metal-organic compounds
Bis(O-ethyl dithiocarbonato-κ2S,S′)bis(pyridine-3-carbonitrile-κN1)nickel(II)
aDepartment of Chemistry, University of Jammu, Jammu Tawi 180 006, India, and bX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: rkvk.paper11@gmail.com
The Ni2+ ion in the title complex, [Ni(C3H5OS2)2(C6H4N2)2], is in a strongly distorted octahedral coordination environment formed by an N2S4 donor set, with the Ni2+ ion located on a centre of inversion. In the crystal, weak C—H⋯S and C—H⋯N interactions are observed.
Related literature
For related structures, see: Tiekink & Haiduc (2005); Dakternieks et al. (2006); Hill & Tiekink (2007); Hogarth et al. (2009)
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Supporting information
10.1107/S1600536811053475/gk2438sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811053475/gk2438Isup2.hkl
The title complex was prepared by stirring the parent nickel(II) ethylxanthate (0.781g,0.0026 mol.) with 3-cyanopyridine(0.541g, 0.0052 mol.) in acetone(60 ml) for one hour. Green crystals of (I) were isolated by the slow evaporation of the resulting solution of the complex.
All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methylC).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).[Ni(C3H5OS2)2(C6H4N2)2] | F(000) = 524 |
Mr = 509.31 | Dx = 1.533 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 10361 reflections |
a = 6.7302 (2) Å | θ = 3.6–29.0° |
b = 18.8959 (5) Å | µ = 1.28 mm−1 |
c = 8.7242 (2) Å | T = 293 K |
β = 95.916 (2)° | Hexagonal plate, green |
V = 1103.58 (5) Å3 | 0.3 × 0.3 × 0.1 mm |
Z = 2 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 1930 independent reflections |
Radiation source: fine-focus sealed tube | 1723 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 16.1049 pixels mm-1 | θmax = 25.0°, θmin = 3.7° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | k = −22→22 |
Tmin = 0.728, Tmax = 1.000 | l = −10→10 |
18847 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.060 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0208P)2 + 0.7659P] where P = (Fo2 + 2Fc2)/3 |
1930 reflections | (Δ/σ)max = 0.001 |
134 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
[Ni(C3H5OS2)2(C6H4N2)2] | V = 1103.58 (5) Å3 |
Mr = 509.31 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.7302 (2) Å | µ = 1.28 mm−1 |
b = 18.8959 (5) Å | T = 293 K |
c = 8.7242 (2) Å | 0.3 × 0.3 × 0.1 mm |
β = 95.916 (2)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 1930 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | 1723 reflections with I > 2σ(I) |
Tmin = 0.728, Tmax = 1.000 | Rint = 0.036 |
18847 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.060 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.23 e Å−3 |
1930 reflections | Δρmin = −0.22 e Å−3 |
134 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.0000 | 0.5000 | 0.5000 | 0.02943 (12) | |
S1 | 0.33453 (8) | 0.46692 (3) | 0.60894 (6) | 0.03356 (14) | |
S2 | 0.03241 (8) | 0.54100 (3) | 0.23794 (7) | 0.03737 (15) | |
O1 | 0.3099 (2) | 0.42097 (8) | 0.89474 (17) | 0.0404 (4) | |
N1 | 0.0499 (3) | 0.60555 (9) | 0.5796 (2) | 0.0340 (4) | |
N2 | −0.3300 (4) | 0.76898 (12) | 0.8455 (3) | 0.0691 (7) | |
C2 | −0.0808 (3) | 0.63914 (11) | 0.6579 (3) | 0.0368 (5) | |
H2 | −0.1910 | 0.6143 | 0.6856 | 0.044* | |
C3 | −0.0591 (3) | 0.71000 (12) | 0.6999 (3) | 0.0401 (5) | |
C4 | 0.1050 (4) | 0.74716 (13) | 0.6592 (3) | 0.0484 (6) | |
H4 | 0.1222 | 0.7947 | 0.6846 | 0.058* | |
C5 | 0.2413 (4) | 0.71212 (13) | 0.5805 (3) | 0.0469 (6) | |
H5 | 0.3542 | 0.7354 | 0.5532 | 0.056* | |
C6 | 0.2086 (3) | 0.64182 (12) | 0.5425 (3) | 0.0383 (5) | |
H6 | 0.3014 | 0.6186 | 0.4885 | 0.046* | |
C7 | −0.2097 (4) | 0.74323 (13) | 0.7818 (3) | 0.0497 (6) | |
C8 | 0.2162 (3) | 0.44638 (11) | 0.7649 (2) | 0.0319 (5) | |
C9 | 0.5252 (3) | 0.41173 (13) | 0.9032 (3) | 0.0446 (6) | |
H9A | 0.5889 | 0.4561 | 0.8807 | 0.054* | |
H9B | 0.5583 | 0.3767 | 0.8285 | 0.054* | |
C10 | 0.5962 (4) | 0.38776 (14) | 1.0625 (3) | 0.0520 (6) | |
H10A | 0.5554 | 0.4213 | 1.1357 | 0.078* | |
H10B | 0.7392 | 0.3842 | 1.0732 | 0.078* | |
H10C | 0.5395 | 0.3423 | 1.0810 | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0264 (2) | 0.0265 (2) | 0.0358 (2) | 0.00092 (15) | 0.00515 (15) | 0.00119 (16) |
S1 | 0.0274 (3) | 0.0369 (3) | 0.0373 (3) | 0.0017 (2) | 0.0078 (2) | 0.0051 (2) |
S2 | 0.0275 (3) | 0.0441 (3) | 0.0418 (3) | 0.0007 (2) | 0.0097 (2) | 0.0045 (2) |
O1 | 0.0312 (8) | 0.0509 (10) | 0.0392 (9) | 0.0036 (7) | 0.0040 (7) | 0.0093 (7) |
N1 | 0.0334 (10) | 0.0296 (9) | 0.0387 (10) | 0.0001 (8) | 0.0028 (8) | 0.0021 (8) |
N2 | 0.0700 (17) | 0.0489 (14) | 0.0917 (19) | 0.0032 (12) | 0.0249 (14) | −0.0198 (13) |
C2 | 0.0360 (12) | 0.0332 (12) | 0.0412 (13) | −0.0003 (9) | 0.0035 (10) | −0.0004 (10) |
C3 | 0.0443 (13) | 0.0338 (12) | 0.0412 (13) | 0.0033 (10) | 0.0001 (10) | −0.0040 (10) |
C4 | 0.0590 (16) | 0.0314 (12) | 0.0535 (15) | −0.0084 (11) | −0.0004 (12) | −0.0019 (11) |
C5 | 0.0466 (14) | 0.0411 (13) | 0.0531 (15) | −0.0124 (11) | 0.0061 (11) | 0.0036 (12) |
C6 | 0.0351 (12) | 0.0371 (12) | 0.0424 (13) | −0.0012 (9) | 0.0033 (10) | 0.0038 (10) |
C7 | 0.0561 (16) | 0.0361 (13) | 0.0565 (16) | −0.0024 (12) | 0.0042 (13) | −0.0096 (12) |
C8 | 0.0306 (11) | 0.0294 (11) | 0.0357 (11) | −0.0003 (9) | 0.0028 (9) | 0.0021 (9) |
C9 | 0.0341 (12) | 0.0503 (14) | 0.0488 (14) | 0.0072 (10) | 0.0013 (10) | 0.0061 (11) |
C10 | 0.0525 (15) | 0.0469 (15) | 0.0536 (15) | 0.0075 (12) | −0.0082 (12) | 0.0037 (12) |
Ni1—N1 | 2.1273 (17) | C3—C7 | 1.442 (3) |
Ni1—S1 | 2.4335 (5) | C4—C5 | 1.372 (3) |
Ni1—S2 | 2.4450 (6) | C4—H4 | 0.9300 |
S1—C8 | 1.691 (2) | C5—C6 | 1.381 (3) |
S2—C8i | 1.688 (2) | C5—H5 | 0.9300 |
O1—C8 | 1.328 (2) | C6—H6 | 0.9300 |
O1—C9 | 1.454 (3) | C9—C10 | 1.493 (3) |
N1—C2 | 1.329 (3) | C9—H9A | 0.9700 |
N1—C6 | 1.336 (3) | C9—H9B | 0.9700 |
N2—C7 | 1.138 (3) | C10—H10A | 0.9600 |
C2—C3 | 1.392 (3) | C10—H10B | 0.9600 |
C2—H2 | 0.9300 | C10—H10C | 0.9600 |
C3—C4 | 1.385 (3) | ||
N1i—Ni1—N1 | 180.00 (3) | C2—C3—C7 | 119.3 (2) |
N1i—Ni1—S1 | 89.73 (5) | C5—C4—C3 | 118.4 (2) |
N1—Ni1—S1 | 90.27 (5) | C5—C4—H4 | 120.8 |
N1i—Ni1—S1i | 90.27 (5) | C3—C4—H4 | 120.8 |
N1—Ni1—S1i | 89.73 (5) | C4—C5—C6 | 119.1 (2) |
S1—Ni1—S1i | 180.0 | C4—C5—H5 | 120.5 |
N1i—Ni1—S2i | 88.96 (5) | C6—C5—H5 | 120.5 |
N1—Ni1—S2i | 91.04 (5) | N1—C6—C5 | 123.1 (2) |
S1—Ni1—S2i | 73.831 (18) | N1—C6—H6 | 118.4 |
S1i—Ni1—S2i | 106.169 (18) | C5—C6—H6 | 118.4 |
N1i—Ni1—S2 | 91.04 (5) | N2—C7—C3 | 179.3 (3) |
N1—Ni1—S2 | 88.96 (5) | O1—C8—S2i | 116.53 (15) |
S1—Ni1—S2 | 106.169 (18) | O1—C8—S1 | 123.21 (15) |
S1i—Ni1—S2 | 73.831 (18) | S2i—C8—S1 | 120.26 (12) |
S2i—Ni1—S2 | 180.0 | O1—C9—C10 | 107.76 (19) |
C8—S1—Ni1 | 83.10 (7) | O1—C9—H9A | 110.2 |
C8i—S2—Ni1 | 82.80 (7) | C10—C9—H9A | 110.2 |
C8—O1—C9 | 118.02 (17) | O1—C9—H9B | 110.2 |
C2—N1—C6 | 117.86 (19) | C10—C9—H9B | 110.2 |
C2—N1—Ni1 | 121.65 (14) | H9A—C9—H9B | 108.5 |
C6—N1—Ni1 | 120.33 (15) | C9—C10—H10A | 109.5 |
N1—C2—C3 | 122.5 (2) | C9—C10—H10B | 109.5 |
N1—C2—H2 | 118.7 | H10A—C10—H10B | 109.5 |
C3—C2—H2 | 118.7 | C9—C10—H10C | 109.5 |
C4—C3—C2 | 119.0 (2) | H10A—C10—H10C | 109.5 |
C4—C3—C7 | 121.7 (2) | H10B—C10—H10C | 109.5 |
N1i—Ni1—S1—C8 | −88.58 (9) | C6—N1—C2—C3 | 0.8 (3) |
N1—Ni1—S1—C8 | 91.42 (9) | Ni1—N1—C2—C3 | −174.57 (16) |
S2i—Ni1—S1—C8 | 0.42 (7) | N1—C2—C3—C4 | −0.1 (3) |
S2—Ni1—S1—C8 | −179.58 (7) | N1—C2—C3—C7 | 178.6 (2) |
N1i—Ni1—S2—C8i | 90.39 (9) | C2—C3—C4—C5 | −0.9 (4) |
N1—Ni1—S2—C8i | −89.61 (9) | C7—C3—C4—C5 | −179.6 (2) |
S1—Ni1—S2—C8i | −179.58 (7) | C3—C4—C5—C6 | 1.2 (4) |
S1i—Ni1—S2—C8i | 0.42 (7) | C2—N1—C6—C5 | −0.5 (3) |
S1—Ni1—N1—C2 | −130.63 (16) | Ni1—N1—C6—C5 | 174.93 (18) |
S1i—Ni1—N1—C2 | 49.37 (16) | C4—C5—C6—N1 | −0.5 (4) |
S2i—Ni1—N1—C2 | −56.80 (16) | C9—O1—C8—S2i | −177.93 (16) |
S2—Ni1—N1—C2 | 123.20 (16) | C9—O1—C8—S1 | 1.2 (3) |
S1—Ni1—N1—C6 | 54.10 (16) | Ni1—S1—C8—O1 | −179.72 (18) |
S1i—Ni1—N1—C6 | −125.90 (16) | Ni1—S1—C8—S2i | −0.67 (12) |
S2i—Ni1—N1—C6 | 127.93 (16) | C8—O1—C9—C10 | 176.01 (19) |
S2—Ni1—N1—C6 | −52.07 (16) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···S2ii | 0.97 | 2.85 | 3.455 (2) | 121 |
C10—H10C···N2iii | 0.96 | 2.65 | 3.595 (4) | 169 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C3H5OS2)2(C6H4N2)2] |
Mr | 509.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 6.7302 (2), 18.8959 (5), 8.7242 (2) |
β (°) | 95.916 (2) |
V (Å3) | 1103.58 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.28 |
Crystal size (mm) | 0.3 × 0.3 × 0.1 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.728, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18847, 1930, 1723 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.060, 1.07 |
No. of reflections | 1930 |
No. of parameters | 134 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.22 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and PARST (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···S2i | 0.97 | 2.85 | 3.455 (2) | 121 |
C10—H10C···N2ii | 0.96 | 2.65 | 3.595 (4) | 169 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+2. |
Acknowledgements
RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the UGC for research funding under research project F.No. 37?4154/2009 (J&K) (SR).
References
Dakternieks, D., Duthie, A., Lai, C.-S. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m3006–m3008. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hill, D. D. & Tiekink, E. R. T. (2007). Acta Cryst. E63, m2808. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hogarth, G., Rainford-Brent, E. J. C. R. C. R. & Richards, I. (2009). Inorg. Chim. Acta, 362, 1361–1364. Web of Science CSD CrossRef CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiekink, E. R. T. & Haiduc, I. (2005). Prog. Inorg. Chem. 54, 127–319. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Xanthates (O-alkyl/aryl dithiocarbonates) have been known for a long time and many adducts of metal xanthates with different ligands have been prepared and studied in the last several decades. Adducts of transition metal xanthates with N-donor ligands are well represented in the literature, the most extensively studied being those of nickel(II). Nitrogen containing adducts of nickel(II) xanthates are known to adopt a variety of supramolecular assemblies (Tiekink & Haiduc, 2005). The Ni atom in (I) is located on a center of inversion and exists within a trans-N2S4 donor set that defines an approximately octahedral coordination geometry. The chelating xanthate ligand forms essentially equivalent Ni—S bond distances; this equivalence is reflected in the parameters defining the xanthate ligand. The bond angles around the Ni atom are in the range of 73.83 (2) to 180.00 (3)°. The Ni—S bond lengths, Ni1—S1 = 2.4335 (5); Ni1—S2 = 2.4450 (6) Å, are in good agreement with those reported for other Ni-dithiocarbonato complexes (Tiekink & Haiduc, 2005; Dakternieks et al., 2006; Hill & Tiekink, 2007; Hogarth et al., 2009). Molecules in the unit cell are packed together to form well defined layers. While no classical hydrogen bonds are present, the C—H···S and C—H···N hydrogen bonds (Table 1) play important role in stabilizing the crystal structure.