organic compounds
Methylammonium tetrafluoridoborate 18-crown-6 clathrate
aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jinyunihao@yahoo.cn
In the title compound, CH3NH3+·BF4−·C12H24O6, the methylammonium cation makes three N—H⋯O hydrogen bonds to the 18-crown-6 molecule. The –NH3+ and –CH3 groups of the cation adopt a The F atoms of the tetrafluoridoborate anion are disordered over two sets of sites in a 0.519 (11):0.481 (11) ratio. Weak C—H⋯F interactions occur in the crystal, which possibly correlate with the anion disorder.
Related literature
For related structures, see: Henschel et al. (1999); Trueblood et al. (1982). For the possible relationship of the title compound to molecular see: Wu et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811054432/hb6552sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811054432/hb6552Isup2.hkl
(C12H24O6.CH3NH3+).(BF-4) was formed from a mixture of C12H24O6 (264.32 mg, 1.00 mmol), CH3NH2 (8 mL, 40% aqueous solution), tetrafluoridoborate (10 mL, 48% aqueous solution) and distilled water (5 ml), which was stirred a few minutes at room temperature, giving a clear transparent solution. After evaporation for a few days, block colorless crystals suitable for X-ray diffraction were obtained in about 60% yield and filtered and washed with distilled water.
H atoms bound to carbon and nitrogen were placed at idealized positions [C—H = 0.96–0.97 Å, N—H = 0.89 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 Ueq(C,N).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. | |
Fig. 2. Crystal structure of the title compound with view along the c axis. Intermolecular interactions are shown as dashed lines. |
CH6N+·BF4−·C12H24O6 | F(000) = 1632 |
Mr = 383.19 | Dx = 1.285 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3450 reflections |
a = 24.375 (5) Å | θ = 6.2–55.3° |
b = 8.5404 (17) Å | µ = 0.12 mm−1 |
c = 21.345 (4) Å | T = 293 K |
β = 116.90 (3)° | Block, colorless |
V = 3962.7 (14) Å3 | 0.3 × 0.3 × 0.2 mm |
Z = 8 |
Rigaku Mercury CCD diffractometer | 4519 independent reflections |
Radiation source: fine-focus sealed tube | 2155 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | h = −31→31 |
Tmin = 0.489, Tmax = 1.000 | k = −11→11 |
19676 measured reflections | l = −27→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.073 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.226 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0967P)2 + 1.8449P] where P = (Fo2 + 2Fc2)/3 |
4519 reflections | (Δ/σ)max < 0.001 |
265 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
CH6N+·BF4−·C12H24O6 | V = 3962.7 (14) Å3 |
Mr = 383.19 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 24.375 (5) Å | µ = 0.12 mm−1 |
b = 8.5404 (17) Å | T = 293 K |
c = 21.345 (4) Å | 0.3 × 0.3 × 0.2 mm |
β = 116.90 (3)° |
Rigaku Mercury CCD diffractometer | 4519 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 2155 reflections with I > 2σ(I) |
Tmin = 0.489, Tmax = 1.000 | Rint = 0.061 |
19676 measured reflections |
R[F2 > 2σ(F2)] = 0.073 | 0 restraints |
wR(F2) = 0.226 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.25 e Å−3 |
4519 reflections | Δρmin = −0.19 e Å−3 |
265 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
B1 | 0.0812 (2) | 0.6121 (6) | 0.4200 (2) | 0.0824 (12) | |
C1 | 0.09781 (16) | 0.9413 (5) | 0.04075 (16) | 0.0815 (11) | |
H1D | 0.1361 | 0.9848 | 0.0451 | 0.098* | |
H1E | 0.0666 | 0.9547 | −0.0074 | 0.098* | |
C2 | 0.10575 (15) | 0.7737 (4) | 0.05902 (16) | 0.0798 (10) | |
H2A | 0.0684 | 0.7324 | 0.0584 | 0.096* | |
H2B | 0.1138 | 0.7162 | 0.0249 | 0.096* | |
C3 | 0.16487 (15) | 0.5967 (4) | 0.14898 (18) | 0.0713 (9) | |
H3A | 0.1717 | 0.5339 | 0.1153 | 0.086* | |
H3B | 0.1285 | 0.5573 | 0.1513 | 0.086* | |
C4 | 0.21812 (15) | 0.5856 (3) | 0.21816 (19) | 0.0710 (9) | |
H4A | 0.2285 | 0.4764 | 0.2302 | 0.085* | |
H4B | 0.2532 | 0.6367 | 0.2171 | 0.085* | |
C5 | 0.25467 (14) | 0.6571 (4) | 0.33741 (17) | 0.0726 (9) | |
H5A | 0.2888 | 0.7145 | 0.3369 | 0.087* | |
H5B | 0.2679 | 0.5500 | 0.3513 | 0.087* | |
C6 | 0.23720 (16) | 0.7287 (4) | 0.38822 (16) | 0.0786 (11) | |
H6A | 0.2014 | 0.6757 | 0.3867 | 0.094* | |
H6B | 0.2707 | 0.7183 | 0.4353 | 0.094* | |
C7 | 0.2087 (2) | 0.9725 (5) | 0.41965 (19) | 0.0952 (12) | |
H7A | 0.2418 | 0.9602 | 0.4668 | 0.114* | |
H7B | 0.1715 | 0.9291 | 0.4185 | 0.114* | |
C8 | 0.1995 (2) | 1.1415 (5) | 0.4007 (2) | 0.1035 (14) | |
H8A | 0.1915 | 1.1987 | 0.4349 | 0.124* | |
H8B | 0.2364 | 1.1843 | 0.4007 | 0.124* | |
C9 | 0.1367 (3) | 1.3161 (4) | 0.3089 (3) | 0.1140 (16) | |
H9A | 0.1722 | 1.3590 | 0.3058 | 0.137* | |
H9B | 0.1294 | 1.3782 | 0.3424 | 0.137* | |
C10 | 0.0821 (3) | 1.3234 (5) | 0.2390 (3) | 0.1215 (18) | |
H10A | 0.0477 | 1.2691 | 0.2405 | 0.146* | |
H10B | 0.0702 | 1.4316 | 0.2261 | 0.146* | |
C11 | 0.04701 (16) | 1.2532 (5) | 0.1191 (3) | 0.1032 (15) | |
H11A | 0.0336 | 1.3600 | 0.1049 | 0.124* | |
H11B | 0.0126 | 1.1944 | 0.1183 | 0.124* | |
C12 | 0.06760 (16) | 1.1822 (4) | 0.0705 (2) | 0.0937 (13) | |
H12A | 0.0360 | 1.1944 | 0.0224 | 0.112* | |
H12B | 0.1045 | 1.2344 | 0.0749 | 0.112* | |
C13 | 0.06353 (16) | 0.8461 (5) | 0.2238 (2) | 0.0916 (12) | |
H13A | 0.0719 | 0.7970 | 0.2677 | 0.137* | |
H13B | 0.0485 | 0.7693 | 0.1870 | 0.137* | |
H13C | 0.0331 | 0.9264 | 0.2137 | 0.137* | |
F1 | 0.0811 (5) | 0.6402 (13) | 0.3601 (5) | 0.131 (3) | 0.481 (11) |
F2 | 0.1331 (3) | 0.5661 (14) | 0.4620 (5) | 0.165 (5) | 0.481 (11) |
F3 | 0.1255 (7) | 0.705 (3) | 0.4670 (9) | 0.198 (8) | 0.481 (11) |
F4 | 0.0293 (5) | 0.6160 (16) | 0.4217 (8) | 0.156 (5) | 0.481 (11) |
F1' | 0.0550 (4) | 0.5665 (13) | 0.3505 (4) | 0.128 (3) | 0.519 (11) |
F2' | 0.1037 (8) | 0.4578 (13) | 0.4316 (7) | 0.245 (7) | 0.519 (11) |
F3' | 0.0814 (5) | 0.7788 (7) | 0.4154 (6) | 0.131 (3) | 0.519 (11) |
F4' | 0.0385 (5) | 0.5822 (11) | 0.4440 (7) | 0.134 (4) | 0.519 (11) |
N1 | 0.12000 (9) | 0.9158 (2) | 0.22837 (11) | 0.0495 (6) | |
H1A | 0.1325 | 0.9917 | 0.2604 | 0.074* | |
H1B | 0.1128 | 0.9553 | 0.1868 | 0.074* | |
H1C | 0.1491 | 0.8427 | 0.2408 | 0.074* | |
O1 | 0.15612 (9) | 0.7548 (2) | 0.12755 (10) | 0.0627 (6) | |
O2 | 0.20466 (8) | 0.6585 (2) | 0.27007 (10) | 0.0589 (5) | |
O3 | 0.22339 (9) | 0.8921 (2) | 0.37129 (10) | 0.0678 (6) | |
O4 | 0.14840 (12) | 1.1580 (3) | 0.33206 (15) | 0.0861 (8) | |
O5 | 0.09714 (10) | 1.2516 (2) | 0.18839 (14) | 0.0836 (7) | |
O6 | 0.07986 (9) | 1.0197 (3) | 0.08667 (11) | 0.0745 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.093 (4) | 0.091 (4) | 0.079 (3) | −0.017 (3) | 0.052 (3) | −0.021 (3) |
C1 | 0.077 (2) | 0.108 (3) | 0.0402 (17) | −0.023 (2) | 0.0092 (16) | 0.0027 (17) |
C2 | 0.072 (2) | 0.099 (3) | 0.0504 (18) | −0.0180 (19) | 0.0124 (17) | −0.0165 (18) |
C3 | 0.072 (2) | 0.0590 (19) | 0.086 (2) | 0.0001 (16) | 0.0379 (19) | −0.0157 (17) |
C4 | 0.074 (2) | 0.0512 (17) | 0.102 (3) | 0.0160 (15) | 0.052 (2) | −0.0005 (17) |
C5 | 0.0608 (19) | 0.0652 (19) | 0.072 (2) | 0.0068 (15) | 0.0130 (17) | 0.0232 (16) |
C6 | 0.080 (2) | 0.079 (2) | 0.0510 (18) | −0.0188 (18) | 0.0075 (17) | 0.0282 (17) |
C7 | 0.113 (3) | 0.119 (3) | 0.062 (2) | −0.033 (3) | 0.047 (2) | −0.015 (2) |
C8 | 0.140 (4) | 0.108 (3) | 0.087 (3) | −0.042 (3) | 0.072 (3) | −0.049 (2) |
C9 | 0.170 (5) | 0.060 (2) | 0.163 (5) | 0.000 (3) | 0.119 (4) | −0.030 (3) |
C10 | 0.143 (4) | 0.060 (2) | 0.209 (6) | 0.039 (3) | 0.121 (5) | 0.017 (3) |
C11 | 0.053 (2) | 0.070 (2) | 0.160 (4) | 0.0206 (18) | 0.025 (3) | 0.047 (3) |
C12 | 0.0542 (19) | 0.087 (3) | 0.100 (3) | 0.0011 (19) | 0.000 (2) | 0.055 (2) |
C13 | 0.071 (2) | 0.091 (3) | 0.121 (3) | −0.0077 (19) | 0.051 (2) | 0.014 (2) |
F1 | 0.164 (8) | 0.154 (8) | 0.084 (5) | −0.001 (5) | 0.064 (6) | 0.024 (5) |
F2 | 0.077 (4) | 0.167 (9) | 0.153 (7) | −0.012 (5) | −0.035 (4) | 0.070 (6) |
F3 | 0.143 (9) | 0.293 (16) | 0.188 (12) | −0.136 (11) | 0.102 (9) | −0.138 (13) |
F4 | 0.087 (5) | 0.236 (12) | 0.166 (9) | −0.025 (5) | 0.076 (5) | −0.021 (7) |
F1' | 0.125 (6) | 0.157 (8) | 0.095 (4) | 0.004 (4) | 0.044 (4) | −0.051 (5) |
F2' | 0.445 (18) | 0.148 (8) | 0.296 (12) | 0.147 (10) | 0.302 (14) | 0.114 (8) |
F3' | 0.156 (7) | 0.091 (4) | 0.154 (6) | −0.039 (4) | 0.077 (6) | −0.006 (4) |
F4' | 0.207 (10) | 0.103 (4) | 0.173 (8) | −0.099 (6) | 0.156 (8) | −0.088 (5) |
N1 | 0.0497 (12) | 0.0450 (12) | 0.0531 (13) | 0.0062 (10) | 0.0227 (11) | 0.0051 (10) |
O1 | 0.0595 (12) | 0.0602 (13) | 0.0624 (13) | −0.0057 (9) | 0.0223 (10) | −0.0088 (10) |
O2 | 0.0451 (10) | 0.0542 (11) | 0.0685 (13) | 0.0106 (8) | 0.0178 (10) | 0.0096 (9) |
O3 | 0.0808 (14) | 0.0767 (14) | 0.0451 (11) | −0.0172 (11) | 0.0277 (10) | 0.0049 (10) |
O4 | 0.115 (2) | 0.0612 (14) | 0.110 (2) | −0.0184 (13) | 0.0749 (18) | −0.0261 (13) |
O5 | 0.0680 (14) | 0.0553 (13) | 0.130 (2) | 0.0189 (11) | 0.0476 (15) | 0.0133 (13) |
O6 | 0.0686 (14) | 0.0717 (14) | 0.0649 (13) | −0.0036 (11) | 0.0140 (11) | 0.0222 (11) |
B1—F2 | 1.238 (8) | C7—O3 | 1.414 (4) |
B1—F4 | 1.281 (11) | C7—C8 | 1.489 (6) |
B1—F1 | 1.299 (9) | C7—H7A | 0.9700 |
B1—F3 | 1.348 (8) | C7—H7B | 0.9700 |
B1—F4' | 1.376 (10) | C8—O4 | 1.437 (5) |
B1—F1' | 1.380 (8) | C8—H8A | 0.9700 |
B1—F2' | 1.406 (9) | C8—H8B | 0.9700 |
B1—F3' | 1.428 (7) | C9—O4 | 1.422 (5) |
C1—O6 | 1.410 (4) | C9—C10 | 1.486 (7) |
C1—C2 | 1.474 (5) | C9—H9A | 0.9700 |
C1—H1D | 0.9700 | C9—H9B | 0.9700 |
C1—H1E | 0.9700 | C10—O5 | 1.427 (5) |
C2—O1 | 1.431 (4) | C10—H10A | 0.9700 |
C2—H2A | 0.9700 | C10—H10B | 0.9700 |
C2—H2B | 0.9700 | C11—O5 | 1.430 (5) |
C3—O1 | 1.411 (3) | C11—C12 | 1.473 (6) |
C3—C4 | 1.463 (5) | C11—H11A | 0.9700 |
C3—H3A | 0.9700 | C11—H11B | 0.9700 |
C3—H3B | 0.9700 | C12—O6 | 1.429 (4) |
C4—O2 | 1.432 (3) | C12—H12A | 0.9700 |
C4—H4A | 0.9700 | C12—H12B | 0.9700 |
C4—H4B | 0.9700 | C13—N1 | 1.461 (4) |
C5—O2 | 1.402 (3) | C13—H13A | 0.9600 |
C5—C6 | 1.466 (5) | C13—H13B | 0.9600 |
C5—H5A | 0.9700 | C13—H13C | 0.9600 |
C5—H5B | 0.9700 | N1—H1A | 0.8900 |
C6—O3 | 1.443 (4) | N1—H1B | 0.8900 |
C6—H6A | 0.9700 | N1—H1C | 0.8900 |
C6—H6B | 0.9700 | ||
F2—B1—F4 | 133.3 (10) | O3—C6—H6A | 109.8 |
F2—B1—F1 | 108.5 (8) | C5—C6—H6A | 109.8 |
F4—B1—F1 | 117.4 (9) | O3—C6—H6B | 109.8 |
F2—B1—F3 | 55.5 (12) | C5—C6—H6B | 109.8 |
F4—B1—F3 | 115.6 (8) | H6A—C6—H6B | 108.3 |
F1—B1—F3 | 105.5 (7) | O3—C7—C8 | 109.2 (3) |
F2—B1—F4' | 111.6 (8) | O3—C7—H7A | 109.8 |
F4—B1—F4' | 21.9 (12) | C8—C7—H7A | 109.8 |
F1—B1—F4' | 137.4 (8) | O3—C7—H7B | 109.8 |
F3—B1—F4' | 108.6 (6) | C8—C7—H7B | 109.8 |
F2—B1—F1' | 120.9 (8) | H7A—C7—H7B | 108.3 |
F4—B1—F1' | 93.2 (8) | O4—C8—C7 | 109.0 (3) |
F1—B1—F1' | 36.9 (4) | O4—C8—H8A | 109.9 |
F3—B1—F1' | 142.3 (7) | C7—C8—H8A | 109.9 |
F4'—B1—F1' | 106.7 (6) | O4—C8—H8B | 109.9 |
F2—B1—F2' | 52.0 (7) | C7—C8—H8B | 109.9 |
F4—B1—F2' | 109.4 (10) | H8A—C8—H8B | 108.3 |
F1—B1—F2' | 100.0 (6) | O4—C9—C10 | 109.7 (4) |
F3—B1—F2' | 107.4 (16) | O4—C9—H9A | 109.7 |
F4'—B1—F2' | 93.6 (8) | C10—C9—H9A | 109.7 |
F1'—B1—F2' | 83.0 (9) | O4—C9—H9B | 109.7 |
F2—B1—F3' | 109.4 (8) | C10—C9—H9B | 109.7 |
F4—B1—F3' | 90.6 (7) | H9A—C9—H9B | 108.2 |
F1—B1—F3' | 75.4 (6) | O5—C10—C9 | 108.8 (3) |
F3—B1—F3' | 55.9 (9) | O5—C10—H10A | 109.9 |
F4'—B1—F3' | 103.7 (6) | C9—C10—H10A | 109.9 |
F1'—B1—F3' | 102.9 (6) | O5—C10—H10B | 109.9 |
F2'—B1—F3' | 159.0 (10) | C9—C10—H10B | 109.9 |
O6—C1—C2 | 108.8 (3) | H10A—C10—H10B | 108.3 |
O6—C1—H1D | 109.9 | O5—C11—C12 | 108.7 (3) |
C2—C1—H1D | 109.9 | O5—C11—H11A | 109.9 |
O6—C1—H1E | 109.9 | C12—C11—H11A | 109.9 |
C2—C1—H1E | 109.9 | O5—C11—H11B | 109.9 |
H1D—C1—H1E | 108.3 | C12—C11—H11B | 109.9 |
O1—C2—C1 | 109.2 (2) | H11A—C11—H11B | 108.3 |
O1—C2—H2A | 109.8 | O6—C12—C11 | 109.2 (3) |
C1—C2—H2A | 109.8 | O6—C12—H12A | 109.8 |
O1—C2—H2B | 109.8 | C11—C12—H12A | 109.8 |
C1—C2—H2B | 109.8 | O6—C12—H12B | 109.8 |
H2A—C2—H2B | 108.3 | C11—C12—H12B | 109.8 |
O1—C3—C4 | 108.9 (2) | H12A—C12—H12B | 108.3 |
O1—C3—H3A | 109.9 | N1—C13—H13A | 109.5 |
C4—C3—H3A | 109.9 | N1—C13—H13B | 109.5 |
O1—C3—H3B | 109.9 | H13A—C13—H13B | 109.5 |
C4—C3—H3B | 109.9 | N1—C13—H13C | 109.5 |
H3A—C3—H3B | 108.3 | H13A—C13—H13C | 109.5 |
O2—C4—C3 | 110.1 (2) | H13B—C13—H13C | 109.5 |
O2—C4—H4A | 109.6 | C13—N1—H1A | 109.5 |
C3—C4—H4A | 109.6 | C13—N1—H1B | 109.5 |
O2—C4—H4B | 109.6 | H1A—N1—H1B | 109.5 |
C3—C4—H4B | 109.6 | C13—N1—H1C | 109.5 |
H4A—C4—H4B | 108.2 | H1A—N1—H1C | 109.5 |
O2—C5—C6 | 110.2 (3) | H1B—N1—H1C | 109.5 |
O2—C5—H5A | 109.6 | C3—O1—C2 | 111.9 (2) |
C6—C5—H5A | 109.6 | C5—O2—C4 | 113.1 (2) |
O2—C5—H5B | 109.6 | C7—O3—C6 | 113.2 (3) |
C6—C5—H5B | 109.6 | C9—O4—C8 | 113.1 (3) |
H5A—C5—H5B | 108.1 | C10—O5—C11 | 112.7 (3) |
O3—C6—C5 | 109.3 (2) | C1—O6—C12 | 112.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O2 | 0.89 | 1.98 | 2.867 (3) | 171 |
N1—H1B···O6 | 0.89 | 1.99 | 2.866 (3) | 168 |
N1—H1A···O4 | 0.89 | 1.99 | 2.876 (3) | 171 |
C2—H2B···F2′i | 0.97 | 2.41 | 3.345 (14) | 163 |
C7—H7B···F3′ | 0.97 | 2.52 | 3.481 (13) | 172 |
C9—H9B···F1′ii | 0.97 | 2.49 | 3.306 (12) | 142 |
C9—H9B···F2′ii | 0.97 | 2.36 | 3.298 (17) | 163 |
C11—H11A···F4′iii | 0.97 | 2.47 | 3.393 (12) | 158 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, y+1, z; (iii) −x, y+1, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | CH6N+·BF4−·C12H24O6 |
Mr | 383.19 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 24.375 (5), 8.5404 (17), 21.345 (4) |
β (°) | 116.90 (3) |
V (Å3) | 3962.7 (14) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.3 × 0.3 × 0.2 |
Data collection | |
Diffractometer | Rigaku Mercury CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.489, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19676, 4519, 2155 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.073, 0.226, 1.03 |
No. of reflections | 4519 |
No. of parameters | 265 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.19 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O2 | 0.89 | 1.98 | 2.867 (3) | 171 |
N1—H1B···O6 | 0.89 | 1.99 | 2.866 (3) | 168 |
N1—H1A···O4 | 0.89 | 1.99 | 2.876 (3) | 171 |
C2—H2B···F2'i | 0.97 | 2.41 | 3.345 (14) | 163 |
C7—H7B···F3' | 0.97 | 2.52 | 3.481 (13) | 172 |
C9—H9B···F1'ii | 0.97 | 2.49 | 3.306 (12) | 142 |
C9—H9B···F2'ii | 0.97 | 2.36 | 3.298 (17) | 163 |
C11—H11A···F4'iii | 0.97 | 2.47 | 3.393 (12) | 158 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, y+1, z; (iii) −x, y+1, −z+1/2. |
Acknowledgements
The author thanks Southeast University for support.
References
Henschel, D., Wijaya, K., Jones, P. G. & Blaschette, A. (1999). Acta Cryst. C55, 664–668. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trueblood, K.-N., Knobler, C.-B., Lawrence, D.-S. & Stevens, R.-V. (1982). J. Am. Chem. Soc. 104, 1355–1362. CSD CrossRef CAS Web of Science Google Scholar
Wu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319–324. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Molecular motion has proved to cause a rotation of the local structure to give rise to the formation of reversible structural phase transition from high-temperature disordered state to low temperature ordered state. Only a small part of compounds in which the components can be arranged in a disordered status at a relative high temperature and in an ordered one at a relative low temperature have been found until now. The transition from the disordered arrangement to the ordered one results in sharp change in the physical properties of compounds (e.g. Wu et al., 2011). The protonated CH3—NH3+ cation can be easily anchored in the cavity of 18-crown-6, as a result of strong N—H···O hydrogen-bonding interactions. In the protonated CH3—NH3+, –NH3+ can be fixed firmly by 18-crown-6 which is an excellent molecular-based stator via N—H···O hydrogen-bonding interactions forming a stationary axis along which the rest of CH3—NH3+ cation can rotate freely. The introduction of a disordered group in the compounds results in the potential for the order-disorder transition due to the fact that the freezing of a disordered group at low temperature forces significant orientational motions of the group and thus may induce the formation of the ferroelectric phase. As part of our search for simple ferroelectric compounds we have investigated the title compound and reported its room temperature structure.
In this crystal structure, the nitrogen of the –NH3+ group lies 1.043 Å from the plane of the O atoms of the crown ring, in contrast to the analogous complex (Henschel et al., 1999) and analogous perchlorate hemihytrate (Trueblood et al., 1982), where the corresponding distance is 0.981 Å and 0.68 Å individually.
The anion and one cation are shown in Fig. 1 with the hydrogen bonds listed in Table 1. The existence of N—H···O hydrogen-bonding interactions and weak C—H···F interactions helps to make the substance more stable, and thus forms a three-dimensional structure. The components are held together by N—H···O hydrogen bonds and weak C—H···F interactions, forming a 1:1:1 aggregate. The aggregates are further connected by weak C—H···F interactions, and thus forms a complex spatial geometry.