organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-4-chloro­indoline-2,3-dione

aSate Key Laboratory of Materials-Oriented Chemcial Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bPRC DAYAOWAN Administration for Entry & Exit Inspection and Quarantine, Haiqingdao Foreign Area Development Zone, Dalian 116610, Liaoning Province, People's Republic of China
*Correspondence e-mail: dc_wang@hotmail.com

(Received 27 November 2011; accepted 1 December 2011; online 7 December 2011)

There are two independent mol­ecules in the asymmetric unit of the title compound, C15H10ClNO2, which differ in the dihedral angles between the mean planes of the phenyl ring and the 4-chloro­indoline-2,3-dione ring system [59.48 (9) and 79.0 (1)°]. In the crystal, mol­ecules are linked through C—H⋯O hydrogen bonds, forming polymeric chains in [100].

Related literature

For the preparation, see: Bouhfid et al. (2005[Bouhfid, R., Joly, N., Massoui, M., Cecchelli, R., Lequart, V., Martin, P. & Essassi, E. M. (2005). Heterocycles, 65, 2949-2955.]). For a related structure and background to isatin derivatives, see: Liu et al. (2011[Liu, H., Fan, D., Wang, D. & Ou-yang, P.-K. (2011). Acta Cryst. E67, o3427.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClNO2

  • Mr = 271.69

  • Orthorhombic, P b c a

  • a = 22.864 (5) Å

  • b = 16.600 (3) Å

  • c = 13.335 (3) Å

  • V = 5061.2 (18) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.916, Tmax = 0.971

  • 4623 measured reflections

  • 4623 independent reflections

  • 1929 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.117

  • S = 1.00

  • 4623 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.93 2.58 3.228 (4) 127
C4—H4A⋯O2i 0.93 2.56 3.473 (4) 167
C18—H18A⋯O3ii 0.93 2.40 3.329 (4) 173
C19—H19A⋯O4ii 0.93 2.60 3.382 (6) 142
C26—H26A⋯O2iii 0.93 2.59 3.350 (4) 140
C29—H29A⋯O1iv 0.93 2.59 3.505 (5) 169
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our studies into the synthesis and structures of isatin derivatives (Liu et al., 2011), the title compound (I) was synthesized (Bouhfid et al.2005) and its structure is now reported.

The title compound crystallized with two independent molecules (A & B) in the asymmetric unit (Fig. 1). They differ significantly in conformation, as may be seen from the dihedral angle in the mean planes of the benzene and 4-chloroindoline-2,3-dione. For molecule A,the dihedral angle between the mean planes of the benzene and 4-chloroindoline-2,3-dione is 59.481 (88)°,while the corresponding dihedral angle is 79.028 (114)° in molecule B. The bond lengths (Allen et al., 1987) and bond angles are otherwise within normal ranges.

In the crystal structure, intermolecular and intramolecular C—H···O hydrogen bonding interactions (Table 1) link the molecules into a polymeric chain extended along the a axis (Fig. 2).

Related literature top

For the preparation, see: Bouhfid et al. (2005). For a related structure and background to isatin derivatives, see: Liu et al. (2011). For reference bond-length data, see: Allen et al. (1987).

Experimental top

4-chloroisatin (1.81 g, 0.01 mol) was reacted with benzyl bromide (0.02 mol) in the presence of K2CO3 (2.76 g, 0.02 mol) and tetrabutylammonium bromide (0.32 g, 0.001 mol) in DMF (60 ml). After 12 h stirring at rt, the precipitate was removed by filtration and purified by recrystallization from ethanol (m.p. 165.8–166.5 °C; yield 70%). Yellow blocks of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

All H atoms were placed geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). The intermolecular hydrogen bonds are shown as dashed lines.
1-Benzyl-4-chloroindoline-2,3-dione top
Crystal data top
C15H10ClNO2F(000) = 2240
Mr = 271.69Dx = 1.426 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 22.864 (5) Åθ = 9–13°
b = 16.600 (3) ŵ = 0.30 mm1
c = 13.335 (3) ÅT = 293 K
V = 5061.2 (18) Å3Block, yellow
Z = 160.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1929 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.4°, θmin = 1.8°
ω/2θ scansh = 027
Absorption correction: ψ scan
(North et al., 1968)
k = 020
Tmin = 0.916, Tmax = 0.971l = 016
4623 measured reflections3 standard reflections every 200 reflections
4623 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.032P)2]
where P = (Fo2 + 2Fc2)/3
4623 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H10ClNO2V = 5061.2 (18) Å3
Mr = 271.69Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 22.864 (5) ŵ = 0.30 mm1
b = 16.600 (3) ÅT = 293 K
c = 13.335 (3) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1929 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.916, Tmax = 0.9713 standard reflections every 200 reflections
4623 measured reflections intensity decay: 1%
4623 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
4623 reflectionsΔρmin = 0.20 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.61720 (4)0.52555 (7)0.54905 (10)0.0902 (4)
C10.73389 (14)0.5069 (2)0.5352 (3)0.0438 (9)
N10.83104 (11)0.47219 (17)0.5229 (2)0.0506 (8)
O10.82562 (10)0.33371 (14)0.5350 (2)0.0681 (8)
O20.70097 (10)0.36781 (14)0.5538 (2)0.0628 (8)
C20.68738 (15)0.5601 (2)0.5384 (3)0.0522 (10)
C30.69793 (18)0.6420 (2)0.5343 (3)0.0644 (12)
H3A0.66710.67850.53580.077*
C40.7549 (2)0.6687 (2)0.5278 (3)0.0649 (12)
H4A0.76170.72390.52690.078*
C50.80188 (17)0.6178 (2)0.5228 (3)0.0540 (11)
H5A0.83980.63750.51730.065*
C60.79077 (15)0.5362 (2)0.5261 (3)0.0452 (9)
C70.80405 (15)0.3997 (2)0.5335 (3)0.0490 (10)
C80.73753 (16)0.4189 (2)0.5423 (3)0.0489 (10)
C90.89331 (15)0.4816 (2)0.5095 (3)0.0576 (11)
H9A0.90020.52070.45670.069*
H9B0.90960.43060.48760.069*
C100.92469 (15)0.5083 (2)0.6021 (3)0.0525 (10)
C110.96343 (16)0.5718 (2)0.5974 (3)0.0721 (13)
H11A0.96930.59900.53730.086*
C120.9933 (2)0.5946 (3)0.6822 (5)0.0975 (17)
H12A1.01960.63730.67900.117*
C130.9849 (2)0.5558 (4)0.7704 (5)0.1020 (19)
H13A1.00540.57170.82730.122*
C140.9457 (2)0.4926 (3)0.7757 (4)0.0911 (15)
H14A0.93980.46570.83600.109*
C150.91552 (17)0.4698 (2)0.6912 (3)0.0674 (12)
H15A0.88860.42790.69470.081*
O30.78599 (12)0.39116 (16)0.7763 (2)0.0807 (9)
O40.66106 (12)0.42670 (16)0.7850 (2)0.0824 (9)
N20.65413 (13)0.28816 (19)0.7866 (2)0.0596 (9)
Cl20.86828 (5)0.23348 (8)0.78394 (10)0.1009 (5)
C160.69392 (17)0.2242 (2)0.7838 (3)0.0512 (10)
C170.6827 (2)0.1434 (2)0.7823 (3)0.0699 (12)
H17A0.64440.12450.78110.084*
C180.7288 (2)0.0906 (2)0.7827 (3)0.0789 (14)
H18A0.72140.03550.78170.095*
C190.7861 (2)0.1170 (3)0.7845 (3)0.0767 (14)
H19A0.81670.08020.78590.092*
C200.79739 (17)0.1997 (3)0.7842 (3)0.0633 (11)
C210.75154 (15)0.2526 (2)0.7840 (3)0.0506 (10)
C220.74875 (18)0.3404 (2)0.7816 (3)0.0551 (11)
C230.68310 (19)0.3602 (3)0.7847 (3)0.0618 (11)
C240.59128 (16)0.2818 (3)0.7776 (3)0.0758 (13)
H24A0.58270.24320.72520.091*
H24B0.57640.33360.75560.091*
C250.55801 (16)0.2574 (2)0.8702 (3)0.0587 (11)
C260.58256 (16)0.2129 (2)0.9452 (3)0.0647 (12)
H26A0.62230.20090.94370.078*
C270.5485 (2)0.1861 (3)1.0228 (3)0.0774 (13)
H27A0.56530.15451.07270.093*
C280.4906 (2)0.2049 (3)1.0284 (4)0.0900 (16)
H28A0.46770.18641.08130.108*
C290.46671 (18)0.2517 (3)0.9539 (5)0.0910 (16)
H29A0.42750.26620.95730.109*
C300.49984 (18)0.2771 (2)0.8754 (3)0.0736 (13)
H30A0.48300.30790.82490.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0555 (7)0.0927 (9)0.1224 (10)0.0131 (6)0.0004 (7)0.0070 (8)
C10.046 (2)0.043 (2)0.042 (2)0.0025 (19)0.001 (2)0.0029 (19)
N10.0396 (17)0.0442 (18)0.068 (2)0.0015 (15)0.0006 (17)0.0029 (18)
O10.0652 (17)0.0403 (16)0.099 (2)0.0090 (14)0.0063 (16)0.0039 (16)
O20.0551 (16)0.0472 (16)0.086 (2)0.0117 (14)0.0087 (16)0.0008 (15)
C20.059 (2)0.048 (2)0.050 (3)0.007 (2)0.001 (2)0.002 (2)
C30.077 (3)0.052 (3)0.064 (3)0.018 (2)0.000 (3)0.001 (2)
C40.096 (3)0.048 (3)0.051 (3)0.002 (3)0.001 (3)0.002 (2)
C50.066 (3)0.040 (2)0.056 (3)0.008 (2)0.007 (2)0.002 (2)
C60.050 (2)0.043 (2)0.043 (2)0.0059 (19)0.0061 (19)0.001 (2)
C70.049 (2)0.043 (2)0.056 (3)0.001 (2)0.009 (2)0.002 (2)
C80.050 (2)0.046 (3)0.050 (3)0.007 (2)0.010 (2)0.005 (2)
C90.055 (2)0.054 (3)0.063 (3)0.002 (2)0.010 (2)0.000 (2)
C100.045 (2)0.055 (3)0.058 (3)0.0001 (19)0.007 (2)0.001 (2)
C110.056 (3)0.071 (3)0.089 (4)0.019 (2)0.008 (3)0.004 (3)
C120.066 (3)0.097 (4)0.129 (5)0.017 (3)0.007 (4)0.031 (4)
C130.081 (4)0.126 (5)0.099 (5)0.016 (4)0.041 (4)0.041 (4)
C140.100 (4)0.100 (4)0.073 (4)0.022 (3)0.012 (3)0.006 (3)
C150.070 (3)0.056 (3)0.076 (3)0.004 (2)0.006 (3)0.002 (3)
O30.090 (2)0.0580 (18)0.095 (2)0.0212 (17)0.0114 (19)0.0033 (18)
O40.107 (2)0.0579 (18)0.082 (2)0.0191 (17)0.0051 (19)0.0061 (18)
N20.057 (2)0.059 (2)0.063 (2)0.0011 (18)0.003 (2)0.003 (2)
Cl20.0643 (7)0.1260 (11)0.1124 (11)0.0158 (8)0.0084 (8)0.0130 (9)
C160.068 (3)0.042 (2)0.044 (2)0.002 (2)0.000 (2)0.001 (2)
C170.097 (3)0.053 (3)0.060 (3)0.018 (3)0.010 (3)0.008 (3)
C180.137 (5)0.039 (3)0.060 (3)0.003 (3)0.008 (3)0.000 (2)
C190.105 (4)0.070 (3)0.055 (3)0.031 (3)0.007 (3)0.002 (3)
C200.072 (3)0.066 (3)0.052 (3)0.011 (2)0.009 (2)0.001 (2)
C210.061 (2)0.044 (2)0.047 (2)0.004 (2)0.003 (2)0.0032 (19)
C220.073 (3)0.048 (3)0.044 (2)0.007 (2)0.006 (2)0.000 (2)
C230.084 (3)0.052 (3)0.049 (3)0.008 (3)0.007 (2)0.000 (3)
C240.064 (3)0.099 (3)0.065 (3)0.002 (2)0.018 (3)0.006 (3)
C250.047 (2)0.069 (3)0.060 (3)0.002 (2)0.010 (2)0.005 (2)
C260.055 (3)0.088 (3)0.051 (3)0.007 (2)0.002 (2)0.003 (3)
C270.087 (3)0.082 (3)0.063 (3)0.012 (3)0.012 (3)0.001 (3)
C280.090 (4)0.092 (4)0.088 (4)0.016 (3)0.035 (3)0.023 (3)
C290.055 (3)0.091 (4)0.128 (5)0.001 (3)0.011 (4)0.024 (4)
C300.057 (3)0.074 (3)0.090 (4)0.002 (2)0.021 (3)0.002 (3)
Geometric parameters (Å, º) top
Cl1—C21.710 (4)O3—C221.200 (4)
C1—C21.383 (4)O4—C231.213 (4)
C1—C61.394 (4)N2—C231.368 (4)
C1—C81.465 (4)N2—C161.399 (4)
N1—C71.359 (4)N2—C241.446 (4)
N1—C61.407 (4)Cl2—C201.715 (4)
N1—C91.444 (4)C16—C171.366 (4)
O1—C71.202 (4)C16—C211.399 (4)
O2—C81.201 (4)C17—C181.372 (5)
C2—C31.382 (4)C17—H17A0.9300
C3—C41.378 (5)C18—C191.381 (5)
C3—H3A0.9300C18—H18A0.9300
C4—C51.369 (5)C19—C201.397 (5)
C4—H4A0.9300C19—H19A0.9300
C5—C61.379 (4)C20—C211.368 (5)
C5—H5A0.9300C21—C221.459 (5)
C7—C81.558 (4)C22—C231.537 (5)
C9—C101.496 (5)C24—C251.506 (5)
C9—H9A0.9700C24—H24A0.9700
C9—H9B0.9700C24—H24B0.9700
C10—C151.365 (5)C25—C261.364 (5)
C10—C111.378 (4)C25—C301.371 (5)
C11—C121.374 (6)C26—C271.369 (5)
C11—H11A0.9300C26—H26A0.9300
C12—C131.354 (6)C27—C281.363 (5)
C12—H12A0.9300C27—H27A0.9300
C13—C141.381 (6)C28—C291.374 (6)
C13—H13A0.9300C28—H28A0.9300
C14—C151.375 (5)C29—C301.359 (5)
C14—H14A0.9300C29—H29A0.9300
C15—H15A0.9300C30—H30A0.9300
C2—C1—C6119.8 (3)C23—N2—C16110.4 (3)
C2—C1—C8132.7 (3)C23—N2—C24122.9 (4)
C6—C1—C8107.5 (3)C16—N2—C24126.1 (3)
C7—N1—C6111.6 (3)C17—C16—N2128.6 (4)
C7—N1—C9123.8 (3)C17—C16—C21120.6 (4)
C6—N1—C9124.6 (3)N2—C16—C21110.9 (3)
C3—C2—C1119.5 (3)C16—C17—C18118.8 (4)
C3—C2—Cl1119.8 (3)C16—C17—H17A120.6
C1—C2—Cl1120.7 (3)C18—C17—H17A120.6
C4—C3—C2118.9 (4)C17—C18—C19121.8 (4)
C4—C3—H3A120.5C17—C18—H18A119.1
C2—C3—H3A120.5C19—C18—H18A119.1
C5—C4—C3123.1 (4)C18—C19—C20119.2 (4)
C5—C4—H4A118.4C18—C19—H19A120.4
C3—C4—H4A118.4C20—C19—H19A120.4
C4—C5—C6117.4 (4)C21—C20—C19119.3 (4)
C4—C5—H5A121.3C21—C20—Cl2121.0 (3)
C6—C5—H5A121.3C19—C20—Cl2119.7 (4)
C5—C6—C1121.2 (3)C20—C21—C16120.3 (4)
C5—C6—N1128.4 (3)C20—C21—C22132.4 (4)
C1—C6—N1110.4 (3)C16—C21—C22107.2 (3)
O1—C7—N1128.5 (3)O3—C22—C21132.2 (4)
O1—C7—C8125.9 (3)O3—C22—C23123.0 (4)
N1—C7—C8105.6 (3)C21—C22—C23104.8 (3)
O2—C8—C1132.3 (4)O4—C23—N2126.5 (4)
O2—C8—C7123.0 (3)O4—C23—C22126.9 (4)
C1—C8—C7104.8 (3)N2—C23—C22106.6 (3)
N1—C9—C10113.7 (3)N2—C24—C25117.0 (3)
N1—C9—H9A108.8N2—C24—H24A108.1
C10—C9—H9A108.8C25—C24—H24A108.1
N1—C9—H9B108.8N2—C24—H24B108.1
C10—C9—H9B108.8C25—C24—H24B108.1
H9A—C9—H9B107.7H24A—C24—H24B107.3
C15—C10—C11119.7 (4)C26—C25—C30119.4 (4)
C15—C10—C9120.4 (4)C26—C25—C24122.7 (4)
C11—C10—C9119.8 (4)C30—C25—C24117.9 (4)
C12—C11—C10119.5 (4)C25—C26—C27119.8 (4)
C12—C11—H11A120.2C25—C26—H26A120.1
C10—C11—H11A120.2C27—C26—H26A120.1
C13—C12—C11120.8 (5)C28—C27—C26121.3 (5)
C13—C12—H12A119.6C28—C27—H27A119.4
C11—C12—H12A119.6C26—C27—H27A119.4
C12—C13—C14119.8 (5)C27—C28—C29118.4 (5)
C12—C13—H13A120.1C27—C28—H28A120.8
C14—C13—H13A120.1C29—C28—H28A120.8
C15—C14—C13119.5 (5)C30—C29—C28120.7 (4)
C15—C14—H14A120.2C30—C29—H29A119.6
C13—C14—H14A120.2C28—C29—H29A119.6
C10—C15—C14120.5 (4)C29—C30—C25120.4 (4)
C10—C15—H15A119.8C29—C30—H30A119.8
C14—C15—H15A119.8C25—C30—H30A119.8
C6—C1—C2—C31.2 (6)C23—N2—C16—C17178.5 (4)
C8—C1—C2—C3177.0 (4)C24—N2—C16—C177.2 (6)
C6—C1—C2—Cl1179.7 (3)C23—N2—C16—C212.4 (5)
C8—C1—C2—Cl12.1 (6)C24—N2—C16—C21173.7 (4)
C1—C2—C3—C40.5 (6)N2—C16—C17—C18178.0 (4)
Cl1—C2—C3—C4178.6 (3)C21—C16—C17—C181.1 (6)
C2—C3—C4—C51.7 (6)C16—C17—C18—C190.0 (7)
C3—C4—C5—C61.1 (6)C17—C18—C19—C201.1 (7)
C4—C5—C6—C10.7 (6)C18—C19—C20—C211.2 (7)
C4—C5—C6—N1179.5 (3)C18—C19—C20—Cl2178.7 (4)
C2—C1—C6—C51.8 (6)C19—C20—C21—C160.1 (6)
C8—C1—C6—C5176.8 (3)Cl2—C20—C21—C16179.7 (3)
C2—C1—C6—N1179.2 (3)C19—C20—C21—C22178.6 (4)
C8—C1—C6—N12.2 (4)Cl2—C20—C21—C221.3 (7)
C7—N1—C6—C5176.6 (4)C17—C16—C21—C201.0 (6)
C9—N1—C6—C53.8 (6)N2—C16—C21—C20178.2 (4)
C7—N1—C6—C12.4 (4)C17—C16—C21—C22177.8 (3)
C9—N1—C6—C1177.2 (3)N2—C16—C21—C223.0 (5)
C6—N1—C7—O1179.3 (4)C20—C21—C22—O32.6 (8)
C9—N1—C7—O11.1 (6)C16—C21—C22—O3176.0 (4)
C6—N1—C7—C81.4 (4)C20—C21—C22—C23179.0 (4)
C9—N1—C7—C8178.2 (3)C16—C21—C22—C232.4 (4)
C2—C1—C8—O20.8 (8)C16—N2—C23—O4179.0 (4)
C6—C1—C8—O2177.5 (4)C24—N2—C23—O47.4 (7)
C2—C1—C8—C7179.6 (4)C16—N2—C23—C220.8 (4)
C6—C1—C8—C71.3 (4)C24—N2—C23—C22172.4 (3)
O1—C7—C8—O21.7 (6)O3—C22—C23—O42.2 (7)
N1—C7—C8—O2179.0 (3)C21—C22—C23—O4179.2 (4)
O1—C7—C8—C1179.3 (4)O3—C22—C23—N2177.6 (4)
N1—C7—C8—C10.1 (4)C21—C22—C23—N21.0 (4)
C7—N1—C9—C10102.9 (4)C23—N2—C24—C25109.5 (4)
C6—N1—C9—C1077.5 (4)C16—N2—C24—C2580.3 (5)
N1—C9—C10—C1549.4 (5)N2—C24—C25—C2625.9 (6)
N1—C9—C10—C11131.1 (3)N2—C24—C25—C30158.0 (4)
C15—C10—C11—C121.2 (6)C30—C25—C26—C272.3 (6)
C9—C10—C11—C12178.3 (4)C24—C25—C26—C27173.8 (4)
C10—C11—C12—C130.3 (7)C25—C26—C27—C281.9 (6)
C11—C12—C13—C140.2 (8)C26—C27—C28—C290.0 (7)
C12—C13—C14—C150.1 (7)C27—C28—C29—C301.5 (7)
C11—C10—C15—C141.6 (6)C28—C29—C30—C251.1 (7)
C9—C10—C15—C14177.9 (4)C26—C25—C30—C290.8 (6)
C13—C14—C15—C101.1 (7)C24—C25—C30—C29175.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.932.583.228 (4)127
C4—H4A···O2i0.932.563.473 (4)167
C18—H18A···O3ii0.932.403.329 (4)173
C19—H19A···O4ii0.932.603.382 (6)142
C26—H26A···O2iii0.932.593.350 (4)140
C29—H29A···O1iv0.932.593.505 (5)169
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+3/2, y1/2, z; (iii) x, y+1/2, z+1/2; (iv) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H10ClNO2
Mr271.69
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)22.864 (5), 16.600 (3), 13.335 (3)
V3)5061.2 (18)
Z16
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.916, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
4623, 4623, 1929
Rint0.000
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.117, 1.00
No. of reflections4623
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.932.583.228 (4)127
C4—H4A···O2i0.932.563.473 (4)167
C18—H18A···O3ii0.932.403.329 (4)173
C19—H19A···O4ii0.932.603.382 (6)142
C26—H26A···O2iii0.932.593.350 (4)140
C29—H29A···O1iv0.932.593.505 (5)169
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+3/2, y1/2, z; (iii) x, y+1/2, z+1/2; (iv) x1/2, y, z+3/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBouhfid, R., Joly, N., Massoui, M., Cecchelli, R., Lequart, V., Martin, P. & Essassi, E. M. (2005). Heterocycles, 65, 2949–2955.  CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiu, H., Fan, D., Wang, D. & Ou-yang, P.-K. (2011). Acta Cryst. E67, o3427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds