organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-1-(4-nitro­phen­yl)-1H-pyrazole-3-carbo­nitrile

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 23 November 2011; accepted 3 December 2011; online 10 December 2011)

The title compound, C10H7N5O2, was synthesized by the reaction of 4-nitro­aniline and 2,3-dicyano­propionic acid ethyl ester. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network.

Related literature

N-pyrazole derivatives are of great inter­est because of their chemical and pharmaceutical properties, see: Cheng et al. (2008[Cheng, J. L., Wei, F. L., Zhu, L., Zhao, J. H. & Zhu, G. N. (2008). Chin. J. Org Chem. 28, 622-627.]). They also exhibit diverse biological activity such as insecticidal (Zhao et al., 2010[Zhao, Q. Q., Li, Y. Q., Xiong, L. X. & Wang, Q. M. (2010). J. Agric. Food Chem. 58, 4992-4998.]) and anti­fungal activities (Liu et al., 2010[Liu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897-902.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7N5O2

  • Mr = 229.21

  • Monoclinic, C c

  • a = 3.7685 (2) Å

  • b = 27.3441 (17) Å

  • c = 10.1294 (8) Å

  • β = 96.20 (3)°

  • V = 1037.70 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Enaf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.968, Tmax = 0.989

  • 2148 measured reflections

  • 951 independent reflections

  • 856 reflections with I > 2σ(I)

  • Rint = 0.071

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.123

  • S = 1.00

  • 951 reflections

  • 155 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O2i 0.86 2.53 3.335 (5) 156
C4—H4A⋯O1ii 0.93 2.52 3.216 (5) 132
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x-1, -y, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In a variety of biological heterocyclic compounds, N-pyrazole derivatives are of great interest because of their chemical and pharmaceutical properties (Cheng et al., 2008). These compounds are known to exhibit diverse biological activities, such as insecticidal (Zhao et al., 2010) and antifungal activities (Liu et al., 2010).

Here we report the crystal structure of the title compound,(I). In the molecule of the title compound (Fig.1),the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A(C1—C6),B(N2/N3/C9/C8/C7) are, of course, planar. The dihedral angle between them is A/B = 34.3 (1) Å. In the crystal structure, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules to form a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

N-pyrazole derivatives are of great interest because of their chemical and pharmaceutical properties, see: Cheng et al. (2008). They also exhibit diverse biological activities, such as insecticidal (Zhao et al., 2010) and antifungal activities (Liu et al., 2010). For bond-length data, see: Allen et al. (1987).

Experimental top

Sodium nitrite(1.49 g) was dissolved 10 ml water, then the solution was added dropwise to a mixture of 4-nitrophenylamino (0.02 mol) and 36.5% aq. HCl(5 ml) at 0–5°C. After the addition, the above reaction mixture was stirred for 10 min at 0–5°C. 2,3-Dicyano-propionic acid ethyl ester (0.02 mol) was added dropwise and stirred for 2 hr at room temperature. The reaction mixture was extracted with dichloromethane and the pH was adjusted to 9 with ammonia. The aqueous layer was removed and the organic layer was dried over anhydrous Na2SO4, concentrated and precipitated. The pure compound (I) was obtained by recrystallization from ethanol. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram for (I). Hydrogen bonds are shown as dashed lines.
5-Amino-1-(4-nitrophenyl)-1H-pyrazole-3-carbonitrile top
Crystal data top
C10H7N5O2F(000) = 472
Mr = 229.21Dx = 1.467 Mg m3
Monoclinic, CcMelting point = 498–501 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 3.7685 (2) ÅCell parameters from 25 reflections
b = 27.3441 (17) Åθ = 9–13°
c = 10.1294 (8) ŵ = 0.11 mm1
β = 96.20 (3)°T = 293 K
V = 1037.70 (12) Å3Block, yellow
Z = 40.30 × 0.30 × 0.10 mm
Data collection top
Enaf–Nonius CAD-4
diffractometer
856 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
Graphite monochromatorθmax = 25.4°, θmin = 2.5°
ω/2θ scansh = 04
Absorption correction: ψ scan
(North et al., 1968)
k = 3232
Tmin = 0.968, Tmax = 0.989l = 1212
2148 measured reflections3 standard reflections every 200 reflections
951 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.093P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
951 reflectionsΔρmax = 0.26 e Å3
155 parametersΔρmin = 0.31 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (6)
Crystal data top
C10H7N5O2V = 1037.70 (12) Å3
Mr = 229.21Z = 4
Monoclinic, CcMo Kα radiation
a = 3.7685 (2) ŵ = 0.11 mm1
b = 27.3441 (17) ÅT = 293 K
c = 10.1294 (8) Å0.30 × 0.30 × 0.10 mm
β = 96.20 (3)°
Data collection top
Enaf–Nonius CAD-4
diffractometer
856 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.071
Tmin = 0.968, Tmax = 0.9893 standard reflections every 200 reflections
2148 measured reflections intensity decay: 1%
951 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
951 reflectionsΔρmin = 0.31 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6000 (9)0.14112 (13)0.7685 (3)0.0345 (8)
H1A0.64970.17370.78900.041*
N10.7783 (9)0.01800 (13)0.9127 (4)0.0495 (9)
O10.9593 (11)0.02857 (14)1.0134 (4)0.0782 (13)
N20.2632 (8)0.16762 (10)0.5653 (3)0.0343 (7)
C20.7254 (10)0.10486 (14)0.8562 (4)0.0370 (8)
H2A0.86160.11240.93570.044*
O20.6973 (13)0.02441 (11)0.8819 (4)0.0763 (12)
C30.6406 (9)0.05648 (13)0.8214 (3)0.0347 (8)
N30.1670 (9)0.21026 (11)0.6233 (3)0.0362 (7)
C40.4432 (9)0.04433 (12)0.7061 (4)0.0361 (8)
H4A0.39400.01170.68580.043*
N40.2620 (12)0.13064 (12)0.3498 (3)0.0517 (9)
H4B0.35810.10430.38340.062*
H4C0.21090.13310.26520.062*
C50.3155 (9)0.08073 (14)0.6189 (3)0.0353 (8)
H5A0.17480.07310.54050.042*
N50.2189 (12)0.32149 (13)0.5701 (4)0.0571 (10)
C60.4020 (9)0.12921 (12)0.6510 (4)0.0316 (7)
C70.1906 (10)0.16856 (13)0.4306 (4)0.0367 (8)
C80.0411 (12)0.21334 (14)0.3985 (4)0.0412 (8)
H8A0.03590.22550.31460.049*
C90.0310 (9)0.23653 (12)0.5213 (4)0.0347 (8)
C100.1059 (10)0.28392 (14)0.5470 (4)0.0411 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0409 (17)0.0288 (16)0.0351 (16)0.0030 (14)0.0102 (15)0.0032 (14)
N10.050 (2)0.0475 (19)0.053 (2)0.0072 (16)0.0127 (18)0.0160 (16)
O10.094 (3)0.070 (2)0.065 (2)0.005 (2)0.021 (2)0.0227 (19)
N20.0461 (16)0.0256 (14)0.0317 (14)0.0020 (13)0.0072 (12)0.0000 (12)
C20.0424 (18)0.0389 (18)0.0305 (16)0.0005 (16)0.0073 (14)0.0026 (14)
O20.111 (3)0.0379 (17)0.079 (2)0.0041 (19)0.010 (2)0.0194 (16)
C30.0330 (17)0.0337 (17)0.0394 (17)0.0046 (15)0.0129 (15)0.0066 (15)
N30.0488 (17)0.0255 (14)0.0357 (15)0.0032 (12)0.0108 (13)0.0018 (10)
C40.0400 (19)0.0275 (17)0.0427 (18)0.0031 (14)0.0135 (16)0.0008 (14)
N40.090 (3)0.0352 (16)0.0300 (14)0.0101 (17)0.0084 (16)0.0028 (12)
C50.0416 (19)0.0306 (18)0.0340 (17)0.0001 (14)0.0053 (15)0.0029 (12)
N50.080 (3)0.0384 (18)0.055 (2)0.0178 (19)0.0208 (19)0.0037 (16)
C60.0351 (16)0.0261 (15)0.0360 (17)0.0022 (14)0.0145 (14)0.0033 (13)
C70.0441 (19)0.0337 (17)0.0332 (16)0.0010 (15)0.0091 (15)0.0011 (14)
C80.050 (2)0.0407 (18)0.0330 (17)0.0015 (16)0.0047 (15)0.0086 (14)
C90.0379 (18)0.0289 (17)0.0383 (17)0.0014 (15)0.0090 (14)0.0023 (13)
C100.049 (2)0.036 (2)0.0410 (19)0.0059 (17)0.0150 (17)0.0075 (15)
Geometric parameters (Å, º) top
C1—C61.374 (5)C4—C51.382 (5)
C1—C21.381 (5)C4—H4A0.9300
C1—H1A0.9300N4—C71.366 (5)
N1—O11.199 (5)N4—H4B0.8600
N1—O21.231 (5)N4—H4C0.8600
N1—C31.459 (5)C5—C61.395 (5)
N2—C71.363 (5)C5—H5A0.9300
N2—N31.371 (4)N5—C101.146 (5)
N2—C61.425 (4)C7—C81.372 (5)
C2—C31.397 (5)C8—C91.400 (5)
C2—H2A0.9300C8—H8A0.9300
C3—C41.357 (5)C9—C101.429 (5)
N3—C91.316 (5)
C6—C1—C2120.2 (3)C7—N4—H4B120.0
C6—C1—H1A119.9C7—N4—H4C120.0
C2—C1—H1A119.9H4B—N4—H4C120.0
O1—N1—O2123.1 (4)C4—C5—C6118.6 (3)
O1—N1—C3119.7 (4)C4—C5—H5A120.7
O2—N1—C3117.2 (4)C6—C5—H5A120.7
C7—N2—N3112.3 (3)C1—C6—C5121.2 (3)
C7—N2—C6130.1 (3)C1—C6—N2118.8 (3)
N3—N2—C6117.6 (3)C5—C6—N2119.8 (3)
C1—C2—C3117.7 (3)N2—C7—N4123.7 (3)
C1—C2—H2A121.2N2—C7—C8106.7 (3)
C3—C2—H2A121.2N4—C7—C8129.6 (4)
C4—C3—C2122.6 (3)C7—C8—C9104.1 (3)
C4—C3—N1119.6 (3)C7—C8—H8A128.0
C2—C3—N1117.8 (3)C9—C8—H8A128.0
C9—N3—N2103.1 (3)N3—C9—C8113.9 (3)
C3—C4—C5119.6 (3)N3—C9—C10118.0 (3)
C3—C4—H4A120.2C8—C9—C10128.2 (3)
C5—C4—H4A120.2N5—C10—C9178.4 (4)
C6—C1—C2—C30.6 (5)C4—C5—C6—N2177.7 (3)
C1—C2—C3—C40.1 (5)C7—N2—C6—C1150.6 (4)
C1—C2—C3—N1178.9 (3)N3—N2—C6—C133.0 (5)
O1—N1—C3—C4178.4 (4)C7—N2—C6—C533.7 (6)
O2—N1—C3—C42.3 (5)N3—N2—C6—C5142.6 (3)
O1—N1—C3—C20.4 (5)N3—N2—C7—N4179.8 (4)
O2—N1—C3—C2178.9 (4)C6—N2—C7—N43.7 (6)
C7—N2—N3—C90.8 (4)N3—N2—C7—C80.1 (4)
C6—N2—N3—C9176.1 (3)C6—N2—C7—C8176.4 (4)
C2—C3—C4—C50.7 (5)N2—C7—C8—C90.7 (4)
N1—C3—C4—C5179.4 (3)N4—C7—C8—C9179.4 (4)
C3—C4—C5—C61.6 (5)N2—N3—C9—C81.3 (4)
C2—C1—C6—C51.6 (5)N2—N3—C9—C10178.7 (3)
C2—C1—C6—N2177.2 (3)C7—C8—C9—N31.3 (5)
C4—C5—C6—C12.1 (5)C7—C8—C9—C10178.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O2i0.862.533.335 (5)156
C4—H4A···O1ii0.932.523.216 (5)132
Symmetry codes: (i) x, y, z1/2; (ii) x1, y, z1/2.

Experimental details

Crystal data
Chemical formulaC10H7N5O2
Mr229.21
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)3.7685 (2), 27.3441 (17), 10.1294 (8)
β (°) 96.20 (3)
V3)1037.70 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerEnaf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.968, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
2148, 951, 856
Rint0.071
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.00
No. of reflections951
No. of parameters155
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.31

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O2i0.86002.53003.335 (5)156.00
C4—H4A···O1ii0.93002.52003.216 (5)132.00
Symmetry codes: (i) x, y, z1/2; (ii) x1, y, z1/2.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for the use of the diffractometer for this research project.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCheng, J. L., Wei, F. L., Zhu, L., Zhao, J. H. & Zhu, G. N. (2008). Chin. J. Org Chem. 28, 622–627.  CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897–902.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Q. Q., Li, Y. Q., Xiong, L. X. & Wang, Q. M. (2010). J. Agric. Food Chem. 58, 4992–4998.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds