metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m26-m27

Di-μ-oxido-bis­­[(2-eth­­oxy-6-{[2-(2-hy­dr­oxy­ethyl­amino)­ethyl­imino]­meth­yl}phenolato-κ3N,N′,O1)oxidovanadium(V)]

aKey Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, Dezhou University, Dezhou Shandong 253023, People's Republic of China
*Correspondence e-mail: wfm99999@126.com

(Received 26 November 2011; accepted 27 November 2011; online 10 December 2011)

In the title centrosymmetric dinuclear dioxidovanadium(V) complex, [V2(C13H19N2O3)2O4], the VV ion is coordinated by an N,N′,O-tridendate 2-eth­oxy-6-{[2-(2-hy­droxy­ethyl­amino)­ethyl­imino]­meth­yl}phenolate ligand and three oxide O atoms, forming a distorted cis-VN2O4 octa­hedral geometry. The bridging O atoms show one short and one long bond to their two attached VV atoms. The dihedral angle between the benzene ring of the ligand and the V2O2 plane is 75.2 (3)°. The deviation of the VV ion from the plane defined by the three donor atoms of the tridentate ligand and one bridging oxide O atom is 0.337 (2) Å towards the terminal oxide O atom. Two N—H⋯O hydrogen bonds help to establish the conformation of the dimer. In the crystal, the complex mol­ecules are linked by O—H⋯O hydrogen bonds, forming [100] chains.

Related literature

For background to vanadium complexes with Schiff base ligands, see: Kwiatkowski et al. (2006[Kwiatkowski, E., Romanowski, G., Nowicki, W. & Kwiatkowski, M. (2006). Polyhedron, 25, 2809-2814.]); Mondal et al. (2007[Mondal, S., Mukherjee, M., Dhara, K., Ghosh, S., Ratha, J., Banerjee, P. & Mukherjee, A. K. (2007). Cryst. Growth Des. 7, 1716-1721.]); Rayati et al. (2007[Rayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545-1548.], 2008[Rayati, S., Wojtczak, A. & Kozakiewicz, A. (2008). Inorg. Chim. Acta, 361, 1530-1533.]); Mikuriya & Matsunami (2005[Mikuriya, M. & Matsunami, K. (2005). Mater. Sci. 23, 773-792.]).

[Scheme 1]

Experimental

Crystal data
  • [V2(C13H19N2O3)2O4]

  • Mr = 668.48

  • Monoclinic, P 21 /n

  • a = 9.907 (3) Å

  • b = 6.793 (2) Å

  • c = 22.279 (3) Å

  • β = 94.886 (2)°

  • V = 1493.9 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.875, Tmax = 0.892

  • 11652 measured reflections

  • 3246 independent reflections

  • 2485 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.172

  • S = 1.05

  • 3246 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.85 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected bond lengths (Å)

V1—O5 1.634 (2)
V1—O4i 1.678 (2)
V1—O1 1.918 (2)
V1—N1 2.149 (3)
V1—N2 2.188 (3)
V1—O4 2.351 (2)
Symmetry code: (i) -x+1, -y+2, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.90 (1) 2.20 (3) 3.033 (4) 154 (5)
O3—H3⋯O5ii 0.82 2.00 2.793 (4) 164
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+2, -y+2, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds and their oxovanadium complexes have received much attention due to their structures and biological properties (Kwiatkowski et al., 2006; Mondal et al., 2007; Rayati et al., 2008; Rayati et al., 2007; Mikuriya & Matsunami, 2005). In this paper, the crystal structure of the title compound, (I), is reported.

The title complex is a centrosymmetric dinuclear dioxovanadium(V) compound, Fig. 1. The inversion center lies in the midpoint of the two V atoms. The VV ion is coordinated by the phenolic O, imine N, and amine N atoms of a tridendate Schiff base ligand, and three oxo O atoms, forming a distorted octahedral geometry. The dihedral angle between the benzene ring and the V2O2 plane is 75.2 (3)°. The deviation of the VV ion from the plane defined by the three donor atoms of the tridentate ligand and one bridging oxo O atom towards the terminal oxo O atom is 0.337 (2) Å. The coordinate bond lengths (Table 1) are comparable with those observed in similar oxovanadium(V) complexes cited above.

In the crystal, the complex molecules are linked through intermolecular O—H···O hydrogen bonds (Table 2), to form chains along the a axis (Fig. 2).

Related literature top

For background to vanadium complexes with Schiff base ligands, see: Kwiatkowski et al. (2006); Mondal et al. (2007); Rayati et al. (2007, 2008); Mikuriya & Matsunami (2005).

Experimental top

2-Hydroxy-3-ethoxybenzaldehyde (1 mmol, 0.17 g), 2-(2-aminoethylamino)ethanol (1 mmol, 0.10 g), and VO(acac)2 (1 mmol, 0.26 g) were mixed in methanol (30 ml). The mixture was boiled under reflux for 2 h, then cooled to room temperature. Brown blocks were formed after slow evaporation of the solution in air for a few days.

Refinement top

H2 atom was located from a difference Fourier map and refined isotropically. The N2—H2 distance is restrained to 0.90 (1) Å. The remaining hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, O—H distances of 0.82 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl and O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with displacement ellipsoids are drawn at the 30% probability level. Unlabeled atoms are at the symmetry position (1-x, 2-y, -z).
[Figure 2] Fig. 2. Molecular packing of the title complex, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
Di-µ-oxido-bis[(2-ethoxy-6-{[2-(2- hydroxyethylamino)ethylimino]methyl}phenolato- κ3N,N',O1)oxidovanadium(V)] top
Crystal data top
[V2(C13H19N2O3)2O4]F(000) = 696
Mr = 668.48Dx = 1.486 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2450 reflections
a = 9.907 (3) Åθ = 2.2–24.3°
b = 6.793 (2) ŵ = 0.69 mm1
c = 22.279 (3) ÅT = 298 K
β = 94.886 (2)°Block, brown
V = 1493.9 (7) Å30.20 × 0.18 × 0.17 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
3246 independent reflections
Radiation source: fine-focus sealed tube2485 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scanθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.875, Tmax = 0.892k = 88
11652 measured reflectionsl = 2826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0952P)2 + 1.1945P]
where P = (Fo2 + 2Fc2)/3
3246 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 1.85 e Å3
1 restraintΔρmin = 0.54 e Å3
Crystal data top
[V2(C13H19N2O3)2O4]V = 1493.9 (7) Å3
Mr = 668.48Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.907 (3) ŵ = 0.69 mm1
b = 6.793 (2) ÅT = 298 K
c = 22.279 (3) Å0.20 × 0.18 × 0.17 mm
β = 94.886 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3246 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2485 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.892Rint = 0.042
11652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.85 e Å3
3246 reflectionsΔρmin = 0.54 e Å3
195 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.62902 (5)0.97199 (8)0.04516 (3)0.0309 (2)
N10.6461 (3)1.2263 (4)0.10267 (13)0.0347 (6)
N20.7184 (3)1.1915 (4)0.01144 (13)0.0342 (6)
O10.5187 (2)0.8713 (3)0.10484 (10)0.0351 (5)
O20.4234 (3)0.5847 (4)0.16733 (11)0.0424 (6)
O30.9657 (4)1.1068 (7)0.12850 (17)0.0885 (12)
H31.03851.08810.10900.133*
O40.4359 (2)1.1593 (3)0.01421 (10)0.0351 (5)
O50.7765 (2)0.8771 (4)0.06738 (12)0.0432 (6)
C10.5369 (3)0.8873 (5)0.16463 (14)0.0329 (7)
C20.5987 (3)1.0530 (5)0.19418 (16)0.0368 (8)
C30.6073 (4)1.0645 (6)0.25808 (17)0.0456 (9)
H3A0.64721.17350.27770.055*
C40.5572 (4)0.9157 (7)0.29065 (17)0.0504 (10)
H40.56220.92570.33240.060*
C50.4984 (4)0.7486 (6)0.26289 (16)0.0436 (9)
H50.46810.64630.28610.052*
C60.4852 (3)0.7358 (5)0.19995 (16)0.0364 (8)
C70.3486 (4)0.4418 (6)0.19921 (19)0.0488 (10)
H7A0.27640.50540.21870.059*
H7B0.40810.37570.22970.059*
C80.2907 (4)0.2954 (6)0.1524 (2)0.0548 (11)
H8A0.21390.35270.12970.082*
H8B0.26300.17840.17220.082*
H8C0.35860.26250.12580.082*
C90.6390 (3)1.2243 (5)0.16017 (16)0.0372 (8)
H90.66101.33940.18140.045*
C100.6735 (4)1.4124 (5)0.07187 (18)0.0425 (9)
H10A0.71421.50730.10050.051*
H10B0.58991.46760.05320.051*
C110.7699 (4)1.3655 (6)0.02438 (17)0.0459 (9)
H11A0.77691.47800.00200.055*
H11B0.85941.33750.04360.055*
C120.8244 (4)1.0959 (6)0.04668 (18)0.0435 (9)
H12A0.89881.05400.01840.052*
H12B0.78520.97850.06590.052*
C130.8814 (4)1.2206 (7)0.0943 (2)0.0576 (11)
H13A0.80791.27570.12060.069*
H13B0.93301.32860.07540.069*
H20.646 (3)1.215 (8)0.0374 (18)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0304 (3)0.0253 (3)0.0364 (4)0.0012 (2)0.0004 (2)0.0007 (2)
N10.0345 (14)0.0279 (14)0.0410 (16)0.0009 (11)0.0006 (12)0.0005 (12)
N20.0301 (14)0.0284 (15)0.0437 (17)0.0034 (11)0.0016 (12)0.0007 (12)
O10.0376 (12)0.0345 (13)0.0326 (12)0.0052 (10)0.0006 (10)0.0003 (10)
O20.0471 (14)0.0381 (14)0.0427 (14)0.0078 (11)0.0080 (11)0.0048 (11)
O30.064 (2)0.126 (4)0.077 (2)0.002 (2)0.0099 (18)0.019 (3)
O40.0361 (12)0.0300 (12)0.0390 (13)0.0020 (10)0.0019 (10)0.0017 (10)
O50.0346 (13)0.0363 (14)0.0572 (16)0.0015 (10)0.0039 (11)0.0035 (12)
C10.0283 (16)0.0367 (18)0.0330 (17)0.0040 (13)0.0011 (13)0.0007 (14)
C20.0327 (17)0.0387 (19)0.0380 (19)0.0019 (14)0.0029 (14)0.0006 (15)
C30.044 (2)0.053 (2)0.039 (2)0.0049 (18)0.0068 (16)0.0089 (17)
C40.048 (2)0.070 (3)0.033 (2)0.004 (2)0.0021 (16)0.0011 (19)
C50.0390 (19)0.050 (2)0.042 (2)0.0036 (17)0.0042 (15)0.0068 (17)
C60.0311 (17)0.0367 (18)0.0417 (19)0.0040 (14)0.0050 (14)0.0032 (15)
C70.049 (2)0.041 (2)0.059 (3)0.0024 (17)0.0194 (19)0.0069 (18)
C80.052 (2)0.042 (2)0.072 (3)0.0074 (18)0.018 (2)0.002 (2)
C90.0330 (17)0.0333 (18)0.044 (2)0.0001 (14)0.0042 (14)0.0083 (15)
C100.045 (2)0.0276 (18)0.054 (2)0.0045 (15)0.0008 (17)0.0031 (16)
C110.048 (2)0.035 (2)0.055 (2)0.0168 (16)0.0055 (17)0.0032 (17)
C120.0335 (17)0.042 (2)0.056 (2)0.0006 (15)0.0055 (16)0.0030 (18)
C130.044 (2)0.070 (3)0.061 (3)0.005 (2)0.0186 (19)0.010 (2)
Geometric parameters (Å, º) top
V1—O51.634 (2)C3—H3A0.9300
V1—O4i1.678 (2)C4—C51.396 (6)
V1—O11.918 (2)C4—H40.9300
V1—N12.149 (3)C5—C61.400 (5)
V1—N22.188 (3)C5—H50.9300
V1—O42.351 (2)C7—C81.518 (6)
N1—C91.289 (4)C7—H7A0.9700
N1—C101.475 (4)C7—H7B0.9700
N2—C111.492 (4)C8—H8A0.9600
N2—C121.510 (4)C8—H8B0.9600
N2—H20.895 (10)C8—H8C0.9600
O1—C11.333 (4)C9—H90.9300
O2—C61.371 (4)C10—C111.518 (5)
O2—C71.444 (4)C10—H10A0.9700
O3—C131.408 (5)C10—H10B0.9700
O3—H30.8200C11—H11A0.9700
O4—V1i1.678 (2)C11—H11B0.9700
C1—C21.417 (5)C12—C131.505 (5)
C1—C61.417 (5)C12—H12A0.9700
C2—C31.421 (5)C12—H12B0.9700
C2—C91.463 (5)C13—H13A0.9700
C3—C41.363 (6)C13—H13B0.9700
O5—V1—O4i107.58 (12)O2—C6—C5125.2 (3)
O5—V1—O1101.35 (12)O2—C6—C1114.5 (3)
O4i—V1—O198.86 (10)C5—C6—C1120.3 (3)
O5—V1—N196.52 (12)O2—C7—C8106.4 (3)
O4i—V1—N1154.55 (11)O2—C7—H7A110.4
O1—V1—N183.89 (11)C8—C7—H7A110.4
O5—V1—N292.77 (12)O2—C7—H7B110.4
O4i—V1—N293.15 (11)C8—C7—H7B110.4
O1—V1—N2157.67 (11)H7A—C7—H7B108.6
N1—V1—N277.33 (11)C7—C8—H8A109.5
O5—V1—O4170.41 (10)C7—C8—H8B109.5
O4i—V1—O478.97 (11)H8A—C8—H8B109.5
O1—V1—O484.19 (9)C7—C8—H8C109.5
N1—V1—O476.14 (9)H8A—C8—H8C109.5
N2—V1—O479.70 (9)H8B—C8—H8C109.5
C9—N1—C10119.9 (3)N1—C9—C2124.3 (3)
C9—N1—V1125.2 (2)N1—C9—H9117.9
C10—N1—V1114.8 (2)C2—C9—H9117.9
C11—N2—C12113.4 (3)N1—C10—C11107.2 (3)
C11—N2—V1111.6 (2)N1—C10—H10A110.3
C12—N2—V1109.9 (2)C11—C10—H10A110.3
C11—N2—H2115 (3)N1—C10—H10B110.3
C12—N2—H2107 (3)C11—C10—H10B110.3
V1—N2—H299 (3)H10A—C10—H10B108.5
C1—O1—V1128.8 (2)N2—C11—C10109.4 (3)
C6—O2—C7117.9 (3)N2—C11—H11A109.8
C13—O3—H3109.5C10—C11—H11A109.8
V1i—O4—V1101.03 (11)N2—C11—H11B109.8
O1—C1—C2123.0 (3)C10—C11—H11B109.8
O1—C1—C6118.1 (3)H11A—C11—H11B108.2
C2—C1—C6118.8 (3)C13—C12—N2116.3 (3)
C1—C2—C3119.7 (3)C13—C12—H12A108.2
C1—C2—C9121.2 (3)N2—C12—H12A108.2
C3—C2—C9118.6 (3)C13—C12—H12B108.2
C4—C3—C2119.9 (4)N2—C12—H12B108.2
C4—C3—H3A120.0H12A—C12—H12B107.4
C2—C3—H3A120.0O3—C13—C12110.3 (4)
C3—C4—C5121.7 (4)O3—C13—H13A109.6
C3—C4—H4119.2C12—C13—H13A109.6
C5—C4—H4119.2O3—C13—H13B109.6
C4—C5—C6119.6 (4)C12—C13—H13B109.6
C4—C5—H5120.2H13A—C13—H13B108.1
C6—C5—H5120.2
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (1)2.20 (3)3.033 (4)154 (5)
O3—H3···O5ii0.822.002.793 (4)164
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formula[V2(C13H19N2O3)2O4]
Mr668.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.907 (3), 6.793 (2), 22.279 (3)
β (°) 94.886 (2)
V3)1493.9 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.875, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
11652, 3246, 2485
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.172, 1.05
No. of reflections3246
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.85, 0.54

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
V1—O51.634 (2)V1—N12.149 (3)
V1—O4i1.678 (2)V1—N22.188 (3)
V1—O11.918 (2)V1—O42.351 (2)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.895 (10)2.20 (3)3.033 (4)154 (5)
O3—H3···O5ii0.822.002.793 (4)164
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+2, z.
 

Acknowledgements

This work was supported financially by Dezhou University, People's Republic of China.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKwiatkowski, E., Romanowski, G., Nowicki, W. & Kwiatkowski, M. (2006). Polyhedron, 25, 2809–2814.  Web of Science CSD CrossRef CAS Google Scholar
First citationMikuriya, M. & Matsunami, K. (2005). Mater. Sci. 23, 773–792.  CAS Google Scholar
First citationMondal, S., Mukherjee, M., Dhara, K., Ghosh, S., Ratha, J., Banerjee, P. & Mukherjee, A. K. (2007). Cryst. Growth Des. 7, 1716–1721.  Web of Science CSD CrossRef CAS Google Scholar
First citationRayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545–1548.  Web of Science CrossRef CAS Google Scholar
First citationRayati, S., Wojtczak, A. & Kozakiewicz, A. (2008). Inorg. Chim. Acta, 361, 1530–1533.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m26-m27
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds