organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,14-Di­methyl-2,6,13,17-tetra­aza­tri­cyclo­[16.4.0.07,12]docosa­ne–(naphthalen-1-yl)methanol (1/2)

aDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 December 2011; accepted 7 December 2011; online 14 December 2011)

In the title co-crystal, C20H40N4·2C11H10O, the macrocycle is generated by a crystallographic inversion centre. The N atoms show a pyramidal coordination, and the cyclo­hexane ring that is fused to the 14-membered C10N4 ring exists in a chair conformation, whereas the methyl substituent occupies an axial site. The (naphthalen-1-yl)methanol mol­ecule forms an O—H⋯N hydrogen bond to a cyclam N atom. The mean-square-plane passing through the 14-membered ring is approximately coplanar with the naphthalene fused-ring [dihedral angle = 6.6 (1)°].

Related literature

For the synthesis of the cyclam, see: Kang & Jeong (2003[Kang, S. G. & Jeong, J. H. (2003). Bull. Kor. Chem. Soc, 24, 393-396.]).

[Scheme 1]

Experimental

Crystal data
  • C20H40N4·2C11H10O

  • Mr = 652.94

  • Triclinic, [P \overline 1]

  • a = 8.9706 (4) Å

  • b = 9.4967 (6) Å

  • c = 10.5580 (5) Å

  • α = 92.500 (4)°

  • β = 97.961 (4)°

  • γ = 96.666 (4)°

  • V = 883.13 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.978, Tmax = 0.985

  • 6926 measured reflections

  • 3915 independent reflections

  • 2958 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.126

  • S = 1.00

  • 3915 reflections

  • 229 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.85 (1) 1.94 (1) 2.786 (2) 171 (2)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We had intended to react the cyclam having 1,2-diaminocyclohexanediamine sub-units, 5,16-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01,18,07,12]docosane, with an alkyl chloride to form the corresponding ammonium salt; however, under the basic conditions, the 1-chloromethyl-naphthalene component was hydrolyzed to 1-hydroxymethyl-naphthalene, which co-crystallizes with the cyclam (Scheme I, Fig. 1). The cyclam lies on a center-of-inversion, and the nitrogen atoms of the 14-membered C10N4 ring show pyramidal coordination. However, these are not enaged in any hydrogen-bonding interactions. The cyclohexane rings that are fused to the 14-membered ring exist in chair conformations, and the methyl substituents in axial configurations.

The 1-hydroxymethyl-naphthalene molecule forms an O–H···N hydrogen bond to the cyclam (Table 1).

The mean-square-plane passing through the 14-membered ring is approximately co-planar with the naphthalene fused-ring (dihedral angle 6.6 (1) °).

Related literature top

For the synthesis of the cyclam, see: Kang & Jeong (2003).

Experimental top

The macrocycle 3,14-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosane was synthesized by using a published procedure (Kang & Jeong, 2003). To a solution of this marcrocycle (0.61 g, 2.0 mmol) in methanol (10 ml) was added 1-chloromethylnaphthalene (0.80 g, 4.53 mmol) and a solution containing sodium carbonate (0.51 g, 4.77 mmol) dissolved in water (5 ml). The solution was heated for 24 h at 363 K. The white solid that precipitated was collected and recrystallized from acetonitrile–water (1:1) solution to give colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.98 to 1.00 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01, O–H 0.84±0.01 Å; their temperature factors were refined.

The (6 0 3) reflection was omitted.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C20H40N4.2C11H10O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
3,14-Dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosane– (naphthalen-1-yl)methanol (1/2) top
Crystal data top
C20H40N4·2C11H10OZ = 1
Mr = 652.94F(000) = 356
Triclinic, P1Dx = 1.228 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9706 (4) ÅCell parameters from 2968 reflections
b = 9.4967 (6) Åθ = 2.8–29.3°
c = 10.5580 (5) ŵ = 0.08 mm1
α = 92.500 (4)°T = 100 K
β = 97.961 (4)°Prism, colorless
γ = 96.666 (4)°0.30 × 0.25 × 0.20 mm
V = 883.13 (8) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3915 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2958 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 129
Tmin = 0.978, Tmax = 0.985l = 1213
6926 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.3587P]
where P = (Fo2 + 2Fc2)/3
3915 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.29 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H40N4·2C11H10Oγ = 96.666 (4)°
Mr = 652.94V = 883.13 (8) Å3
Triclinic, P1Z = 1
a = 8.9706 (4) ÅMo Kα radiation
b = 9.4967 (6) ŵ = 0.08 mm1
c = 10.5580 (5) ÅT = 100 K
α = 92.500 (4)°0.30 × 0.25 × 0.20 mm
β = 97.961 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3915 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2958 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.985Rint = 0.027
6926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.29 e Å3
3915 reflectionsΔρmin = 0.28 e Å3
229 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39115 (13)0.38946 (12)0.62565 (11)0.0246 (3)
N10.10202 (14)0.30725 (14)0.49130 (12)0.0167 (3)
N20.02690 (14)0.51309 (13)0.31361 (12)0.0169 (3)
C10.04567 (17)0.24648 (16)0.70859 (14)0.0187 (3)
H1A0.15030.29220.73830.022*
H1B0.02930.16130.75820.022*
C20.03614 (18)0.19676 (16)0.56804 (14)0.0195 (3)
H2A0.09030.11210.56220.023*
H2B0.07150.16840.53180.023*
C30.07600 (16)0.26812 (16)0.35267 (14)0.0165 (3)
H30.03350.23100.32680.020*
C40.17260 (18)0.15236 (17)0.32043 (15)0.0218 (3)
H4A0.28080.18620.35090.026*
H4B0.14420.06680.36630.026*
C50.1525 (2)0.11239 (18)0.17690 (16)0.0274 (4)
H5A0.22190.04220.16010.033*
H5B0.04730.06780.14810.033*
C60.18552 (19)0.24225 (18)0.10128 (15)0.0238 (4)
H6A0.16320.21500.00840.029*
H6B0.29430.27970.12160.029*
C70.08938 (17)0.35713 (17)0.13392 (14)0.0191 (3)
H7A0.01910.32230.10590.023*
H7B0.11550.44200.08650.023*
C80.11388 (16)0.39903 (16)0.27810 (14)0.0161 (3)
H80.22400.43360.30400.019*
C90.06375 (17)0.65060 (16)0.25732 (14)0.0178 (3)
H90.04930.63390.16200.021*
C100.22827 (17)0.71117 (17)0.30174 (16)0.0237 (4)
H10A0.29500.64230.27920.036*
H10B0.24410.73080.39480.036*
H10C0.25160.79940.25980.036*
C110.40299 (19)0.53897 (17)0.62006 (16)0.0249 (4)
H11A0.32480.56260.55120.030*
H11B0.50350.57350.59680.030*
C120.38426 (16)0.61640 (17)0.74368 (15)0.0201 (3)
C130.36862 (17)0.54546 (18)0.85219 (15)0.0220 (3)
H130.36980.44550.84980.026*
C140.35081 (18)0.61807 (19)0.96724 (16)0.0256 (4)
H140.34240.56681.04170.031*
C150.34556 (18)0.76033 (19)0.97311 (16)0.0257 (4)
H150.33140.80741.05100.031*
C160.36112 (17)0.83948 (17)0.86337 (15)0.0217 (3)
C170.35874 (19)0.98840 (19)0.86739 (17)0.0276 (4)
H170.34271.03660.94420.033*
C180.37914 (18)1.06392 (19)0.76259 (17)0.0291 (4)
H180.37791.16390.76690.035*
C190.40194 (18)0.99358 (18)0.64866 (16)0.0264 (4)
H190.41601.04630.57590.032*
C200.40408 (17)0.84951 (18)0.64119 (15)0.0230 (4)
H200.42000.80380.56320.028*
C210.38299 (16)0.76716 (17)0.74774 (15)0.0195 (3)
H1O0.3056 (15)0.356 (2)0.5834 (18)0.047 (6)*
H1N0.0599 (18)0.3847 (13)0.5061 (17)0.027 (5)*
H2N0.0694 (12)0.4833 (19)0.2849 (16)0.028 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (6)0.0183 (6)0.0294 (7)0.0014 (5)0.0008 (5)0.0018 (5)
N10.0221 (6)0.0120 (6)0.0163 (6)0.0029 (5)0.0030 (5)0.0024 (5)
N20.0185 (6)0.0132 (6)0.0196 (7)0.0028 (5)0.0039 (5)0.0028 (5)
C10.0247 (8)0.0156 (8)0.0165 (8)0.0044 (6)0.0027 (6)0.0052 (6)
C20.0259 (8)0.0125 (7)0.0207 (8)0.0022 (6)0.0053 (6)0.0023 (6)
C30.0194 (7)0.0143 (7)0.0158 (7)0.0014 (6)0.0030 (5)0.0009 (6)
C40.0312 (8)0.0166 (8)0.0200 (8)0.0076 (7)0.0069 (6)0.0041 (6)
C50.0440 (10)0.0179 (8)0.0232 (9)0.0087 (7)0.0108 (7)0.0011 (7)
C60.0338 (9)0.0210 (8)0.0192 (8)0.0080 (7)0.0085 (7)0.0024 (6)
C70.0226 (8)0.0180 (8)0.0172 (8)0.0031 (6)0.0040 (6)0.0030 (6)
C80.0176 (7)0.0134 (7)0.0177 (8)0.0031 (6)0.0032 (5)0.0016 (6)
C90.0247 (8)0.0145 (7)0.0151 (7)0.0035 (6)0.0038 (6)0.0039 (6)
C100.0258 (8)0.0174 (8)0.0288 (9)0.0025 (6)0.0063 (7)0.0047 (7)
C110.0306 (9)0.0184 (8)0.0245 (9)0.0028 (7)0.0042 (7)0.0013 (7)
C120.0142 (7)0.0213 (8)0.0233 (8)0.0010 (6)0.0000 (6)0.0016 (6)
C130.0194 (8)0.0211 (8)0.0242 (8)0.0001 (6)0.0001 (6)0.0047 (6)
C140.0229 (8)0.0310 (10)0.0224 (9)0.0009 (7)0.0026 (6)0.0079 (7)
C150.0246 (8)0.0323 (10)0.0211 (9)0.0039 (7)0.0058 (6)0.0016 (7)
C160.0168 (7)0.0243 (9)0.0248 (9)0.0058 (6)0.0025 (6)0.0020 (7)
C170.0276 (9)0.0258 (9)0.0310 (9)0.0097 (7)0.0051 (7)0.0012 (7)
C180.0266 (9)0.0209 (9)0.0400 (11)0.0090 (7)0.0002 (7)0.0032 (8)
C190.0246 (8)0.0253 (9)0.0287 (9)0.0034 (7)0.0004 (7)0.0087 (7)
C200.0211 (8)0.0241 (9)0.0227 (8)0.0009 (7)0.0006 (6)0.0018 (7)
C210.0142 (7)0.0208 (8)0.0227 (8)0.0016 (6)0.0004 (6)0.0027 (6)
Geometric parameters (Å, º) top
O1—C111.4159 (19)C8—H81.0000
O1—H1O0.852 (9)C9—C101.522 (2)
N1—C21.4730 (19)C9—C1i1.529 (2)
N1—C31.4739 (19)C9—H91.0000
N1—H1N0.883 (9)C10—H10A0.9800
N2—C81.4712 (19)C10—H10B0.9800
N2—C91.4798 (19)C10—H10C0.9800
N2—H2N0.884 (9)C11—C121.509 (2)
C1—C21.525 (2)C11—H11A0.9900
C1—C9i1.529 (2)C11—H11B0.9900
C1—H1A0.9900C12—C131.370 (2)
C1—H1B0.9900C12—C211.432 (2)
C2—H2A0.9900C13—C141.408 (2)
C2—H2B0.9900C13—H130.9500
C3—C81.531 (2)C14—C151.356 (2)
C3—C41.531 (2)C14—H140.9500
C3—H31.0000C15—C161.422 (2)
C4—C51.527 (2)C15—H150.9500
C4—H4A0.9900C16—C171.416 (2)
C4—H4B0.9900C16—C211.423 (2)
C5—C61.521 (2)C17—C181.366 (3)
C5—H5A0.9900C17—H170.9500
C5—H5B0.9900C18—C191.402 (2)
C6—C71.523 (2)C18—H180.9500
C6—H6A0.9900C19—C201.369 (2)
C6—H6B0.9900C19—H190.9500
C7—C81.536 (2)C20—C211.419 (2)
C7—H7A0.9900C20—H200.9500
C7—H7B0.9900
C11—O1—H1O107.1 (15)N2—C8—H8107.7
C2—N1—C3113.32 (11)C3—C8—H8107.7
C2—N1—H1N107.1 (12)C7—C8—H8107.7
C3—N1—H1N109.4 (12)N2—C9—C10110.88 (13)
C8—N2—C9115.46 (11)N2—C9—C1i109.54 (12)
C8—N2—H2N106.5 (12)C10—C9—C1i111.64 (13)
C9—N2—H2N106.9 (12)N2—C9—H9108.2
C2—C1—C9i117.65 (13)C10—C9—H9108.2
C2—C1—H1A107.9C1i—C9—H9108.2
C9i—C1—H1A107.9C9—C10—H10A109.5
C2—C1—H1B107.9C9—C10—H10B109.5
C9i—C1—H1B107.9H10A—C10—H10B109.5
H1A—C1—H1B107.2C9—C10—H10C109.5
N1—C2—C1112.57 (12)H10A—C10—H10C109.5
N1—C2—H2A109.1H10B—C10—H10C109.5
C1—C2—H2A109.1O1—C11—C12113.97 (13)
N1—C2—H2B109.1O1—C11—H11A108.8
C1—C2—H2B109.1C12—C11—H11A108.8
H2A—C2—H2B107.8O1—C11—H11B108.8
N1—C3—C8109.94 (11)C12—C11—H11B108.8
N1—C3—C4110.78 (13)H11A—C11—H11B107.7
C8—C3—C4109.82 (12)C13—C12—C21119.27 (15)
N1—C3—H3108.8C13—C12—C11121.36 (15)
C8—C3—H3108.8C21—C12—C11119.36 (14)
C4—C3—H3108.8C12—C13—C14121.18 (16)
C5—C4—C3112.30 (14)C12—C13—H13119.4
C5—C4—H4A109.1C14—C13—H13119.4
C3—C4—H4A109.1C15—C14—C13120.84 (16)
C5—C4—H4B109.1C15—C14—H14119.6
C3—C4—H4B109.1C13—C14—H14119.6
H4A—C4—H4B107.9C14—C15—C16120.42 (15)
C6—C5—C4111.15 (13)C14—C15—H15119.8
C6—C5—H5A109.4C16—C15—H15119.8
C4—C5—H5A109.4C17—C16—C15121.61 (15)
C6—C5—H5B109.4C17—C16—C21119.41 (15)
C4—C5—H5B109.4C15—C16—C21118.96 (15)
H5A—C5—H5B108.0C18—C17—C16121.05 (16)
C5—C6—C7110.49 (13)C18—C17—H17119.5
C5—C6—H6A109.6C16—C17—H17119.5
C7—C6—H6A109.6C17—C18—C19119.87 (16)
C5—C6—H6B109.6C17—C18—H18120.1
C7—C6—H6B109.6C19—C18—H18120.1
H6A—C6—H6B108.1C20—C19—C18120.63 (16)
C6—C7—C8111.94 (13)C20—C19—H19119.7
C6—C7—H7A109.2C18—C19—H19119.7
C8—C7—H7A109.2C19—C20—C21121.27 (15)
C6—C7—H7B109.2C19—C20—H20119.4
C8—C7—H7B109.2C21—C20—H20119.4
H7A—C7—H7B107.9C20—C21—C16117.77 (15)
N2—C8—C3110.00 (11)C20—C21—C12122.93 (14)
N2—C8—C7113.85 (13)C16—C21—C12119.29 (15)
C3—C8—C7109.72 (12)
C3—N1—C2—C1172.40 (12)C21—C12—C13—C140.2 (2)
C9i—C1—C2—N174.70 (17)C11—C12—C13—C14179.85 (14)
C2—N1—C3—C8166.81 (12)C12—C13—C14—C151.3 (2)
C2—N1—C3—C471.62 (16)C13—C14—C15—C161.3 (2)
N1—C3—C4—C5178.15 (12)C14—C15—C16—C17178.88 (15)
C8—C3—C4—C556.50 (16)C14—C15—C16—C210.3 (2)
C3—C4—C5—C655.34 (18)C15—C16—C17—C18177.67 (15)
C4—C5—C6—C754.34 (19)C21—C16—C17—C180.9 (2)
C5—C6—C7—C856.62 (17)C16—C17—C18—C190.4 (2)
C9—N2—C8—C3174.49 (11)C17—C18—C19—C200.0 (2)
C9—N2—C8—C761.91 (16)C18—C19—C20—C210.2 (2)
N1—C3—C8—N255.05 (15)C19—C20—C21—C160.7 (2)
C4—C3—C8—N2177.19 (12)C19—C20—C21—C12179.92 (14)
N1—C3—C8—C7178.97 (11)C17—C16—C21—C201.0 (2)
C4—C3—C8—C756.83 (16)C15—C16—C21—C20177.60 (14)
C6—C7—C8—N2178.14 (12)C17—C16—C21—C12179.56 (14)
C6—C7—C8—C358.10 (16)C15—C16—C21—C121.8 (2)
C8—N2—C9—C1062.00 (16)C13—C12—C21—C20177.61 (14)
C8—N2—C9—C1i174.34 (12)C11—C12—C21—C202.3 (2)
O1—C11—C12—C134.5 (2)C13—C12—C21—C161.8 (2)
O1—C11—C12—C21175.56 (13)C11—C12—C21—C16178.28 (13)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (1)1.94 (1)2.786 (2)171 (2)

Experimental details

Crystal data
Chemical formulaC20H40N4·2C11H10O
Mr652.94
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.9706 (4), 9.4967 (6), 10.5580 (5)
α, β, γ (°)92.500 (4), 97.961 (4), 96.666 (4)
V3)883.13 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.978, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
6926, 3915, 2958
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.126, 1.00
No. of reflections3915
No. of parameters229
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (1)1.94 (1)2.786 (2)171 (2)
 

Acknowledgements

We thank Andong National University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationKang, S. G. & Jeong, J. H. (2003). Bull. Kor. Chem. Soc, 24, 393–396.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds