organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­amino­pyridinium sorbate–sorbic acid (1/1)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 5 December 2011; accepted 9 December 2011; online 21 December 2011)

In the title mol­ecular salt–adduct, C5H8N3+·C6H7O2·C6H8O2, the 2,3-diamino­pyridinium cation is essentially planar, with a maximum deviation of 0.013 (2) Å, and is protanated at its pyridine N atom. The sorbate anion and sorbic acid mol­ecules exist in extended conformations. In the crystal, the protonated N atom and one of the two amino-group H atoms are hydrogen bonded to the sorbate anion through a pair of N—H⋯O hydrogen bonds, forming an R12(6) ring motif. The carboxyl groups of the sorbic acid mol­ecules and the carboxyl­ate groups of the sorbate anions are connected via O—H⋯O hydrogen bonds. Furthermore, the ion pairs and neutral mol­ecules are connected via inter­molecular N—H⋯O hydrogen bonds, forming sheets lying parallel to (100).

Related literature

For a different crystal structure arising from the same synthesis conditions, see: Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2369.]). For background to amino­pyridines, see: Peng et al. (2001[Peng, S.-H., Wang, C.-C., Lo, W.-C. & Peng, S.-M. (2001). J. Chin. Chem. Soc. 48, 987-996.]); Leung et al. (2002[Leung, M.-K., Mandal, A.-B., Wang, C.-C., Peng, S.-M., Lu, H.-F. & Chou, P.-T. (2002). J. Am. Chem. Soc. 124, 4287-4297.]); Banerjee & Murugavel (2004[Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545-522.]); Lautie & Belabbes (1996[Lautie, A. & Belabbes, Y. (1996). Spectrochim. Acta Part A, 52, 1903-1914.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C6H7O2·C6H8O2

  • Mr = 333.38

  • Monoclinic, P 21 /c

  • a = 16.1636 (17) Å

  • b = 9.6538 (10) Å

  • c = 12.6887 (13) Å

  • β = 112.844 (2)°

  • V = 1824.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.47 × 0.25 × 0.06 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.994

  • 27805 measured reflections

  • 5345 independent reflections

  • 2898 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.152

  • S = 1.02

  • 5345 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O1B 0.82 1.79 2.5252 (19) 148
N1—H1N1⋯O1Ai 0.89 (3) 2.06 (3) 2.887 (2) 153 (3)
N1—H1N1⋯O2Ai 0.89 (3) 2.31 (3) 3.094 (2) 147 (2)
N2—H1N2⋯O1Ai 0.83 (2) 2.30 (2) 3.054 (2) 152 (2)
N2—H1N2⋯O2Bi 0.83 (2) 2.59 (3) 3.136 (2) 125 (2)
N2—H2N2⋯O2A 0.86 (2) 2.00 (3) 2.863 (2) 177 (2)
N3—H1N3⋯O2A 0.84 (2) 2.19 (2) 3.010 (2) 166.1 (16)
N3—H2N3⋯O2Bii 0.92 (3) 2.09 (3) 3.002 (2) 170 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTLand PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aminopyridines have recently become the focus of extensive studies, mainly because of their wide use as building blocks for synthetic transformations (Peng et al., 2001; Leung et al., 2002). Carboxylic acids are important in crystal engineering due to their strong and directional O—H···O and N—H···O hydrogen bonds; this is the main hydrogen-bonding motif often encountered in carboxylic acid–amine complexes (Banerjee & Murugavel, 2004; Lautie & Belabbes, 1996). Here, we report the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of the title compound, (Fig 1), contains one 2,3-diaminopyridinium cation, one sorbate anion and one neutral sorbic acid molecule. The 2,3-diaminopyridinium cation is planar with a maximum deviation of 0.013 (2) Å for atom C2. Protonation of atom N1 has resulted in a slight increase in the angle C1—N1—C5 [123.71 (17)°]. The sorbate anion and sorbic acid moiety is in the EE configuration. The structure is significantly different chemically and structurally from that of the previously reported 2,3-diaminopyridinium (2E,4E)-hexa-2,4- dienoate compound C5H8N3+, C6H7O2- (Hemamalini & Fun, 2010), even though the same synthesis was used.

In the crystal, (Fig. 2), the protonated N1 atom and the 2-amino group N atom (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1A and O2A) via a pair of N—H···O hydrogen bonds forming a ring motif R12(6) (Bernstein et al., 1995). The carboxyl groups of the sorbic acid molecules and the carboxylate groups of the sorbate anions are connected via O—H···O hydrogen bonds. Furthermore, the ion pairs and neutral molecules are connected via N—H···O hydrogen bonds (see Table 1 for symmetry codes) forming two-dimensional networks parallel to (100).

Related literature top

For a different crystal structure arising from the same synthesis conditions, see: Hemamalini & Fun (2010). For background to aminopyridines, see: Peng et al. (2001); Leung et al. (2002); Banerjee & Murugavel (2004); Lautie & Belabbes (1996). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2,3-diaminopyridine (59 mg, Aldrich) and sorbic acid (56 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and brown plates of the title compound appeared after a few days.

Refinement top

Atoms H1N1, H1N2, H2N2, H1N3 and H2N3 were located from a difference Fourier maps and refined freely [N–H = 0.83 (2)–0.92 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.96 Å and O–H = 0.82 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of title compound (I).
2,3-Diaminopyridinium hexa-2,4-dienoate–hexa-2,4-dienoic acid (1/1) top
Crystal data top
C5H8N3+·C6H7O2·C6H8O2F(000) = 712
Mr = 333.38Dx = 1.214 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4699 reflections
a = 16.1636 (17) Åθ = 2.5–23.6°
b = 9.6538 (10) ŵ = 0.09 mm1
c = 12.6887 (13) ÅT = 100 K
β = 112.844 (2)°Plate, brown
V = 1824.6 (3) Å30.47 × 0.25 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
5345 independent reflections
Radiation source: fine-focus sealed tube2898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 30.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.960, Tmax = 0.994k = 1313
27805 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.2243P]
where P = (Fo2 + 2Fc2)/3
5345 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C5H8N3+·C6H7O2·C6H8O2V = 1824.6 (3) Å3
Mr = 333.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1636 (17) ŵ = 0.09 mm1
b = 9.6538 (10) ÅT = 100 K
c = 12.6887 (13) Å0.47 × 0.25 × 0.06 mm
β = 112.844 (2)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
5345 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2898 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.994Rint = 0.045
27805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
5345 reflectionsΔρmin = 0.22 e Å3
239 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.52439 (11)0.20084 (17)0.03419 (12)0.0703 (4)
N20.45891 (11)0.1854 (2)0.16546 (18)0.0778 (5)
N30.59685 (10)0.00896 (17)0.29774 (14)0.0713 (4)
C10.52362 (10)0.14816 (17)0.13081 (13)0.0563 (4)
C20.59314 (9)0.05457 (16)0.19419 (13)0.0522 (4)
C30.65504 (10)0.02052 (18)0.14930 (15)0.0642 (4)
H3A0.70010.04270.18780.077*
C40.65219 (12)0.0785 (2)0.04688 (16)0.0771 (5)
H4A0.69500.05480.01790.093*
C50.58688 (14)0.1688 (2)0.00887 (16)0.0808 (5)
H5A0.58440.20920.07660.097*
O1B0.20615 (8)0.22997 (14)0.43760 (10)0.0701 (3)
O2B0.26440 (7)0.21636 (13)0.62722 (10)0.0698 (3)
C6B0.20207 (10)0.24501 (15)0.53806 (14)0.0541 (4)
C7B0.11588 (10)0.29993 (16)0.53419 (14)0.0560 (4)
H7BA0.07030.31650.46310.067*
C8B0.10027 (10)0.32670 (15)0.62678 (13)0.0536 (4)
H8BA0.14600.30660.69690.064*
C9B0.01845 (10)0.38450 (16)0.62879 (14)0.0569 (4)
H9BA0.02770.40380.55880.068*
C10B0.00417 (13)0.41200 (19)0.72185 (16)0.0688 (5)
H10A0.05050.39250.79160.083*
C11B0.07969 (15)0.4715 (3)0.7250 (2)0.0929 (7)
H11A0.10590.40660.76040.139*
H11B0.12130.49040.64850.139*
H11C0.06600.55600.76830.139*
O1A0.35766 (7)0.14675 (14)0.44960 (11)0.0747 (4)
H1A0.30580.14180.44520.112*
O2A0.43810 (7)0.06465 (17)0.35977 (11)0.0830 (4)
C6A0.36773 (10)0.06657 (18)0.37630 (13)0.0588 (4)
C7A0.29051 (10)0.02288 (17)0.31033 (13)0.0571 (4)
H7AA0.23960.01740.32730.068*
C8A0.28871 (10)0.10933 (17)0.22971 (13)0.0571 (4)
H8AA0.34070.11710.21530.069*
C9A0.21322 (11)0.19332 (17)0.16161 (14)0.0592 (4)
H9AA0.16030.18200.17330.071*
C10A0.21248 (13)0.28488 (19)0.08416 (16)0.0716 (5)
H10B0.26560.29470.07260.086*
C11A0.13681 (15)0.3735 (2)0.01381 (18)0.0891 (6)
H11G0.12450.35840.06570.134*
H11D0.08460.35070.02880.134*
H11E0.15210.46900.03250.134*
H1N10.4814 (17)0.260 (3)0.006 (2)0.112 (8)*
H1N20.4194 (16)0.234 (2)0.1193 (19)0.093 (7)*
H2N20.4547 (15)0.148 (3)0.225 (2)0.098 (9)*
H1N30.5524 (13)0.0094 (18)0.3168 (15)0.066 (5)*
H2N30.6417 (15)0.055 (3)0.3295 (19)0.104 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0674 (9)0.0770 (10)0.0511 (8)0.0190 (8)0.0062 (7)0.0022 (7)
N20.0622 (9)0.0905 (12)0.0739 (11)0.0316 (9)0.0190 (8)0.0020 (10)
N30.0521 (8)0.0816 (11)0.0848 (11)0.0154 (8)0.0314 (8)0.0260 (9)
C10.0475 (8)0.0591 (9)0.0528 (9)0.0076 (7)0.0093 (6)0.0078 (7)
C20.0435 (7)0.0516 (8)0.0558 (9)0.0029 (6)0.0132 (6)0.0003 (7)
C30.0476 (8)0.0699 (10)0.0708 (11)0.0105 (7)0.0181 (7)0.0003 (9)
C40.0663 (11)0.1024 (15)0.0656 (11)0.0092 (10)0.0288 (9)0.0031 (11)
C50.0818 (13)0.1025 (15)0.0527 (10)0.0082 (11)0.0203 (9)0.0028 (10)
O1B0.0584 (7)0.0927 (9)0.0518 (6)0.0105 (6)0.0133 (5)0.0043 (6)
O2B0.0546 (6)0.0833 (8)0.0586 (7)0.0206 (6)0.0077 (5)0.0004 (6)
C6B0.0472 (8)0.0474 (8)0.0572 (9)0.0013 (6)0.0087 (7)0.0020 (7)
C7B0.0465 (8)0.0593 (9)0.0530 (9)0.0042 (7)0.0091 (6)0.0043 (7)
C8B0.0484 (8)0.0488 (8)0.0542 (9)0.0001 (6)0.0097 (6)0.0031 (7)
C9B0.0530 (8)0.0559 (9)0.0571 (9)0.0014 (7)0.0163 (7)0.0059 (7)
C10B0.0731 (11)0.0684 (11)0.0661 (11)0.0056 (9)0.0283 (9)0.0067 (9)
C11B0.0984 (15)0.0950 (15)0.1081 (17)0.0154 (12)0.0648 (13)0.0127 (13)
O1A0.0507 (6)0.0923 (9)0.0765 (8)0.0053 (6)0.0195 (6)0.0293 (7)
O2A0.0473 (6)0.1230 (11)0.0829 (9)0.0019 (7)0.0299 (6)0.0065 (8)
C6A0.0473 (8)0.0721 (10)0.0563 (9)0.0017 (7)0.0194 (7)0.0026 (8)
C7A0.0488 (8)0.0681 (10)0.0578 (9)0.0007 (7)0.0245 (7)0.0049 (8)
C8A0.0536 (8)0.0649 (9)0.0525 (8)0.0105 (7)0.0201 (7)0.0031 (7)
C9A0.0641 (10)0.0571 (9)0.0553 (9)0.0064 (7)0.0218 (7)0.0006 (7)
C10A0.0771 (12)0.0684 (11)0.0646 (10)0.0135 (9)0.0222 (9)0.0041 (9)
C11A0.1050 (16)0.0634 (11)0.0814 (14)0.0037 (11)0.0172 (12)0.0159 (10)
Geometric parameters (Å, º) top
N1—C11.332 (2)C9B—C10B1.315 (2)
N1—C51.358 (2)C9B—H9BA0.9300
N1—H1N10.89 (3)C10B—C11B1.487 (3)
N2—C11.332 (2)C10B—H10A0.9300
N2—H1N20.83 (2)C11B—H11A0.9600
N2—H2N20.86 (2)C11B—H11B0.9600
N3—C21.365 (2)C11B—H11C0.9600
N3—H1N30.843 (18)O1A—C6A1.2682 (19)
N3—H2N30.92 (2)O1A—H1A0.8200
C1—C21.423 (2)O2A—C6A1.2341 (18)
C2—C31.370 (2)C6A—C7A1.481 (2)
C3—C41.399 (3)C7A—C8A1.312 (2)
C3—H3A0.9300C7A—H7AA0.9300
C4—C51.339 (3)C8A—C9A1.440 (2)
C4—H4A0.9300C8A—H8AA0.9300
C5—H5A0.9300C9A—C10A1.318 (2)
O1B—C6B1.310 (2)C9A—H9AA0.9300
O2B—C6B1.2192 (17)C10A—C11A1.475 (3)
C6B—C7B1.474 (2)C10A—H10B0.9300
C7B—C8B1.319 (2)C11A—H11G0.9600
C7B—H7BA0.9300C11A—H11D0.9600
C8B—C9B1.445 (2)C11A—H11E0.9600
C8B—H8BA0.9300
C1—N1—C5123.90 (16)C10B—C9B—H9BA117.5
C1—N1—H1N1119.1 (16)C8B—C9B—H9BA117.5
C5—N1—H1N1117.0 (16)C9B—C10B—C11B125.59 (18)
C1—N2—H1N2114.2 (15)C9B—C10B—H10A117.2
C1—N2—H2N2120.9 (16)C11B—C10B—H10A117.2
H1N2—N2—H2N2124 (2)C10B—C11B—H11A109.5
C2—N3—H1N3123.5 (12)C10B—C11B—H11B109.5
C2—N3—H2N3111.8 (14)H11A—C11B—H11B109.5
H1N3—N3—H2N3119.6 (19)C10B—C11B—H11C109.5
N2—C1—N1119.33 (16)H11A—C11B—H11C109.5
N2—C1—C2122.29 (17)H11B—C11B—H11C109.5
N1—C1—C2118.38 (15)C6A—O1A—H1A109.5
N3—C2—C3123.83 (15)O2A—C6A—O1A121.53 (16)
N3—C2—C1118.61 (14)O2A—C6A—C7A121.69 (15)
C3—C2—C1117.49 (15)O1A—C6A—C7A116.77 (13)
C2—C3—C4121.61 (16)C8A—C7A—C6A124.78 (14)
C2—C3—H3A119.2C8A—C7A—H7AA117.6
C4—C3—H3A119.2C6A—C7A—H7AA117.6
C5—C4—C3119.07 (17)C7A—C8A—C9A125.68 (15)
C5—C4—H4A120.5C7A—C8A—H8AA117.2
C3—C4—H4A120.5C9A—C8A—H8AA117.2
C4—C5—N1119.52 (19)C10A—C9A—C8A125.81 (17)
C4—C5—H5A120.2C10A—C9A—H9AA117.1
N1—C5—H5A120.2C8A—C9A—H9AA117.1
O2B—C6B—O1B122.84 (14)C9A—C10A—C11A127.25 (19)
O2B—C6B—C7B122.85 (15)C9A—C10A—H10B116.4
O1B—C6B—C7B114.30 (13)C11A—C10A—H10B116.4
C8B—C7B—C6B123.09 (14)C10A—C11A—H11G109.5
C8B—C7B—H7BA118.5C10A—C11A—H11D109.5
C6B—C7B—H7BA118.5H11G—C11A—H11D109.5
C7B—C8B—C9B125.75 (14)C10A—C11A—H11E109.5
C7B—C8B—H8BA117.1H11G—C11A—H11E109.5
C9B—C8B—H8BA117.1H11D—C11A—H11E109.5
C10B—C9B—C8B125.09 (16)
C5—N1—C1—N2179.49 (19)O2B—C6B—C7B—C8B2.3 (2)
C5—N1—C1—C21.2 (3)O1B—C6B—C7B—C8B177.53 (15)
N2—C1—C2—N34.5 (3)C6B—C7B—C8B—C9B177.96 (14)
N1—C1—C2—N3174.80 (15)C7B—C8B—C9B—C10B179.26 (17)
N2—C1—C2—C3178.37 (17)C8B—C9B—C10B—C11B179.96 (18)
N1—C1—C2—C32.3 (2)O2A—C6A—C7A—C8A0.6 (3)
N3—C2—C3—C4174.93 (17)O1A—C6A—C7A—C8A178.42 (16)
C1—C2—C3—C42.0 (2)C6A—C7A—C8A—C9A177.50 (15)
C2—C3—C4—C50.5 (3)C7A—C8A—C9A—C10A176.71 (18)
C3—C4—C5—N10.8 (3)C8A—C9A—C10A—C11A179.34 (18)
C1—N1—C5—C40.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O1B0.821.792.5252 (19)148
N1—H1N1···O1Ai0.89 (3)2.06 (3)2.887 (2)153 (3)
N1—H1N1···O2Ai0.89 (3)2.31 (3)3.094 (2)147 (2)
N2—H1N2···O1Ai0.83 (2)2.30 (2)3.054 (2)152 (2)
N2—H1N2···O2Bi0.83 (2)2.59 (3)3.136 (2)125 (2)
N2—H2N2···O2A0.86 (2)2.00 (3)2.863 (2)177 (2)
N3—H1N3···O2A0.84 (2)2.19 (2)3.010 (2)166.1 (16)
N3—H2N3···O2Bii0.92 (3)2.09 (3)3.002 (2)170 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C6H7O2·C6H8O2
Mr333.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.1636 (17), 9.6538 (10), 12.6887 (13)
β (°) 112.844 (2)
V3)1824.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.47 × 0.25 × 0.06
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.960, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
27805, 5345, 2898
Rint0.045
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.152, 1.02
No. of reflections5345
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O1B0.821.792.5252 (19)148
N1—H1N1···O1Ai0.89 (3)2.06 (3)2.887 (2)153 (3)
N1—H1N1···O2Ai0.89 (3)2.31 (3)3.094 (2)147 (2)
N2—H1N2···O1Ai0.83 (2)2.30 (2)3.054 (2)152 (2)
N2—H1N2···O2Bi0.83 (2)2.59 (3)3.136 (2)125 (2)
N2—H2N2···O2A0.86 (2)2.00 (3)2.863 (2)177 (2)
N3—H1N3···O2A0.84 (2)2.19 (2)3.010 (2)166.1 (16)
N3—H2N3···O2Bii0.92 (3)2.09 (3)3.002 (2)170 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH, JHG and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBanerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545–522.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLautie, A. & Belabbes, Y. (1996). Spectrochim. Acta Part A, 52, 1903–1914.  Google Scholar
First citationLeung, M.-K., Mandal, A.-B., Wang, C.-C., Peng, S.-M., Lu, H.-F. & Chou, P.-T. (2002). J. Am. Chem. Soc. 124, 4287–4297.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPeng, S.-H., Wang, C.-C., Lo, W.-C. & Peng, S.-M. (2001). J. Chin. Chem. Soc. 48, 987–996.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds