organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-(5-meth­­oxy-1H-indol-3-yl)benzoate

aSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
*Correspondence e-mail: zhangzhiqiang@ustl.edu.cn

(Received 19 November 2011; accepted 3 December 2011; online 17 December 2011)

In the title compound, C17H15NO3, the dihedral angle between the benzene ring and the indole ring system is 22.5 (3)°. In the crystal, mol­ecules are linked by N—H⋯π and C—H⋯O inter­actions.

Related literature

For background to the catalysed aryl­ation of indoles, see: Zhang et al. (2007[Zhang, Z., Hu, Z., Yu, Z., Lei, P., Chi, H., Wang, Y. & He, R. (2007). Tetrahedron Lett. 48, 2415-2419.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO3

  • Mr = 281.30

  • Monoclinic, P 21 /c

  • a = 15.023 (8) Å

  • b = 5.871 (3) Å

  • c = 16.867 (9) Å

  • β = 113.721 (6)°

  • V = 1361.9 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.20 × 0.16 × 0.14 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corp., Tokyo, Japan.]) Tmin = 0.981, Tmax = 0.987

  • 13161 measured reflections

  • 3241 independent reflections

  • 2460 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.06

  • 3241 reflections

  • 196 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid ofthe C2–C5/C8/C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cg2i 0.90 (1) 2.54 (2) 3.295 (2) 142 (1)
C6—H6⋯O1ii 0.95 2.43 3.369 (2) 172
C17—H17B⋯O2iii 0.98 2.60 3.484 (2) 150
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corp., Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In 2007, our group reported direct palladium-catalyzed C-3 arylation of indoles (Zhang et al., 2007). As an extension of this work, we now report the synthesis and crystal structure of the title compound, (I), (Fig. 1).

The dihedral angle between the benzene ring and the indole ring is 22.5 (3)°. All the bond values are within normal ranges (Allen et al., 1987). In the crystal, N—H···π and C—H···O interactions occur (Table 1).

Related literature top

For background to the catalysed arylation of indoles, see: Zhang et al. (2007). For reference bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 5-methoxy-1H-indole (0.5 mmol), 1-(4-bromophenyl)ethanone (0.6 mmol), potassium carbonate (1.5 mmol) and (tBu)2P(OH)]2PdCl2 (abbreviated as POPd, 0.025 mmol) was stirred and refluxed in 2 ml of dioxane under nitrogen atmosphere for 24 h. The reaction mixture was allowed to cool to room temperature, quenched with water and extracted with EtOAc. The combined organic layers were washed with brine and dried over MgSO4, and the solvent was removed under vacuum. The residue was purified by chromatography on silica gel eluting with hexane/EtOAc (5/1 by vol.) to give light yellow power in 54.0%, m.p.123.0–124.8 °C. Colourless prisms of (I) were grown by slow evaporation of a solution in chloroform/ethanol (1:1).

Refinement top

Atom H1 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The remaining H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5 Ueq(C1 and C17).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms.
Methyl 4-(5-methoxy-1H-indol-3-yl)benzoate top
Crystal data top
C17H15NO3F(000) = 592
Mr = 281.30Dx = 1.372 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.023 (8) ÅCell parameters from 4649 reflections
b = 5.871 (3) Åθ = 1.5–27.9°
c = 16.867 (9) ŵ = 0.10 mm1
β = 113.721 (6)°T = 113 K
V = 1361.9 (12) Å3Prism, colorless
Z = 40.20 × 0.16 × 0.14 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
3241 independent reflections
Radiation source: rotating anode2460 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.038
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 1.5°
ω and ϕ scansh = 1919
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 77
Tmin = 0.981, Tmax = 0.987l = 2222
13161 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0702P)2]
where P = (Fo2 + 2Fc2)/3
3241 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C17H15NO3V = 1361.9 (12) Å3
Mr = 281.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.023 (8) ŵ = 0.10 mm1
b = 5.871 (3) ÅT = 113 K
c = 16.867 (9) Å0.20 × 0.16 × 0.14 mm
β = 113.721 (6)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
3241 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
2460 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.987Rint = 0.038
13161 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.24 e Å3
3241 reflectionsΔρmin = 0.25 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65330 (5)1.06706 (14)0.57107 (5)0.0256 (2)
O21.06010 (5)1.07061 (13)1.21305 (5)0.0268 (2)
O31.03480 (5)1.38309 (12)1.12988 (5)0.0231 (2)
N10.57543 (7)0.50593 (17)0.79506 (6)0.0252 (2)
C10.72517 (8)1.2391 (2)0.60676 (7)0.0266 (3)
H1A0.70691.33830.64450.040*
H1B0.73001.32970.55980.040*
H1C0.78811.16780.64050.040*
C20.63635 (7)0.92664 (19)0.62868 (7)0.0201 (2)
C30.56197 (8)0.76524 (19)0.59007 (7)0.0233 (3)
H30.52850.76100.52880.028*
C40.53738 (7)0.61387 (19)0.64008 (7)0.0232 (3)
H40.48830.50240.61440.028*
C50.58711 (7)0.62954 (18)0.73024 (7)0.0206 (2)
C60.63929 (8)0.58338 (19)0.87366 (7)0.0230 (2)
H60.64470.52550.92800.028*
C70.69470 (7)0.75701 (17)0.86292 (7)0.0188 (2)
C80.66109 (7)0.79141 (17)0.77034 (7)0.0177 (2)
C90.68678 (7)0.94025 (18)0.71752 (6)0.0191 (2)
H90.73771.04780.74240.023*
C100.77498 (7)0.86947 (18)0.93408 (7)0.0182 (2)
C110.82087 (7)0.75877 (18)1.01399 (7)0.0204 (2)
H110.79830.61291.02190.024*
C120.89807 (7)0.85678 (18)1.08147 (7)0.0202 (2)
H120.92770.77841.13500.024*
C130.93258 (7)1.06998 (18)1.07123 (7)0.0186 (2)
C140.88750 (7)1.18392 (18)0.99234 (7)0.0197 (2)
H140.91061.32920.98450.024*
C150.80911 (7)1.08586 (18)0.92535 (7)0.0199 (2)
H150.77801.16700.87260.024*
C161.01559 (7)1.16901 (18)1.14560 (7)0.0194 (2)
C171.11194 (8)1.4968 (2)1.20010 (7)0.0237 (3)
H17A1.10401.47041.25430.036*
H17B1.10921.66071.18830.036*
H17C1.17491.43651.20530.036*
H10.5318 (9)0.3932 (19)0.7867 (10)0.047 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0261 (4)0.0340 (5)0.0151 (4)0.0048 (3)0.0069 (3)0.0006 (3)
O20.0269 (4)0.0248 (4)0.0210 (4)0.0003 (3)0.0017 (3)0.0020 (3)
O30.0247 (4)0.0209 (4)0.0202 (4)0.0035 (3)0.0056 (3)0.0013 (3)
N10.0233 (5)0.0248 (5)0.0264 (5)0.0070 (4)0.0090 (4)0.0006 (4)
C10.0273 (6)0.0322 (7)0.0208 (6)0.0051 (5)0.0102 (5)0.0010 (5)
C20.0189 (5)0.0235 (6)0.0182 (5)0.0021 (4)0.0076 (4)0.0000 (4)
C30.0198 (5)0.0285 (6)0.0181 (5)0.0015 (4)0.0041 (4)0.0046 (4)
C40.0188 (5)0.0235 (6)0.0247 (6)0.0020 (4)0.0058 (4)0.0060 (4)
C50.0181 (5)0.0201 (5)0.0231 (6)0.0004 (4)0.0078 (4)0.0013 (4)
C60.0227 (5)0.0248 (6)0.0215 (5)0.0009 (4)0.0090 (4)0.0018 (4)
C70.0188 (5)0.0190 (5)0.0190 (5)0.0011 (4)0.0081 (4)0.0002 (4)
C80.0147 (5)0.0187 (5)0.0190 (5)0.0019 (4)0.0062 (4)0.0012 (4)
C90.0162 (5)0.0220 (5)0.0176 (5)0.0008 (4)0.0052 (4)0.0012 (4)
C100.0181 (5)0.0205 (5)0.0180 (5)0.0015 (4)0.0092 (4)0.0014 (4)
C110.0227 (5)0.0174 (5)0.0216 (5)0.0001 (4)0.0095 (4)0.0007 (4)
C120.0222 (5)0.0201 (6)0.0179 (5)0.0041 (4)0.0075 (4)0.0023 (4)
C130.0194 (5)0.0202 (6)0.0175 (5)0.0025 (4)0.0087 (4)0.0013 (4)
C140.0233 (5)0.0188 (5)0.0188 (5)0.0007 (4)0.0102 (4)0.0006 (4)
C150.0239 (5)0.0208 (6)0.0158 (5)0.0010 (4)0.0089 (4)0.0015 (4)
C160.0196 (5)0.0198 (5)0.0204 (5)0.0018 (4)0.0097 (4)0.0011 (4)
C170.0234 (5)0.0235 (6)0.0221 (6)0.0035 (4)0.0069 (4)0.0031 (4)
Geometric parameters (Å, º) top
O1—C21.3739 (14)C6—H60.9500
O1—C11.4232 (14)C7—C81.4491 (16)
O2—C161.2095 (13)C7—C101.4718 (15)
O3—C161.3397 (14)C8—C91.4082 (15)
O3—C171.4449 (13)C9—H90.9500
N1—C61.3643 (15)C10—C151.3997 (16)
N1—C51.3811 (15)C10—C111.4025 (15)
N1—H10.902 (8)C11—C121.3818 (15)
C1—H1A0.9800C11—H110.9500
C1—H1B0.9800C12—C131.3919 (16)
C1—H1C0.9800C12—H120.9500
C2—C91.3828 (15)C13—C141.3970 (15)
C2—C31.4089 (16)C13—C161.4859 (15)
C3—C41.3742 (16)C14—C151.3872 (15)
C3—H30.9500C14—H140.9500
C4—C51.4020 (17)C15—H150.9500
C4—H40.9500C17—H17A0.9800
C5—C81.4110 (15)C17—H17B0.9800
C6—C71.3733 (15)C17—H17C0.9800
C2—O1—C1116.85 (9)C5—C8—C7106.77 (9)
C16—O3—C17115.91 (9)C2—C9—C8118.67 (10)
C6—N1—C5109.30 (10)C2—C9—H9120.7
C6—N1—H1125.4 (10)C8—C9—H9120.7
C5—N1—H1125.3 (10)C15—C10—C11117.54 (10)
O1—C1—H1A109.5C15—C10—C7122.41 (10)
O1—C1—H1B109.5C11—C10—C7120.04 (10)
H1A—C1—H1B109.5C12—C11—C10121.59 (10)
O1—C1—H1C109.5C12—C11—H11119.2
H1A—C1—H1C109.5C10—C11—H11119.2
H1B—C1—H1C109.5C11—C12—C13120.22 (10)
O1—C2—C9123.72 (10)C11—C12—H12119.9
O1—C2—C3114.50 (10)C13—C12—H12119.9
C9—C2—C3121.78 (10)C12—C13—C14119.12 (10)
C4—C3—C2120.68 (10)C12—C13—C16118.36 (10)
C4—C3—H3119.7C14—C13—C16122.51 (10)
C2—C3—H3119.7C15—C14—C13120.30 (10)
C3—C4—C5117.76 (10)C15—C14—H14119.8
C3—C4—H4121.1C13—C14—H14119.8
C5—C4—H4121.1C14—C15—C10121.18 (10)
N1—C5—C4129.97 (11)C14—C15—H15119.4
N1—C5—C8107.51 (10)C10—C15—H15119.4
C4—C5—C8122.51 (10)O2—C16—O3123.55 (10)
N1—C6—C7110.23 (10)O2—C16—C13124.46 (10)
N1—C6—H6124.9O3—C16—C13111.99 (9)
C7—C6—H6124.9O3—C17—H17A109.5
C6—C7—C8106.17 (9)O3—C17—H17B109.5
C6—C7—C10124.52 (10)H17A—C17—H17B109.5
C8—C7—C10129.22 (9)O3—C17—H17C109.5
C9—C8—C5118.56 (10)H17A—C17—H17C109.5
C9—C8—C7134.66 (10)H17B—C17—H17C109.5
C1—O1—C2—C91.96 (15)C5—C8—C9—C22.07 (14)
C1—O1—C2—C3177.66 (9)C7—C8—C9—C2178.95 (11)
O1—C2—C3—C4179.99 (9)C6—C7—C10—C15159.36 (10)
C9—C2—C3—C40.38 (16)C8—C7—C10—C1524.50 (16)
C2—C3—C4—C51.45 (16)C6—C7—C10—C1121.27 (15)
C6—N1—C5—C4179.04 (11)C8—C7—C10—C11154.88 (10)
C6—N1—C5—C80.29 (12)C15—C10—C11—C121.09 (15)
C3—C4—C5—N1177.83 (10)C7—C10—C11—C12178.32 (9)
C3—C4—C5—C80.75 (16)C10—C11—C12—C130.27 (15)
C5—N1—C6—C70.45 (13)C11—C12—C13—C140.69 (15)
N1—C6—C7—C80.98 (12)C11—C12—C13—C16179.85 (9)
N1—C6—C7—C10175.91 (9)C12—C13—C14—C150.28 (15)
N1—C5—C8—C9179.88 (9)C16—C13—C14—C15178.85 (9)
C4—C5—C8—C91.02 (15)C13—C14—C15—C101.69 (15)
N1—C5—C8—C70.87 (11)C11—C10—C15—C142.06 (15)
C4—C5—C8—C7179.74 (10)C7—C10—C15—C14177.33 (9)
C6—C7—C8—C9179.80 (11)C17—O3—C16—O21.53 (14)
C10—C7—C8—C93.51 (19)C17—O3—C16—C13177.50 (8)
C6—C7—C8—C51.13 (11)C12—C13—C16—O25.35 (15)
C10—C7—C8—C5175.56 (10)C14—C13—C16—O2175.51 (10)
O1—C2—C9—C8178.17 (9)C12—C13—C16—O3173.67 (8)
C3—C2—C9—C81.43 (15)C14—C13—C16—O35.47 (13)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid ofthe C2–C5/C8/C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cg2i0.90 (1)2.54 (2)3.295 (2)142 (1)
C6—H6···O1ii0.952.433.369 (2)172
C17—H17B···O2iii0.982.603.484 (2)150
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H15NO3
Mr281.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)15.023 (8), 5.871 (3), 16.867 (9)
β (°) 113.721 (6)
V3)1361.9 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.16 × 0.14
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.981, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
13161, 3241, 2460
Rint0.038
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.06
No. of reflections3241
No. of parameters196
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid ofthe C2–C5/C8/C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cg2i0.902 (8)2.535 (15)3.295 (2)142.3 (11)
C6—H6···O1ii0.952.433.369 (2)172
C17—H17B···O2iii0.982.603.484 (2)150
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Liaoning Education Department (No. 2008 T094). We would like to thank Dr George Li, at CombiPhos Catalysts, Inc., Princeton, NJ, for helpful discussions regarding the use of POPd catalysts.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corp., Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z., Hu, Z., Yu, Z., Lei, P., Chi, H., Wang, Y. & He, R. (2007). Tetrahedron Lett. 48, 2415–2419.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds