organic compounds
2,3-Diaminopyridinium sorbate–sorbic acid (1/1)
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title molecular salt–adduct, C5H8N3+·C6H7O2−·C6H8O2, the 2,3-diaminopyridinium cation is essentially planar, with a maximum deviation of 0.013 (2) Å, and is protanated at its pyridine N atom. The sorbate anion and sorbic acid molecules exist in extended conformations. In the crystal, the protonated N atom and one of the two amino-group H atoms are hydrogen bonded to the sorbate anion through a pair of N—H⋯O hydrogen bonds, forming an R12(6) ring motif. The carboxyl groups of the sorbic acid molecules and the carboxylate groups of the sorbate anions are connected via O—H⋯O hydrogen bonds. Furthermore, the ion pairs and neutral molecules are connected via intermolecular N—H⋯O hydrogen bonds, forming sheets lying parallel to (100).
Related literature
For a different ). For background to aminopyridines, see: Peng et al. (2001); Leung et al. (2002); Banerjee & Murugavel (2004); Lautie & Belabbes (1996). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
arising from the same synthesis conditions, see: Hemamalini & Fun (2010Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTLand PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811053025/hb6558sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811053025/hb6558Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811053025/hb6558Isup3.cml
A hot methanol solution (20 ml) of 2,3-diaminopyridine (59 mg, Aldrich) and sorbic acid (56 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and brown plates of the title compound appeared after a few days.
Atoms H1N1, H1N2, H2N2, H1N3 and H2N3 were located from a difference Fourier maps and refined freely [N–H = 0.83 (2)–0.92 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.96 Å and O–H = 0.82 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. | |
Fig. 2. The crystal packing of title compound (I). |
C5H8N3+·C6H7O2−·C6H8O2 | F(000) = 712 |
Mr = 333.38 | Dx = 1.214 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4699 reflections |
a = 16.1636 (17) Å | θ = 2.5–23.6° |
b = 9.6538 (10) Å | µ = 0.09 mm−1 |
c = 12.6887 (13) Å | T = 100 K |
β = 112.844 (2)° | Plate, brown |
V = 1824.6 (3) Å3 | 0.47 × 0.25 × 0.06 mm |
Z = 4 |
Bruker APEXII DUO CCD diffractometer | 5345 independent reflections |
Radiation source: fine-focus sealed tube | 2898 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
ϕ and ω scans | θmax = 30.1°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −22→22 |
Tmin = 0.960, Tmax = 0.994 | k = −13→13 |
27805 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.152 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0631P)2 + 0.2243P] where P = (Fo2 + 2Fc2)/3 |
5345 reflections | (Δ/σ)max < 0.001 |
239 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C5H8N3+·C6H7O2−·C6H8O2 | V = 1824.6 (3) Å3 |
Mr = 333.38 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.1636 (17) Å | µ = 0.09 mm−1 |
b = 9.6538 (10) Å | T = 100 K |
c = 12.6887 (13) Å | 0.47 × 0.25 × 0.06 mm |
β = 112.844 (2)° |
Bruker APEXII DUO CCD diffractometer | 5345 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2898 reflections with I > 2σ(I) |
Tmin = 0.960, Tmax = 0.994 | Rint = 0.045 |
27805 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.152 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.30 e Å−3 |
5345 reflections | Δρmin = −0.22 e Å−3 |
239 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.52439 (11) | 0.20084 (17) | 0.03419 (12) | 0.0703 (4) | |
N2 | 0.45891 (11) | 0.1854 (2) | 0.16546 (18) | 0.0778 (5) | |
N3 | 0.59685 (10) | 0.00896 (17) | 0.29774 (14) | 0.0713 (4) | |
C1 | 0.52362 (10) | 0.14816 (17) | 0.13081 (13) | 0.0563 (4) | |
C2 | 0.59314 (9) | 0.05457 (16) | 0.19419 (13) | 0.0522 (4) | |
C3 | 0.65504 (10) | 0.02052 (18) | 0.14930 (15) | 0.0642 (4) | |
H3A | 0.7001 | −0.0427 | 0.1878 | 0.077* | |
C4 | 0.65219 (12) | 0.0785 (2) | 0.04688 (16) | 0.0771 (5) | |
H4A | 0.6950 | 0.0548 | 0.0179 | 0.093* | |
C5 | 0.58688 (14) | 0.1688 (2) | −0.00887 (16) | 0.0808 (5) | |
H5A | 0.5844 | 0.2092 | −0.0766 | 0.097* | |
O1B | 0.20615 (8) | 0.22997 (14) | 0.43760 (10) | 0.0701 (3) | |
O2B | 0.26440 (7) | 0.21636 (13) | 0.62722 (10) | 0.0698 (3) | |
C6B | 0.20207 (10) | 0.24501 (15) | 0.53806 (14) | 0.0541 (4) | |
C7B | 0.11588 (10) | 0.29993 (16) | 0.53419 (14) | 0.0560 (4) | |
H7BA | 0.0703 | 0.3165 | 0.4631 | 0.067* | |
C8B | 0.10027 (10) | 0.32670 (15) | 0.62678 (13) | 0.0536 (4) | |
H8BA | 0.1460 | 0.3066 | 0.6969 | 0.064* | |
C9B | 0.01845 (10) | 0.38450 (16) | 0.62879 (14) | 0.0569 (4) | |
H9BA | −0.0277 | 0.4038 | 0.5588 | 0.068* | |
C10B | 0.00417 (13) | 0.41200 (19) | 0.72185 (16) | 0.0688 (5) | |
H10A | 0.0505 | 0.3925 | 0.7916 | 0.083* | |
C11B | −0.07969 (15) | 0.4715 (3) | 0.7250 (2) | 0.0929 (7) | |
H11A | −0.1059 | 0.4066 | 0.7604 | 0.139* | |
H11B | −0.1213 | 0.4904 | 0.6485 | 0.139* | |
H11C | −0.0660 | 0.5560 | 0.7683 | 0.139* | |
O1A | 0.35766 (7) | 0.14675 (14) | 0.44960 (11) | 0.0747 (4) | |
H1A | 0.3058 | 0.1418 | 0.4452 | 0.112* | |
O2A | 0.43810 (7) | 0.06465 (17) | 0.35977 (11) | 0.0830 (4) | |
C6A | 0.36773 (10) | 0.06657 (18) | 0.37630 (13) | 0.0588 (4) | |
C7A | 0.29051 (10) | −0.02288 (17) | 0.31033 (13) | 0.0571 (4) | |
H7AA | 0.2396 | −0.0174 | 0.3273 | 0.068* | |
C8A | 0.28871 (10) | −0.10933 (17) | 0.22971 (13) | 0.0571 (4) | |
H8AA | 0.3407 | −0.1171 | 0.2153 | 0.069* | |
C9A | 0.21322 (11) | −0.19332 (17) | 0.16161 (14) | 0.0592 (4) | |
H9AA | 0.1603 | −0.1820 | 0.1733 | 0.071* | |
C10A | 0.21248 (13) | −0.28488 (19) | 0.08416 (16) | 0.0716 (5) | |
H10B | 0.2656 | −0.2947 | 0.0726 | 0.086* | |
C11A | 0.13681 (15) | −0.3735 (2) | 0.01381 (18) | 0.0891 (6) | |
H11G | 0.1245 | −0.3584 | −0.0657 | 0.134* | |
H11D | 0.0846 | −0.3507 | 0.0288 | 0.134* | |
H11E | 0.1521 | −0.4690 | 0.0325 | 0.134* | |
H1N1 | 0.4814 (17) | 0.260 (3) | −0.006 (2) | 0.112 (8)* | |
H1N2 | 0.4194 (16) | 0.234 (2) | 0.1193 (19) | 0.093 (7)* | |
H2N2 | 0.4547 (15) | 0.148 (3) | 0.225 (2) | 0.098 (9)* | |
H1N3 | 0.5524 (13) | 0.0094 (18) | 0.3168 (15) | 0.066 (5)* | |
H2N3 | 0.6417 (15) | −0.055 (3) | 0.3295 (19) | 0.104 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0674 (9) | 0.0770 (10) | 0.0511 (8) | 0.0190 (8) | 0.0062 (7) | 0.0022 (7) |
N2 | 0.0622 (9) | 0.0905 (12) | 0.0739 (11) | 0.0316 (9) | 0.0190 (8) | −0.0020 (10) |
N3 | 0.0521 (8) | 0.0816 (11) | 0.0848 (11) | 0.0154 (8) | 0.0314 (8) | 0.0260 (9) |
C1 | 0.0475 (8) | 0.0591 (9) | 0.0528 (9) | 0.0076 (7) | 0.0093 (6) | −0.0078 (7) |
C2 | 0.0435 (7) | 0.0516 (8) | 0.0558 (9) | 0.0029 (6) | 0.0132 (6) | 0.0003 (7) |
C3 | 0.0476 (8) | 0.0699 (10) | 0.0708 (11) | 0.0105 (7) | 0.0181 (7) | −0.0003 (9) |
C4 | 0.0663 (11) | 0.1024 (15) | 0.0656 (11) | 0.0092 (10) | 0.0288 (9) | −0.0031 (11) |
C5 | 0.0818 (13) | 0.1025 (15) | 0.0527 (10) | 0.0082 (11) | 0.0203 (9) | 0.0028 (10) |
O1B | 0.0584 (7) | 0.0927 (9) | 0.0518 (6) | 0.0105 (6) | 0.0133 (5) | −0.0043 (6) |
O2B | 0.0546 (6) | 0.0833 (8) | 0.0586 (7) | 0.0206 (6) | 0.0077 (5) | 0.0004 (6) |
C6B | 0.0472 (8) | 0.0474 (8) | 0.0572 (9) | 0.0013 (6) | 0.0087 (7) | −0.0020 (7) |
C7B | 0.0465 (8) | 0.0593 (9) | 0.0530 (9) | 0.0042 (7) | 0.0091 (6) | 0.0043 (7) |
C8B | 0.0484 (8) | 0.0488 (8) | 0.0542 (9) | 0.0001 (6) | 0.0097 (6) | 0.0031 (7) |
C9B | 0.0530 (8) | 0.0559 (9) | 0.0571 (9) | 0.0014 (7) | 0.0163 (7) | 0.0059 (7) |
C10B | 0.0731 (11) | 0.0684 (11) | 0.0661 (11) | 0.0056 (9) | 0.0283 (9) | 0.0067 (9) |
C11B | 0.0984 (15) | 0.0950 (15) | 0.1081 (17) | 0.0154 (12) | 0.0648 (13) | 0.0127 (13) |
O1A | 0.0507 (6) | 0.0923 (9) | 0.0765 (8) | −0.0053 (6) | 0.0195 (6) | −0.0293 (7) |
O2A | 0.0473 (6) | 0.1230 (11) | 0.0829 (9) | −0.0019 (7) | 0.0299 (6) | −0.0065 (8) |
C6A | 0.0473 (8) | 0.0721 (10) | 0.0563 (9) | 0.0017 (7) | 0.0194 (7) | −0.0026 (8) |
C7A | 0.0488 (8) | 0.0681 (10) | 0.0578 (9) | 0.0007 (7) | 0.0245 (7) | −0.0049 (8) |
C8A | 0.0536 (8) | 0.0649 (9) | 0.0525 (8) | 0.0105 (7) | 0.0201 (7) | 0.0031 (7) |
C9A | 0.0641 (10) | 0.0571 (9) | 0.0553 (9) | 0.0064 (7) | 0.0218 (7) | −0.0006 (7) |
C10A | 0.0771 (12) | 0.0684 (11) | 0.0646 (10) | 0.0135 (9) | 0.0222 (9) | −0.0041 (9) |
C11A | 0.1050 (16) | 0.0634 (11) | 0.0814 (14) | 0.0037 (11) | 0.0172 (12) | −0.0159 (10) |
N1—C1 | 1.332 (2) | C9B—C10B | 1.315 (2) |
N1—C5 | 1.358 (2) | C9B—H9BA | 0.9300 |
N1—H1N1 | 0.89 (3) | C10B—C11B | 1.487 (3) |
N2—C1 | 1.332 (2) | C10B—H10A | 0.9300 |
N2—H1N2 | 0.83 (2) | C11B—H11A | 0.9600 |
N2—H2N2 | 0.86 (2) | C11B—H11B | 0.9600 |
N3—C2 | 1.365 (2) | C11B—H11C | 0.9600 |
N3—H1N3 | 0.843 (18) | O1A—C6A | 1.2682 (19) |
N3—H2N3 | 0.92 (2) | O1A—H1A | 0.8200 |
C1—C2 | 1.423 (2) | O2A—C6A | 1.2341 (18) |
C2—C3 | 1.370 (2) | C6A—C7A | 1.481 (2) |
C3—C4 | 1.399 (3) | C7A—C8A | 1.312 (2) |
C3—H3A | 0.9300 | C7A—H7AA | 0.9300 |
C4—C5 | 1.339 (3) | C8A—C9A | 1.440 (2) |
C4—H4A | 0.9300 | C8A—H8AA | 0.9300 |
C5—H5A | 0.9300 | C9A—C10A | 1.318 (2) |
O1B—C6B | 1.310 (2) | C9A—H9AA | 0.9300 |
O2B—C6B | 1.2192 (17) | C10A—C11A | 1.475 (3) |
C6B—C7B | 1.474 (2) | C10A—H10B | 0.9300 |
C7B—C8B | 1.319 (2) | C11A—H11G | 0.9600 |
C7B—H7BA | 0.9300 | C11A—H11D | 0.9600 |
C8B—C9B | 1.445 (2) | C11A—H11E | 0.9600 |
C8B—H8BA | 0.9300 | ||
C1—N1—C5 | 123.90 (16) | C10B—C9B—H9BA | 117.5 |
C1—N1—H1N1 | 119.1 (16) | C8B—C9B—H9BA | 117.5 |
C5—N1—H1N1 | 117.0 (16) | C9B—C10B—C11B | 125.59 (18) |
C1—N2—H1N2 | 114.2 (15) | C9B—C10B—H10A | 117.2 |
C1—N2—H2N2 | 120.9 (16) | C11B—C10B—H10A | 117.2 |
H1N2—N2—H2N2 | 124 (2) | C10B—C11B—H11A | 109.5 |
C2—N3—H1N3 | 123.5 (12) | C10B—C11B—H11B | 109.5 |
C2—N3—H2N3 | 111.8 (14) | H11A—C11B—H11B | 109.5 |
H1N3—N3—H2N3 | 119.6 (19) | C10B—C11B—H11C | 109.5 |
N2—C1—N1 | 119.33 (16) | H11A—C11B—H11C | 109.5 |
N2—C1—C2 | 122.29 (17) | H11B—C11B—H11C | 109.5 |
N1—C1—C2 | 118.38 (15) | C6A—O1A—H1A | 109.5 |
N3—C2—C3 | 123.83 (15) | O2A—C6A—O1A | 121.53 (16) |
N3—C2—C1 | 118.61 (14) | O2A—C6A—C7A | 121.69 (15) |
C3—C2—C1 | 117.49 (15) | O1A—C6A—C7A | 116.77 (13) |
C2—C3—C4 | 121.61 (16) | C8A—C7A—C6A | 124.78 (14) |
C2—C3—H3A | 119.2 | C8A—C7A—H7AA | 117.6 |
C4—C3—H3A | 119.2 | C6A—C7A—H7AA | 117.6 |
C5—C4—C3 | 119.07 (17) | C7A—C8A—C9A | 125.68 (15) |
C5—C4—H4A | 120.5 | C7A—C8A—H8AA | 117.2 |
C3—C4—H4A | 120.5 | C9A—C8A—H8AA | 117.2 |
C4—C5—N1 | 119.52 (19) | C10A—C9A—C8A | 125.81 (17) |
C4—C5—H5A | 120.2 | C10A—C9A—H9AA | 117.1 |
N1—C5—H5A | 120.2 | C8A—C9A—H9AA | 117.1 |
O2B—C6B—O1B | 122.84 (14) | C9A—C10A—C11A | 127.25 (19) |
O2B—C6B—C7B | 122.85 (15) | C9A—C10A—H10B | 116.4 |
O1B—C6B—C7B | 114.30 (13) | C11A—C10A—H10B | 116.4 |
C8B—C7B—C6B | 123.09 (14) | C10A—C11A—H11G | 109.5 |
C8B—C7B—H7BA | 118.5 | C10A—C11A—H11D | 109.5 |
C6B—C7B—H7BA | 118.5 | H11G—C11A—H11D | 109.5 |
C7B—C8B—C9B | 125.75 (14) | C10A—C11A—H11E | 109.5 |
C7B—C8B—H8BA | 117.1 | H11G—C11A—H11E | 109.5 |
C9B—C8B—H8BA | 117.1 | H11D—C11A—H11E | 109.5 |
C10B—C9B—C8B | 125.09 (16) | ||
C5—N1—C1—N2 | −179.49 (19) | O2B—C6B—C7B—C8B | 2.3 (2) |
C5—N1—C1—C2 | 1.2 (3) | O1B—C6B—C7B—C8B | −177.53 (15) |
N2—C1—C2—N3 | −4.5 (3) | C6B—C7B—C8B—C9B | 177.96 (14) |
N1—C1—C2—N3 | 174.80 (15) | C7B—C8B—C9B—C10B | −179.26 (17) |
N2—C1—C2—C3 | 178.37 (17) | C8B—C9B—C10B—C11B | 179.96 (18) |
N1—C1—C2—C3 | −2.3 (2) | O2A—C6A—C7A—C8A | −0.6 (3) |
N3—C2—C3—C4 | −174.93 (17) | O1A—C6A—C7A—C8A | 178.42 (16) |
C1—C2—C3—C4 | 2.0 (2) | C6A—C7A—C8A—C9A | −177.50 (15) |
C2—C3—C4—C5 | −0.5 (3) | C7A—C8A—C9A—C10A | −176.71 (18) |
C3—C4—C5—N1 | −0.8 (3) | C8A—C9A—C10A—C11A | 179.34 (18) |
C1—N1—C5—C4 | 0.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O1B | 0.82 | 1.79 | 2.5252 (19) | 148 |
N1—H1N1···O1Ai | 0.89 (3) | 2.06 (3) | 2.887 (2) | 153 (3) |
N1—H1N1···O2Ai | 0.89 (3) | 2.31 (3) | 3.094 (2) | 147 (2) |
N2—H1N2···O1Ai | 0.83 (2) | 2.30 (2) | 3.054 (2) | 152 (2) |
N2—H1N2···O2Bi | 0.83 (2) | 2.59 (3) | 3.136 (2) | 125 (2) |
N2—H2N2···O2A | 0.86 (2) | 2.00 (3) | 2.863 (2) | 177 (2) |
N3—H1N3···O2A | 0.84 (2) | 2.19 (2) | 3.010 (2) | 166.1 (16) |
N3—H2N3···O2Bii | 0.92 (3) | 2.09 (3) | 3.002 (2) | 170 (2) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C5H8N3+·C6H7O2−·C6H8O2 |
Mr | 333.38 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 16.1636 (17), 9.6538 (10), 12.6887 (13) |
β (°) | 112.844 (2) |
V (Å3) | 1824.6 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.47 × 0.25 × 0.06 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.960, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27805, 5345, 2898 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.152, 1.02 |
No. of reflections | 5345 |
No. of parameters | 239 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.22 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O1B | 0.82 | 1.79 | 2.5252 (19) | 148 |
N1—H1N1···O1Ai | 0.89 (3) | 2.06 (3) | 2.887 (2) | 153 (3) |
N1—H1N1···O2Ai | 0.89 (3) | 2.31 (3) | 3.094 (2) | 147 (2) |
N2—H1N2···O1Ai | 0.83 (2) | 2.30 (2) | 3.054 (2) | 152 (2) |
N2—H1N2···O2Bi | 0.83 (2) | 2.59 (3) | 3.136 (2) | 125 (2) |
N2—H2N2···O2A | 0.86 (2) | 2.00 (3) | 2.863 (2) | 177 (2) |
N3—H1N3···O2A | 0.84 (2) | 2.19 (2) | 3.010 (2) | 166.1 (16) |
N3—H2N3···O2Bii | 0.92 (3) | 2.09 (3) | 3.002 (2) | 170 (2) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1. |
Acknowledgements
MH, JHG and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545–522. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lautie, A. & Belabbes, Y. (1996). Spectrochim. Acta Part A, 52, 1903–1914. Google Scholar
Leung, M.-K., Mandal, A.-B., Wang, C.-C., Peng, S.-M., Lu, H.-F. & Chou, P.-T. (2002). J. Am. Chem. Soc. 124, 4287–4297. Web of Science CSD CrossRef PubMed CAS Google Scholar
Peng, S.-H., Wang, C.-C., Lo, W.-C. & Peng, S.-M. (2001). J. Chin. Chem. Soc. 48, 987–996. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aminopyridines have recently become the focus of extensive studies, mainly because of their wide use as building blocks for synthetic transformations (Peng et al., 2001; Leung et al., 2002). Carboxylic acids are important in crystal engineering due to their strong and directional O—H···O and N—H···O hydrogen bonds; this is the main hydrogen-bonding motif often encountered in carboxylic acid–amine complexes (Banerjee & Murugavel, 2004; Lautie & Belabbes, 1996). Here, we report the synthesis and crystal structure of the title compound, (I).
The asymmetric unit of the title compound, (Fig 1), contains one 2,3-diaminopyridinium cation, one sorbate anion and one neutral sorbic acid molecule. The 2,3-diaminopyridinium cation is planar with a maximum deviation of 0.013 (2) Å for atom C2. Protonation of atom N1 has resulted in a slight increase in the angle C1—N1—C5 [123.71 (17)°]. The sorbate anion and sorbic acid moiety is in the EE configuration. The structure is significantly different chemically and structurally from that of the previously reported 2,3-diaminopyridinium (2E,4E)-hexa-2,4- dienoate compound C5H8N3+, C6H7O2- (Hemamalini & Fun, 2010), even though the same synthesis was used.
In the crystal, (Fig. 2), the protonated N1 atom and the 2-amino group N atom (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1A and O2A) via a pair of N—H···O hydrogen bonds forming a ring motif R12(6) (Bernstein et al., 1995). The carboxyl groups of the sorbic acid molecules and the carboxylate groups of the sorbate anions are connected via O—H···O hydrogen bonds. Furthermore, the ion pairs and neutral molecules are connected via N—H···O hydrogen bonds (see Table 1 for symmetry codes) forming two-dimensional networks parallel to (100).