metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(1-allyl-1H-imidazole-κN3)bis­­(thio­cyanato-κN)manganese(II)

aCollege of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China, and bKey Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: zhaojuanqd@163.com

(Received 19 November 2011; accepted 29 November 2011; online 3 December 2011)

The structure of the title compound, [Mn(NCS)2(C6H8N2)4], consists of isolated mol­ecules of [Mn(NCS)2(Aim)4] (Aim = 1-allyl­imidazole), which contain a compressed octa­hedral MnN6 chromophore (site symmetry [\overline1]). The NCS anions are trans and four N atoms from the Aim ligands define the equatorial plane. The mean Mn—N(Aim) and Mn—N(NCS) distances are 2.270 and 2.229 Å, respectively. Weak C—H⋯N inter­actions contribute to the crystal packing stability.

Related literature

In the corresponding manganese compound [Mn(NCS)2(1-ethyl­imidazole)4] (Liu, et al., 2008[Liu, F. Q., Li, R. X. & Li, S. X. (2008). Chin. J. Inorg. Chem. 24, 141-144.]), the MnII ions have a distorted octa­hedral environment.

[Scheme 1]

Experimental

Crystal data
  • [Mn(NCS)2(C6H8N2)4]

  • Mr = 603.70

  • Monoclinic, C 2/c

  • a = 24.564 (5) Å

  • b = 7.2200 (14) Å

  • c = 21.287 (4) Å

  • β = 125.04 (3)°

  • V = 3091.0 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.890, Tmax = 0.943

  • 2885 measured reflections

  • 2814 independent reflections

  • 1750 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.162

  • S = 1.01

  • 2814 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯N3 0.93 2.54 2.857 (9) 101
C6—H6A⋯N4 0.93 2.88 3.355 (8) 113
C5—H5B⋯N4i 0.93 2.82 3.298 (7) 113
C12—H12A⋯N5i 0.93 2.72 3.224 (6) 115
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The molecular structure of (I) is shown in Fig. 1. The Mn atom displays an octahedral coordination geometry, with six N atoms from two thiocyanate anions and four 1-allylimidazole ligands. The equatorial plane of the complex is formed by four Mn—N(1-allylimadazole) bonds with lengths of 2.269 (3) and 2.271 (3) Å, and the axial positions are occupied by two N-bonded NCS groups [Mn—N(NCS) = 2.229 (4) Å]. These values agree well with those observed in [Mn(NCS)2(1-ethylimidazole)4] (Liu et al., 2008). The values of the bond angles around manganese are close to those expected for a regular octahedral geometry, the N—Mn—N angles range from 88.32 (13) to 91.68 (13) °, and the thiocyanate ligands are almost linear. Weak C—H···N interactions contribute to the crystal packing stability.

In the corresponding manganese compound [Mn(NCS)2(1-ethylimidazole)4] (Liu, et al., 2008), the MnII ions have a distorted octahedral environment.

Related literature top

In the corresponding manganese compound [Mn(NCS)2(1-ethylimidazole)4] (Liu, et al., 2008), the MnII ions have a distorted octahedral environment.

Experimental top

The title compound was prepared by the reaction of 1-allylimidazole (1.21 g, 20 mmol) with MnCl2.4H2O(0.99 g, 5 mmol) and potassium thiocyanate (0.98 g, 10 mmol) by means of hydrothermal synthesis in stainless-steel reactor with Teflon liner at 383 K for 24 h. Analysis, calculated for C26H32MnN10S2: C 51.73, H 5.34, N 23.20%; found: C 51.97, H 5.29, N 23.01%. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature.

Refinement top

H atoms were positioned geometrically(C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis.
Tetrakis(1-allyl-1H-imidazole-κN3)bis(thiocyanato- κN)manganese(II) top
Crystal data top
[Mn(NCS)2(C6H8N2)4]F(000) = 1260
Mr = 603.70Dx = 1.297 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 24.564 (5) Åθ = 9–12°
b = 7.2200 (14) ŵ = 0.60 mm1
c = 21.287 (4) ÅT = 293 K
β = 125.04 (3)°Block, colorless
V = 3091.0 (15) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2814 independent reflections
Radiation source: fine-focus sealed tube1750 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
thin–slice ω scansθmax = 25.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 029
Tmin = 0.890, Tmax = 0.943k = 08
2885 measured reflectionsl = 2520
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
2814 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Mn(NCS)2(C6H8N2)4]V = 3091.0 (15) Å3
Mr = 603.70Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.564 (5) ŵ = 0.60 mm1
b = 7.2200 (14) ÅT = 293 K
c = 21.287 (4) Å0.20 × 0.10 × 0.10 mm
β = 125.04 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2814 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1750 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.943Rint = 0.033
2885 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.01Δρmax = 0.31 e Å3
2814 reflectionsΔρmin = 0.34 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.25000.75000.00000.0393 (3)
S0.38490 (7)1.1290 (2)0.23301 (7)0.0754 (5)
N10.20466 (18)0.4508 (6)0.1457 (2)0.0542 (10)
N20.21204 (16)0.6197 (5)0.06496 (19)0.0447 (9)
N30.41287 (16)0.3410 (5)0.0976 (2)0.0457 (9)
N40.34393 (16)0.5759 (5)0.06687 (19)0.0448 (9)
N50.29713 (18)0.9709 (5)0.0893 (2)0.0543 (10)
C10.1320 (3)0.1161 (10)0.1924 (4)0.116 (3)
H1A0.13580.18020.23270.139*
H1B0.10160.01960.16860.139*
C20.1692 (3)0.1613 (9)0.1695 (3)0.0911 (19)
H2A0.16400.09380.12910.109*
C30.2181 (3)0.3078 (8)0.2018 (3)0.0725 (16)
H3A0.26160.25480.22270.087*
H3B0.21910.36490.24370.087*
C40.1559 (2)0.5784 (7)0.1165 (3)0.0570 (13)
H4A0.12500.59210.12810.068*
C50.1607 (2)0.6819 (7)0.0675 (3)0.0540 (12)
H5B0.13320.78120.03940.065*
C60.2375 (2)0.4801 (7)0.1133 (3)0.0533 (12)
H6A0.27360.41030.12380.064*
C70.4849 (3)0.2836 (9)0.0313 (3)0.0841 (18)
H7A0.46520.39810.02570.101*
H7B0.51060.26560.01260.101*
C80.4765 (2)0.1509 (8)0.0647 (3)0.0626 (14)
H8A0.49720.03920.06890.075*
C90.4373 (2)0.1569 (7)0.0974 (3)0.0577 (13)
H9A0.39960.07400.06830.069*
H9B0.46470.11130.14970.069*
C100.4487 (2)0.4823 (7)0.1465 (3)0.0584 (13)
H10A0.49390.48110.18550.070*
C110.4066 (2)0.6240 (7)0.1280 (3)0.0556 (12)
H11A0.41820.73780.15300.067*
C120.3500 (2)0.4037 (7)0.0506 (2)0.0470 (11)
H12A0.31500.33400.01140.056*
C130.3337 (2)1.0360 (6)0.1494 (3)0.0467 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0374 (5)0.0426 (5)0.0373 (5)0.0014 (5)0.0210 (4)0.0017 (5)
S0.0671 (9)0.1062 (13)0.0473 (8)0.0215 (8)0.0295 (7)0.0212 (8)
N10.048 (2)0.070 (3)0.047 (2)0.002 (2)0.0289 (19)0.012 (2)
N20.047 (2)0.049 (2)0.042 (2)0.0012 (18)0.0277 (17)0.0060 (19)
N30.0365 (19)0.052 (2)0.047 (2)0.0070 (18)0.0229 (17)0.0047 (19)
N40.040 (2)0.050 (2)0.041 (2)0.0055 (18)0.0210 (17)0.0058 (18)
N50.056 (2)0.052 (2)0.053 (2)0.010 (2)0.030 (2)0.011 (2)
C10.107 (5)0.108 (6)0.130 (6)0.023 (5)0.067 (5)0.032 (5)
C20.116 (5)0.065 (4)0.073 (4)0.007 (4)0.043 (4)0.011 (3)
C30.069 (3)0.081 (4)0.064 (3)0.003 (3)0.036 (3)0.023 (3)
C40.055 (3)0.072 (3)0.056 (3)0.001 (3)0.039 (2)0.002 (3)
C50.059 (3)0.052 (3)0.056 (3)0.004 (2)0.036 (3)0.003 (2)
C60.049 (3)0.060 (3)0.051 (3)0.007 (2)0.029 (2)0.010 (3)
C70.093 (4)0.094 (5)0.094 (4)0.008 (4)0.070 (4)0.001 (4)
C80.057 (3)0.062 (3)0.073 (3)0.008 (3)0.040 (3)0.007 (3)
C90.051 (3)0.052 (3)0.067 (3)0.009 (2)0.032 (3)0.007 (3)
C100.041 (3)0.070 (4)0.052 (3)0.005 (3)0.020 (2)0.006 (3)
C110.049 (3)0.056 (3)0.054 (3)0.001 (2)0.025 (2)0.010 (3)
C120.039 (2)0.055 (3)0.044 (2)0.002 (2)0.022 (2)0.002 (2)
C130.046 (3)0.048 (3)0.054 (3)0.003 (2)0.033 (2)0.003 (2)
Geometric parameters (Å, º) top
Mn—N5i2.229 (4)C1—H1B0.9300
Mn—N52.229 (4)C2—C31.444 (7)
Mn—N22.269 (3)C2—H2A0.9300
Mn—N2i2.269 (3)C3—H3A0.9700
Mn—N4i2.271 (3)C3—H3B0.9700
Mn—N42.271 (3)C4—C51.342 (6)
S—C131.621 (5)C4—H4A0.9300
N1—C61.345 (5)C5—H5B0.9300
N1—C41.346 (6)C6—H6A0.9300
N1—C31.465 (6)C7—C81.279 (7)
N2—C61.315 (5)C7—H7A0.9300
N2—C51.368 (5)C7—H7B0.9300
N3—C121.348 (5)C8—C91.477 (6)
N3—C101.358 (6)C8—H8A0.9300
N3—C91.460 (6)C9—H9A0.9700
N4—C121.322 (5)C9—H9B0.9700
N4—C111.373 (5)C10—C111.342 (6)
N5—C131.160 (5)C10—H10A0.9300
C1—C21.301 (8)C11—H11A0.9300
C1—H1A0.9300C12—H12A0.9300
N5i—Mn—N5180.0 (2)N1—C3—H3A109.0
N5i—Mn—N291.68 (13)C2—C3—H3B109.0
N5—Mn—N288.32 (13)N1—C3—H3B109.0
N5i—Mn—N2i88.32 (13)H3A—C3—H3B107.8
N5—Mn—N2i91.68 (13)C5—C4—N1106.8 (4)
N2—Mn—N2i180.00 (19)C5—C4—H4A126.6
N5i—Mn—N4i91.04 (14)N1—C4—H4A126.6
N5—Mn—N4i88.96 (14)C4—C5—N2110.0 (4)
N2—Mn—N4i89.22 (12)C4—C5—H5B125.0
N2i—Mn—N4i90.78 (12)N2—C5—H5B125.0
N5i—Mn—N488.96 (14)N2—C6—N1111.5 (4)
N5—Mn—N491.04 (14)N2—C6—H6A124.2
N2—Mn—N490.78 (12)N1—C6—H6A124.2
N2i—Mn—N489.22 (12)C8—C7—H7A120.0
N4i—Mn—N4180.0C8—C7—H7B120.0
C6—N1—C4106.9 (4)H7A—C7—H7B120.0
C6—N1—C3127.5 (4)C7—C8—C9126.7 (5)
C4—N1—C3125.6 (4)C7—C8—H8A116.7
C6—N2—C5104.8 (4)C9—C8—H8A116.7
C6—N2—Mn128.2 (3)N3—C9—C8114.1 (4)
C5—N2—Mn126.8 (3)N3—C9—H9A108.7
C12—N3—C10106.2 (4)C8—C9—H9A108.7
C12—N3—C9127.0 (4)N3—C9—H9B108.7
C10—N3—C9126.9 (4)C8—C9—H9B108.7
C12—N4—C11104.6 (4)H9A—C9—H9B107.6
C12—N4—Mn125.7 (3)C11—C10—N3107.3 (4)
C11—N4—Mn129.6 (3)C11—C10—H10A126.4
C13—N5—Mn157.6 (4)N3—C10—H10A126.4
C2—C1—H1A120.0C10—C11—N4109.9 (4)
C2—C1—H1B120.0C10—C11—H11A125.0
H1A—C1—H1B120.0N4—C11—H11A125.0
C1—C2—C3125.2 (7)N4—C12—N3112.0 (4)
C1—C2—H2A117.4N4—C12—H12A124.0
C3—C2—H2A117.4N3—C12—H12A124.0
C2—C3—N1113.1 (4)N5—C13—S179.4 (5)
C2—C3—H3A109.0
N5i—Mn—N2—C681.3 (4)C4—N1—C3—C272.8 (7)
N5—Mn—N2—C698.7 (4)C6—N1—C4—C50.2 (5)
N4i—Mn—N2—C6172.3 (4)C3—N1—C4—C5179.9 (4)
N4—Mn—N2—C67.7 (4)N1—C4—C5—N20.5 (6)
N5i—Mn—N2—C5105.3 (4)C6—N2—C5—C40.5 (5)
N5—Mn—N2—C574.7 (4)Mn—N2—C5—C4175.1 (3)
N4i—Mn—N2—C514.3 (4)C5—N2—C6—N10.3 (5)
N4—Mn—N2—C5165.7 (4)Mn—N2—C6—N1174.8 (3)
N5i—Mn—N4—C128.1 (3)C4—N1—C6—N20.1 (5)
N5—Mn—N4—C12171.9 (3)C3—N1—C6—N2179.6 (4)
N2—Mn—N4—C1283.6 (3)C12—N3—C9—C8105.3 (5)
N2i—Mn—N4—C1296.4 (3)C10—N3—C9—C876.3 (6)
N5i—Mn—N4—C11167.3 (4)C7—C8—C9—N37.1 (8)
N5—Mn—N4—C1112.7 (4)C12—N3—C10—C110.5 (5)
N2—Mn—N4—C11101.0 (4)C9—N3—C10—C11178.2 (4)
N2i—Mn—N4—C1179.0 (4)N3—C10—C11—N40.7 (6)
N2—Mn—N5—C1367.0 (9)C12—N4—C11—C100.7 (5)
N2i—Mn—N5—C13113.0 (9)Mn—N4—C11—C10175.4 (3)
N4i—Mn—N5—C13156.3 (9)C11—N4—C12—N30.4 (5)
N4—Mn—N5—C1323.7 (9)Mn—N4—C12—N3175.9 (3)
C1—C2—C3—N1120.3 (7)C10—N3—C12—N40.1 (5)
C6—N1—C3—C2106.9 (6)C9—N3—C12—N4178.6 (4)
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N30.932.542.857 (9)101
C6—H6A···N40.932.883.355 (8)113
C5—H5B···N4i0.932.823.298 (7)113
C12—H12A···N5i0.932.723.224 (6)115
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Mn(NCS)2(C6H8N2)4]
Mr603.70
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.564 (5), 7.2200 (14), 21.287 (4)
β (°) 125.04 (3)
V3)3091.0 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.890, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
2885, 2814, 1750
Rint0.033
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.162, 1.01
No. of reflections2814
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.34

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N30.932.5372.857 (9)100.57
C6—H6A···N40.932.8783.355 (8)113.26
C5—H5B···N4i0.932.8213.298 (7)113.07
C12—H12A···N5i0.932.7183.224 (6)115.03
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

This work was supported by the NSF of China (No. 20871072) and the Doctoral Science Foundation of Shandong Province (No. 2007BS04023).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, F. Q., Li, R. X. & Li, S. X. (2008). Chin. J. Inorg. Chem. 24, 141–144.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds