.3 (3)
C5—S1—N1—C868.3 (2)C8—C9—C10—C1154.2 (4)
C7—C2—C3—C42.1 (5)C9—C10—C11—O466.2 (3)
C1—C2—C3—C4177.1 (3)C9—C10—C11—C13170.9 (3)
C2—C3—C4—C51.2 (5)C9—C10—C11—C1250.9 (3)
C3—C4—C5—C60.3 (5)C8—N1—C12—C1161.5 (3)
C3—C4—C5—S1175.3 (2)S1—N1—C12—C11162.1 (2)
O2—S1—C5—C6156.2 (3)O4—C11—C12—N166.4 (3)
O1—S1—C5—C624.5 (3)C13—C11—C12—N1174.4 (3)
N1—S1—C5—C689.5 (3)C10—C11—C12—N153.2 (3)
O2—S1—C5—C428.1 (3)O4—C11—C13—C1532.1 (4)
O1—S1—C5—C4159.8 (2)C10—C11—C13—C15154.7 (3)
N1—S1—C5—C486.1 (3)C12—C11—C13—C1584.4 (4)
C4—C5—C6—C71.0 (5)O4—C11—C13—C1440.3 (4)
S1—C5—C6—C7174.6 (3)C10—C11—C13—C1482.3 (4)
C3—C2—C7—C61.5 (6)C12—C11—C13—C14156.8 (3)
C1—C2—C7—C6177.7 (3)C11—C13—C14—C15111.1 (4)
C5—C6—C7—C20.1 (5)C11—C13—C15—C14110.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O40.842.082.804 (3)145
O4—H4···O3i0.842.012.837 (3)167
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H21NO4S
Mr311.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.583 (5), 5.598 (2), 24.009 (9)
β (°) 102.905 (7)
V3)1517.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.24 × 0.11 × 0.06
Data collection
DiffractometerRigaku MM007-HF CCD (Saturn 724+)
diffractometer
Absorption correctionNumerical
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.947, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
9795, 2676, 2431
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.128, 1.23
No. of reflections2676
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.32

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O40.842.082.804 (3)144.7
O4—H4···O3i0.842.012.837 (3)166.9
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank the China Postdoctoral Science Foundation (grant No. 20090460146) and Yunnan Normal University for financial support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFerguson, G., Gallagher, J. F., Glidewell, C. & Zakaria, C. M. (1993). Acta Cryst. C49, 967–971.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFukushima, Y., Otsuka, H. & Ishikawa, M. (2001). Digestion, 64, 155–160.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHidekazu, O., Yukiko, M. & Hiroki, T. (2005). J. Org. Chem. 70, 5207–5214.  Web of Science PubMed Google Scholar
First citationKarin, L., Ann-Britt, L. F. & Jan-E, B. (2006). J. Org. Chem. 71, 8622–8625.  Web of Science PubMed Google Scholar
First citationNagahama, K., Yamato, M., Kato, S. & Takeuchi, K. (2003). J. Pharm. Sci. 93, 55–61.  CrossRef CAS Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds