organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(E)-2-Phenyl­ethen­yl]-1H-indole-6-carbo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: peluoyh@sina.com

(Received 5 November 2011; accepted 16 December 2011; online 21 December 2011)

In the title compound, C17H12N2, the inter­planar angle between the indole mean plane [max.deviation 0.030 (1) Å] and the phenyl ring is 24.32 (7)°. In the crystal, inter­molecular N—H⋯N≡C hydrogen bonds form zigzag chains in the a-axis direction augmented by weak C—H⋯N≡C contacts.

Related literature

For indole derivatives as drug inter­mediates, see: Kunzer & Wendt (2011[Kunzer, A. R. & Wendt, M. D. (2011). Tetrahedron, 52, 1815-1818.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N2

  • Mr = 244.29

  • Orthorhombic, P b c a

  • a = 9.689 (8) Å

  • b = 7.440 (6) Å

  • c = 35.53 (3) Å

  • V = 2561 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.985, Tmax = 0.985

  • 16536 measured reflections

  • 2263 independent reflections

  • 1867 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.127

  • S = 1.16

  • 2263 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.90 2.19 3.043 (3) 158
C5—H5A⋯N2ii 0.93 2.66 3.416 (4) 138
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) -x, -y+2, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Derivatives of indole are important chemical materials because they are excellent drug intermediates for many pharmaceutical products (Kunzer, et al.,2011). As part of our interest in these materials, we report here the crystal structure of the title compound C17H12N2.

The molecular structure of the title compound is shown in Fig. 1. a dihedral angle of 24.32 (7)° between the planes of the indole and benzene rings is observed.

In the crystal, there are intermolecular N—H···O hydrogen bonds and no significant intermolecular ππ interactions [minimum ring centroid separation, 7.440 (5) Å]. (Fig. 2).

Related literature top

For indole derivatives as drug intermediates, see: Kunzer & Wendt (2011).

Experimental top

The title compound E-3-phenyl vinyl-6-cynaindole was obtained economically, Crystals of of it suitable for X-ray diffraction were obstained by slow evaporation of a ethanol solution.

Refinement top

All H atoms attached to C atoms and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (CH) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C and N).

Structure description top

Derivatives of indole are important chemical materials because they are excellent drug intermediates for many pharmaceutical products (Kunzer, et al.,2011). As part of our interest in these materials, we report here the crystal structure of the title compound C17H12N2.

The molecular structure of the title compound is shown in Fig. 1. a dihedral angle of 24.32 (7)° between the planes of the indole and benzene rings is observed.

In the crystal, there are intermolecular N—H···O hydrogen bonds and no significant intermolecular ππ interactions [minimum ring centroid separation, 7.440 (5) Å]. (Fig. 2).

For indole derivatives as drug intermediates, see: Kunzer & Wendt (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing view down the a axis showing the three dimensionnal network. Intermolecular hydrogen bonds are shown as dashed lines.
3-[(E)-2-Phenylethenyl]-1H-indole-6-carbonitrile top
Crystal data top
C17H12N2F(000) = 1024
Mr = 244.29Dx = 1.267 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2263 reflections
a = 9.689 (8) Åθ = 1.2–25.0°
b = 7.440 (6) ŵ = 0.08 mm1
c = 35.53 (3) ÅT = 293 K
V = 2561 (4) Å3Prism, blue
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2263 independent reflections
Radiation source: fine-focus sealed tube1867 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 1.2°
CCD_Profile_fitting scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 78
Tmin = 0.985, Tmax = 0.985l = 4242
16536 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.069P)2 + 0.3176P]
where P = (Fo2 + 2Fc2)/3
2263 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C17H12N2V = 2561 (4) Å3
Mr = 244.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.689 (8) ŵ = 0.08 mm1
b = 7.440 (6) ÅT = 293 K
c = 35.53 (3) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2263 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1867 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.985Rint = 0.027
16536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.16Δρmax = 0.13 e Å3
2263 reflectionsΔρmin = 0.20 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14124 (13)0.36176 (18)0.04780 (4)0.0497 (4)
H1A0.19330.36030.02680.060*
N20.17232 (16)1.0338 (2)0.01757 (4)0.0620 (4)
C10.13711 (17)0.2312 (2)0.07463 (5)0.0515 (4)
H1B0.18760.12500.07380.062*
C20.04867 (15)0.2774 (2)0.10301 (4)0.0437 (4)
C30.00642 (14)0.4503 (2)0.09281 (4)0.0388 (4)
C40.09969 (16)0.5690 (2)0.10937 (4)0.0448 (4)
H4A0.13680.54380.13290.054*
C50.01787 (14)0.6535 (2)0.03886 (4)0.0426 (4)
H5A0.05770.68240.01580.051*
C60.07849 (15)0.7645 (2)0.05558 (4)0.0435 (4)
C70.13635 (17)0.7231 (2)0.09078 (4)0.0477 (4)
H7A0.20010.80100.10160.057*
C80.12868 (16)0.9173 (2)0.03509 (4)0.0486 (4)
C90.00992 (16)0.1678 (2)0.13506 (4)0.0470 (4)
H9A0.06050.21060.15040.056*
C100.06676 (17)0.0115 (2)0.14427 (5)0.0508 (4)
H10A0.14350.02240.13020.061*
C110.02405 (17)0.1135 (2)0.17358 (4)0.0469 (4)
C120.10257 (18)0.1029 (2)0.19183 (5)0.0534 (4)
H12A0.16270.00940.18610.064*
C130.1402 (2)0.2282 (3)0.21825 (5)0.0649 (5)
H13A0.22530.21860.23020.078*
C140.0534 (2)0.3680 (3)0.22722 (6)0.0756 (6)
H14A0.07940.45270.24510.091*
C150.0719 (2)0.3811 (3)0.20954 (6)0.0795 (7)
H15A0.13150.47490.21550.095*
C160.1100 (2)0.2561 (3)0.18295 (5)0.0639 (5)
H16A0.19490.26730.17100.077*
C340.05265 (14)0.4975 (2)0.05786 (4)0.0403 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0468 (7)0.0499 (8)0.0525 (8)0.0053 (6)0.0124 (6)0.0016 (6)
N20.0596 (9)0.0647 (10)0.0618 (9)0.0127 (8)0.0015 (7)0.0148 (8)
C10.0481 (9)0.0448 (10)0.0616 (10)0.0067 (7)0.0061 (8)0.0041 (8)
C20.0403 (8)0.0420 (9)0.0487 (9)0.0003 (7)0.0001 (7)0.0007 (7)
C30.0354 (7)0.0397 (8)0.0412 (8)0.0043 (6)0.0014 (6)0.0011 (6)
C40.0484 (9)0.0457 (9)0.0402 (8)0.0001 (7)0.0032 (7)0.0013 (7)
C50.0398 (8)0.0457 (9)0.0423 (8)0.0066 (7)0.0012 (6)0.0023 (7)
C60.0417 (8)0.0417 (9)0.0472 (8)0.0023 (7)0.0076 (7)0.0019 (7)
C70.0490 (9)0.0466 (9)0.0476 (9)0.0072 (7)0.0015 (7)0.0044 (7)
C80.0459 (9)0.0509 (10)0.0491 (9)0.0018 (8)0.0015 (7)0.0021 (8)
C90.0457 (8)0.0454 (9)0.0498 (9)0.0013 (7)0.0007 (7)0.0016 (7)
C100.0488 (9)0.0495 (10)0.0540 (9)0.0028 (8)0.0021 (7)0.0032 (8)
C110.0532 (9)0.0432 (9)0.0443 (9)0.0014 (7)0.0061 (7)0.0008 (7)
C120.0602 (10)0.0498 (10)0.0503 (9)0.0006 (8)0.0041 (8)0.0005 (8)
C130.0706 (12)0.0697 (13)0.0543 (10)0.0150 (10)0.0015 (9)0.0040 (9)
C140.0897 (15)0.0720 (15)0.0653 (12)0.0171 (12)0.0135 (11)0.0233 (10)
C150.0866 (15)0.0673 (14)0.0845 (15)0.0052 (11)0.0183 (12)0.0279 (12)
C160.0609 (11)0.0588 (12)0.0722 (12)0.0072 (9)0.0046 (9)0.0116 (10)
C340.0347 (7)0.0417 (8)0.0446 (8)0.0037 (6)0.0009 (6)0.0016 (7)
Geometric parameters (Å, º) top
N1—C11.361 (2)C7—H7A0.9300
N1—C341.372 (2)C9—C101.328 (2)
N1—H1A0.8999C9—H9A0.9300
N2—C81.148 (2)C10—C111.457 (2)
C1—C21.367 (2)C10—H10A0.9300
C1—H1B0.9300C11—C121.390 (3)
C2—C31.439 (2)C11—C161.389 (3)
C2—C91.450 (2)C12—C131.373 (3)
C3—C341.412 (2)C12—H12A0.9300
C3—C41.394 (2)C13—C141.375 (3)
C4—C71.370 (2)C13—H13A0.9300
C4—H4A0.9300C14—C151.370 (3)
C5—C341.385 (2)C14—H14A0.9300
C5—C61.380 (2)C15—C161.376 (3)
C5—H5A0.9300C15—H15A0.9300
C6—C71.405 (2)C16—H16A0.9300
C6—C81.435 (2)
C1—N1—C34108.91 (14)C10—C9—H9A117.3
C1—N1—H1A126.0C2—C9—H9A117.3
C34—N1—H1A125.1C9—C10—C11128.16 (16)
N1—C1—C2110.82 (15)C9—C10—H10A115.9
N1—C1—H1B124.6C11—C10—H10A115.9
C2—C1—H1B124.6C12—C11—C16117.45 (16)
C1—C2—C3105.76 (14)C12—C11—C10123.22 (15)
C1—C2—C9126.88 (16)C16—C11—C10119.26 (16)
C3—C2—C9127.18 (14)C13—C12—C11120.99 (18)
C34—C3—C4118.45 (14)C13—C12—H12A119.5
C34—C3—C2107.06 (13)C11—C12—H12A119.5
C4—C3—C2134.49 (14)C12—C13—C14120.6 (2)
C7—C4—C3119.67 (15)C12—C13—H13A119.7
C7—C4—H4A120.2C14—C13—H13A119.7
C3—C4—H4A120.2C15—C14—C13119.32 (19)
C34—C5—C6117.15 (14)C15—C14—H14A120.3
C34—C5—H5A121.4C13—C14—H14A120.3
C6—C5—H5A121.4C16—C15—C14120.3 (2)
C5—C6—C7121.46 (15)C16—C15—H15A119.9
C5—C6—C8119.00 (15)C14—C15—H15A119.9
C7—C6—C8119.34 (15)C15—C16—C11121.3 (2)
C4—C7—C6120.61 (15)C15—C16—H16A119.3
C4—C7—H7A119.7C11—C16—H16A119.3
C6—C7—H7A119.7N1—C34—C5129.96 (14)
N2—C8—C6176.59 (18)N1—C34—C3107.43 (14)
C10—C9—C2125.35 (16)C5—C34—C3122.59 (14)
C34—N1—C1—C20.90 (19)C9—C10—C11—C16169.56 (17)
N1—C1—C2—C30.13 (18)C16—C11—C12—C130.4 (2)
N1—C1—C2—C9175.44 (15)C10—C11—C12—C13177.41 (16)
C1—C2—C3—C340.66 (16)C11—C12—C13—C140.2 (3)
C9—C2—C3—C34174.63 (14)C12—C13—C14—C150.1 (3)
C1—C2—C3—C4179.82 (17)C13—C14—C15—C160.3 (3)
C9—C2—C3—C44.9 (3)C14—C15—C16—C110.6 (3)
C34—C3—C4—C73.0 (2)C12—C11—C16—C150.6 (3)
C2—C3—C4—C7176.51 (15)C10—C11—C16—C15177.75 (18)
C34—C5—C6—C71.5 (2)C1—N1—C34—C5177.01 (15)
C34—C5—C6—C8173.32 (13)C1—N1—C34—C31.29 (17)
C3—C4—C7—C61.4 (2)C6—C5—C34—N1178.20 (15)
C5—C6—C7—C40.9 (2)C6—C5—C34—C30.1 (2)
C8—C6—C7—C4173.94 (15)C4—C3—C34—N1179.20 (13)
C1—C2—C9—C108.2 (3)C2—C3—C34—N11.20 (16)
C3—C2—C9—C10177.49 (15)C4—C3—C34—C52.3 (2)
C2—C9—C10—C11173.21 (15)C2—C3—C34—C5177.26 (13)
C9—C10—C11—C1213.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.902.193.043 (3)158
C5—H5A···N2ii0.932.663.416 (4)138
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC17H12N2
Mr244.29
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)9.689 (8), 7.440 (6), 35.53 (3)
V3)2561 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.985, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
16536, 2263, 1867
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.127, 1.16
No. of reflections2263
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.902.193.043 (3)158
C5—H5A···N2ii0.932.663.416 (4)138
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y+2, z.
 

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationKunzer, A. R. & Wendt, M. D. (2011). Tetrahedron, 52, 1815–1818.  CrossRef CAS Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds