organic compounds
6-Chloroquinolin-2(1H)-one
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn
In the title compound, C9H6ClNO, the Cl atom deviates by 0.142 (1) Å from the quinoline ring mean plane (r.m.s. deviation = 0.013 Å). In the crystal, N—H⋯O hydrogen bonds link the molecules into [010] C(4) chains. Aromatic π–π stacking interactions [shortest centroid⋯centroid distance = 3.685 (3) Å] are also observed.
Related literature
For background to quinoline derivatives as pharmaceuticals, see: Luo et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811053359/hb6549sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811053359/hb6549Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811053359/hb6549Isup3.cml
The title compound was purchased from ChemFuture PharmaTech, Ltd (Nanjing, Jiangsu). Pink prisms were obtained by slow evaporation of a methanol solution.
All H atoms attached to C atoms and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (CH) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq.
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. | |
Fig. 2. A packing view down the a axis showing hydrogen bonds as dashed lines. |
C9H6ClNO | F(000) = 736 |
Mr = 179.60 | Dx = 1.548 Mg m−3 |
Orthorhombic, Pccn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ab 2ac | Cell parameters from 1357 reflections |
a = 24.951 (19) Å | θ = 1.6–25.0° |
b = 7.733 (6) Å | µ = 0.44 mm−1 |
c = 7.988 (6) Å | T = 296 K |
V = 1541 (2) Å3 | Prism, pink |
Z = 8 | 0.20 × 0.20 × 0.20 mm |
Rigaku SCXmini CCD diffractometer | 1353 independent reflections |
Radiation source: fine-focus sealed tube | 1161 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 25.0°, θmin = 1.6° |
CCD_Profile_fitting scans | h = −29→29 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −9→9 |
Tmin = 0.917, Tmax = 0.917 | l = −8→9 |
9911 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0469P)2 + 0.4479P] where P = (Fo2 + 2Fc2)/3 |
1353 reflections | (Δ/σ)max = 0.001 |
113 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C9H6ClNO | V = 1541 (2) Å3 |
Mr = 179.60 | Z = 8 |
Orthorhombic, Pccn | Mo Kα radiation |
a = 24.951 (19) Å | µ = 0.44 mm−1 |
b = 7.733 (6) Å | T = 296 K |
c = 7.988 (6) Å | 0.20 × 0.20 × 0.20 mm |
Rigaku SCXmini CCD diffractometer | 1353 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1161 reflections with I > 2σ(I) |
Tmin = 0.917, Tmax = 0.917 | Rint = 0.024 |
9911 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.17 e Å−3 |
1353 reflections | Δρmin = −0.23 e Å−3 |
113 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.73621 (2) | 1.01875 (7) | 0.69204 (7) | 0.0614 (2) | |
N1 | 0.54956 (5) | 0.88864 (17) | 1.12378 (17) | 0.0369 (3) | |
O1 | 0.49027 (5) | 0.70991 (15) | 1.25021 (16) | 0.0472 (3) | |
C1 | 0.53024 (6) | 0.7277 (2) | 1.1598 (2) | 0.0369 (4) | |
C5 | 0.59440 (6) | 0.9205 (2) | 1.02710 (19) | 0.0349 (4) | |
C2 | 0.55943 (7) | 0.5842 (2) | 1.0882 (2) | 0.0398 (4) | |
H2 | 0.5477 | 0.4719 | 1.1079 | 0.048* | |
C4 | 0.62280 (6) | 0.7806 (2) | 0.95924 (19) | 0.0357 (4) | |
C9 | 0.66766 (7) | 0.8129 (2) | 0.8591 (2) | 0.0409 (4) | |
H9 | 0.6871 | 0.7214 | 0.8140 | 0.049* | |
C7 | 0.65567 (7) | 1.1184 (2) | 0.8970 (2) | 0.0487 (5) | |
H7 | 0.6671 | 1.2308 | 0.8759 | 0.058* | |
C8 | 0.68283 (7) | 0.9794 (2) | 0.8280 (2) | 0.0426 (4) | |
C3 | 0.60308 (7) | 0.6101 (2) | 0.9940 (2) | 0.0404 (4) | |
H3 | 0.6211 | 0.5151 | 0.9500 | 0.049* | |
C6 | 0.61155 (7) | 1.0894 (2) | 0.9970 (2) | 0.0453 (4) | |
H6 | 0.5933 | 1.1821 | 1.0443 | 0.054* | |
H1 | 0.5337 (8) | 0.980 (2) | 1.170 (2) | 0.044 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0512 (3) | 0.0595 (3) | 0.0736 (4) | 0.0024 (2) | 0.0190 (2) | 0.0143 (2) |
N1 | 0.0428 (8) | 0.0276 (7) | 0.0404 (8) | 0.0031 (6) | 0.0035 (6) | −0.0012 (6) |
O1 | 0.0483 (7) | 0.0359 (7) | 0.0574 (8) | −0.0015 (5) | 0.0130 (7) | 0.0020 (6) |
C1 | 0.0406 (9) | 0.0330 (9) | 0.0371 (9) | −0.0011 (7) | −0.0033 (7) | 0.0012 (7) |
C5 | 0.0383 (8) | 0.0322 (8) | 0.0342 (8) | 0.0014 (7) | −0.0020 (7) | −0.0001 (7) |
C2 | 0.0470 (10) | 0.0269 (8) | 0.0454 (9) | 0.0006 (7) | −0.0023 (8) | −0.0004 (7) |
C4 | 0.0394 (8) | 0.0317 (9) | 0.0359 (9) | 0.0045 (6) | −0.0050 (7) | 0.0004 (7) |
C9 | 0.0399 (9) | 0.0400 (9) | 0.0428 (10) | 0.0078 (7) | −0.0007 (8) | −0.0004 (8) |
C7 | 0.0499 (10) | 0.0343 (9) | 0.0618 (11) | −0.0035 (8) | 0.0056 (9) | 0.0036 (9) |
C8 | 0.0368 (9) | 0.0450 (10) | 0.0461 (10) | 0.0016 (7) | 0.0009 (7) | 0.0049 (8) |
C3 | 0.0475 (10) | 0.0298 (8) | 0.0440 (10) | 0.0078 (7) | −0.0022 (8) | −0.0025 (7) |
C6 | 0.0506 (10) | 0.0294 (9) | 0.0558 (11) | 0.0031 (7) | 0.0071 (9) | −0.0024 (8) |
Cl1—C8 | 1.745 (2) | C4—C9 | 1.398 (2) |
N1—C1 | 1.365 (2) | C4—C3 | 1.434 (2) |
N1—C5 | 1.382 (2) | C9—C8 | 1.365 (3) |
N1—H1 | 0.887 (19) | C9—H9 | 0.9300 |
O1—C1 | 1.239 (2) | C7—C6 | 1.379 (3) |
C1—C2 | 1.445 (2) | C7—C8 | 1.385 (3) |
C5—C6 | 1.395 (2) | C7—H7 | 0.9300 |
C5—C4 | 1.402 (2) | C3—H3 | 0.9300 |
C2—C3 | 1.339 (2) | C6—H6 | 0.9300 |
C2—H2 | 0.9300 | ||
C1—N1—C5 | 124.49 (14) | C8—C9—C4 | 119.66 (15) |
C1—N1—H1 | 118.7 (12) | C8—C9—H9 | 120.2 |
C5—N1—H1 | 116.7 (12) | C4—C9—H9 | 120.2 |
O1—C1—N1 | 120.54 (15) | C6—C7—C8 | 119.65 (16) |
O1—C1—C2 | 123.46 (15) | C6—C7—H7 | 120.2 |
N1—C1—C2 | 116.00 (15) | C8—C7—H7 | 120.2 |
N1—C5—C6 | 120.77 (14) | C9—C8—C7 | 121.59 (17) |
N1—C5—C4 | 119.20 (14) | C9—C8—Cl1 | 119.31 (14) |
C6—C5—C4 | 120.03 (16) | C7—C8—Cl1 | 119.06 (14) |
C3—C2—C1 | 121.17 (15) | C2—C3—C4 | 121.70 (15) |
C3—C2—H2 | 119.4 | C2—C3—H3 | 119.2 |
C1—C2—H2 | 119.4 | C4—C3—H3 | 119.2 |
C9—C4—C5 | 119.21 (15) | C7—C6—C5 | 119.83 (16) |
C9—C4—C3 | 123.33 (15) | C7—C6—H6 | 120.1 |
C5—C4—C3 | 117.44 (15) | C5—C6—H6 | 120.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.887 (19) | 1.98 (2) | 2.859 (2) | 168.7 (17) |
Symmetry code: (i) −x+1, y+1/2, −z+5/2. |
Experimental details
Crystal data | |
Chemical formula | C9H6ClNO |
Mr | 179.60 |
Crystal system, space group | Orthorhombic, Pccn |
Temperature (K) | 296 |
a, b, c (Å) | 24.951 (19), 7.733 (6), 7.988 (6) |
V (Å3) | 1541 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.44 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku SCXmini CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.917, 0.917 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9911, 1353, 1161 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.088, 1.06 |
No. of reflections | 1353 |
No. of parameters | 113 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.23 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.887 (19) | 1.98 (2) | 2.859 (2) | 168.7 (17) |
Symmetry code: (i) −x+1, y+1/2, −z+5/2. |
Acknowledgements
We thank Southeast University for support.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Luo, Y.-H., Qian, X.-M., Gao, G., Li, J.-F. & Mao, S.-L. (2011). Acta Cryst. E67, m172. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.