metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-fluoro­benz­yl)bis­­(4-phenyl-5-sulfanyl­­idene-4,5-di­hydro-1,3,4-thio­diazole-2-thiol­ato)tin(IV)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: drzengsy@163.com

(Received 2 December 2011; accepted 16 December 2011; online 23 December 2011)

In the title complex, [Sn(C7H6F)2(C8H5N2S3)2], including the weak Sn—N inter­actions, the SnIV atom is situated in a distorted trans-octa­hedral geometry, and the equatorial plane is defined by two chelating 4-phenyl-5-sulfanyl­idene-4,5-dihydro-1,3,4-thio­diazole-2-thiol­ate ligands. The apical positions are occupied by two C atoms of 4-fluoro­benzyl groups.

Related literature

For related diorganotin(IV) 2-mercapto-4-methyl­pyrimidine derivatives, see: Ma et al. (2005[Ma, C.-L., Zhang, J.-H., Tian, G.-R. & Zhang, R.-F. (2005). J. Organomet. Chem. pp. 519-533.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C7H6F)2(C8H5N2S3)2]

  • Mr = 787.57

  • Triclinic, [P \overline 1]

  • a = 10.856 (1) Å

  • b = 12.5901 (13) Å

  • c = 13.3741 (15) Å

  • α = 80.278 (2)°

  • β = 66.686 (1)°

  • γ = 77.918 (1)°

  • V = 1634.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 298 K

  • 0.10 × 0.08 × 0.05 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.889, Tmax = 0.942

  • 8703 measured reflections

  • 5687 independent reflections

  • 2469 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.102

  • S = 0.83

  • 5687 reflections

  • 388 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—C17 2.118 (7)
Sn1—C24 2.134 (6)
Sn1—S5 2.482 (2)
Sn1—S2 2.493 (2)
C17—Sn1—C24 133.4 (3)
C17—Sn1—S5 109.1 (2)
C24—Sn1—S5 104.6 (2)
C17—Sn1—S2 103.5 (2)

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title compound, from Fig.1, as far as the weak Sn—N interactions are concerned, The coordination geometry of the Sn(IV) atom can be described as distorted trans-octahedral octahedral, with the basal plane defined by two symmertrically chelating 3-methylmercapto-5-mercapto-1,2,4-thiadiazole ligands. The apical positions are occupied by two 4-fluorobenzyl groups. The molecular structure consists of a monomer with a hexa-coordinated Sn atom surrounded by two S atoms and two N atoms of the ligand, and two 4-fluorobenzyl groups.

The Sn—S bond distances (Sn(1)—S(2)2.493 (2)Å and Sn(1)—S(5)2.482 (2) Å); and weak Sn—N bond lengths (Sn(1)—N(1)2.751Å and Sn(1)—N(3)2.688 Å) are close to those of the reported diorganotin(IV) 2-Mercapto-4-methylpyrimidine derivatives (Ma et al., 2005). There is a good correspondence in their structure parameters: the Sn—S distances lie in the range 2.477–2.526Å and the Sn—N distances in the range 2.650–2.933 Å.

Related literature top

For related diorganotin(IV) 2-mercapto-4-methylpyrimidine derivatives, see: Ma et al. (2005).

Experimental top

The mixture of the kalium salt of 2,5-dimercapto-4-phenyl-1,3,4-thiodiazole (2 mmol) was added to the solution of ethanol 20 ml, then add di(4-fluorobenzyl)tin(IV) dichloride(1 mmol) to the mixture, continuing the reaction for 12 h at 318k. After cooling down to room temperature, filtered it. The solvent of the filtrate was gradually removed by evaporation under vacuum until solid product was obtained. The solid was then recrystallized from ether-dichloromethane and colorless crystals suitable for X-ray diffraction were obtained (m.p. 433 K). Analysis, calculated for C30H22N4S6F2Sn: C 45.71, H 2.79,7.07; found: C 45.75, H 2.82,7.11%.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H 0.96 Å [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing 30% probability displacement ellipsoids.
Bis(4-fluorobenzyl)bis(4-phenyl-5-sulfanylidene-4,5-dihydro-1,3,4- thiodiazole-2-thiolato)tin(IV) top
Crystal data top
[Sn(C7H6F)2(C8H5N2S3)2]Z = 2
Mr = 787.57F(000) = 788
Triclinic, P1Dx = 1.601 Mg m3
a = 10.856 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5901 (13) ÅCell parameters from 1083 reflections
c = 13.3741 (15) Åθ = 2.5–25.2°
α = 80.278 (2)°µ = 1.21 mm1
β = 66.686 (1)°T = 298 K
γ = 77.918 (1)°Block, colorless
V = 1634.0 (3) Å30.10 × 0.08 × 0.05 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
5687 independent reflections
Radiation source: fine-focus sealed tube2469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.889, Tmax = 0.942k = 1114
8703 measured reflectionsl = 1215
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0195P)2]
where P = (Fo2 + 2Fc2)/3
5687 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.53 e Å3
6 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Sn(C7H6F)2(C8H5N2S3)2]γ = 77.918 (1)°
Mr = 787.57V = 1634.0 (3) Å3
Triclinic, P1Z = 2
a = 10.856 (1) ÅMo Kα radiation
b = 12.5901 (13) ŵ = 1.21 mm1
c = 13.3741 (15) ÅT = 298 K
α = 80.278 (2)°0.10 × 0.08 × 0.05 mm
β = 66.686 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5687 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2469 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.942Rint = 0.068
8703 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0606 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 0.83Δρmax = 0.53 e Å3
5687 reflectionsΔρmin = 0.57 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.62742 (6)0.71890 (5)0.14274 (5)0.0496 (2)
F10.1254 (5)1.1462 (5)0.2820 (4)0.113 (2)
F20.8752 (6)0.4276 (5)0.2743 (5)0.131 (3)
N10.5853 (6)0.5138 (6)0.2456 (5)0.0511 (18)
N20.5920 (6)0.4179 (6)0.3132 (5)0.0579 (19)
N30.7364 (6)0.8976 (6)0.1249 (5)0.0514 (19)
N40.7996 (6)0.9668 (6)0.1511 (5)0.0524 (18)
S10.4427 (2)0.3901 (2)0.2215 (2)0.0792 (8)
S20.4857 (2)0.6158 (2)0.09849 (18)0.0676 (7)
S30.4882 (3)0.2311 (2)0.4009 (2)0.0913 (9)
S40.7446 (3)1.0676 (2)0.00804 (19)0.0741 (8)
S50.6124 (2)0.87078 (18)0.00113 (17)0.0572 (7)
S60.8989 (3)1.1587 (2)0.0923 (2)0.0930 (9)
C10.5097 (8)0.5101 (8)0.1911 (7)0.060 (3)
C20.5175 (8)0.3428 (7)0.3176 (7)0.060 (3)
C30.6751 (8)0.4109 (8)0.3786 (7)0.053 (2)
C40.6719 (9)0.5004 (8)0.4251 (7)0.071 (3)
H40.61690.56590.41680.085*
C50.7523 (9)0.4908 (10)0.4845 (7)0.087 (3)
H50.75100.55070.51740.104*
C60.8326 (10)0.3970 (11)0.4961 (8)0.090 (4)
H60.88550.39170.53750.108*
C70.8366 (10)0.3092 (10)0.4468 (9)0.090 (4)
H70.89210.24410.45540.108*
C80.7601 (9)0.3155 (8)0.3850 (7)0.076 (3)
H80.76590.25690.34850.091*
C90.6986 (7)0.9418 (7)0.0439 (6)0.050 (2)
C100.8221 (8)1.0629 (8)0.0864 (6)0.058 (3)
C110.8314 (8)0.9337 (7)0.2466 (6)0.049 (2)
C120.8946 (8)0.8290 (8)0.2593 (7)0.067 (3)
H120.92510.78350.20350.080*
C130.9119 (9)0.7929 (8)0.3567 (8)0.090 (4)
H130.95380.72170.36700.108*
C140.8697 (9)0.8583 (9)0.4367 (7)0.081 (3)
H140.88150.83200.50210.097*
C150.8087 (9)0.9644 (8)0.4233 (7)0.075 (3)
H150.78291.01100.47760.090*
C160.7871 (8)0.9995 (7)0.3285 (7)0.066 (3)
H160.74131.06950.31990.079*
C170.5000 (7)0.7694 (7)0.2992 (6)0.066 (3)
H17A0.45130.71060.34280.079*
H17B0.55590.78340.33550.079*
C180.4001 (8)0.8690 (7)0.2947 (6)0.048 (2)
C190.4254 (8)0.9709 (9)0.3001 (6)0.060 (3)
H190.50400.97660.30960.072*
C200.3345 (11)1.0652 (8)0.2915 (7)0.074 (3)
H200.35331.13370.29220.089*
C210.2189 (11)1.0542 (9)0.2823 (7)0.071 (3)
C220.1870 (9)0.9558 (10)0.2815 (7)0.072 (3)
H220.10400.95060.27910.086*
C230.2798 (9)0.8647 (8)0.2844 (6)0.060 (3)
H230.26120.79740.27930.072*
C240.8311 (6)0.6359 (6)0.0774 (6)0.053 (2)
H24A0.89360.68820.05340.063*
H24B0.85080.58430.13370.063*
C250.8501 (7)0.5773 (8)0.0164 (7)0.045 (2)
C260.8832 (7)0.6322 (8)0.1193 (8)0.063 (3)
H260.89910.70380.13020.075*
C270.8930 (9)0.5809 (9)0.2076 (8)0.075 (3)
H270.91510.61770.27730.090*
C280.8696 (9)0.4764 (11)0.1896 (9)0.074 (3)
C290.8407 (7)0.4194 (8)0.0905 (9)0.065 (3)
H290.82760.34710.08070.078*
C300.8313 (7)0.4705 (8)0.0046 (7)0.050 (2)
H300.81150.43180.06410.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0464 (3)0.0523 (5)0.0507 (4)0.0017 (3)0.0227 (3)0.0029 (3)
F10.125 (5)0.091 (5)0.086 (4)0.045 (4)0.031 (4)0.009 (3)
F20.132 (5)0.163 (7)0.117 (5)0.043 (4)0.065 (4)0.101 (5)
N10.044 (4)0.049 (5)0.058 (5)0.008 (4)0.016 (4)0.007 (4)
N20.066 (5)0.042 (5)0.073 (5)0.012 (4)0.035 (4)0.001 (4)
N30.053 (4)0.051 (5)0.048 (5)0.006 (4)0.016 (4)0.009 (4)
N40.057 (4)0.051 (6)0.053 (5)0.015 (4)0.021 (4)0.004 (4)
S10.0875 (18)0.065 (2)0.111 (2)0.0242 (16)0.0621 (17)0.0032 (16)
S20.0679 (15)0.072 (2)0.0793 (18)0.0174 (14)0.0469 (14)0.0075 (14)
S30.097 (2)0.066 (2)0.116 (2)0.0275 (16)0.0476 (18)0.0145 (17)
S40.1010 (19)0.064 (2)0.0703 (17)0.0276 (16)0.0475 (16)0.0165 (14)
S50.0689 (15)0.0533 (17)0.0574 (15)0.0083 (13)0.0358 (13)0.0028 (12)
S60.128 (2)0.078 (2)0.090 (2)0.0497 (19)0.0509 (18)0.0119 (16)
C10.045 (5)0.072 (8)0.062 (6)0.003 (5)0.022 (5)0.005 (5)
C20.057 (6)0.040 (6)0.087 (7)0.023 (5)0.025 (5)0.006 (5)
C30.048 (5)0.047 (7)0.053 (6)0.004 (5)0.010 (5)0.005 (5)
C40.077 (7)0.060 (8)0.074 (7)0.010 (6)0.033 (6)0.019 (6)
C50.071 (7)0.133 (12)0.075 (7)0.002 (7)0.044 (6)0.035 (7)
C60.077 (8)0.119 (12)0.080 (8)0.004 (8)0.046 (7)0.008 (8)
C70.082 (8)0.096 (11)0.097 (9)0.011 (7)0.052 (7)0.005 (7)
C80.073 (7)0.068 (8)0.082 (7)0.016 (6)0.035 (6)0.014 (6)
C90.055 (5)0.053 (6)0.037 (5)0.014 (5)0.010 (4)0.005 (4)
C100.054 (5)0.061 (7)0.054 (6)0.022 (5)0.016 (5)0.009 (5)
C110.044 (5)0.055 (7)0.051 (6)0.006 (5)0.022 (5)0.009 (5)
C120.068 (6)0.076 (8)0.061 (7)0.005 (6)0.031 (5)0.021 (6)
C130.101 (9)0.094 (9)0.072 (8)0.034 (7)0.050 (7)0.015 (7)
C140.091 (8)0.090 (9)0.050 (7)0.010 (7)0.032 (6)0.005 (6)
C150.103 (8)0.073 (8)0.056 (7)0.006 (6)0.037 (6)0.015 (6)
C160.078 (7)0.052 (7)0.066 (7)0.000 (5)0.030 (6)0.007 (6)
C170.053 (5)0.075 (8)0.065 (6)0.008 (5)0.025 (5)0.007 (5)
C180.050 (6)0.042 (6)0.040 (5)0.004 (5)0.008 (4)0.001 (4)
C190.057 (6)0.067 (8)0.053 (6)0.008 (6)0.017 (5)0.008 (5)
C200.091 (8)0.054 (8)0.063 (7)0.008 (7)0.014 (6)0.008 (5)
C210.078 (8)0.063 (9)0.056 (6)0.012 (7)0.022 (6)0.004 (6)
C220.055 (6)0.095 (10)0.069 (7)0.002 (7)0.028 (5)0.021 (6)
C230.048 (6)0.066 (7)0.059 (6)0.014 (5)0.014 (5)0.000 (5)
C240.033 (5)0.063 (7)0.063 (6)0.003 (4)0.020 (4)0.008 (5)
C250.035 (5)0.054 (7)0.045 (6)0.000 (5)0.014 (5)0.011 (5)
C260.054 (6)0.061 (7)0.068 (7)0.004 (5)0.018 (6)0.020 (6)
C270.075 (7)0.079 (9)0.065 (7)0.001 (7)0.024 (6)0.011 (6)
C280.058 (7)0.100 (11)0.070 (8)0.012 (7)0.028 (6)0.042 (8)
C290.041 (5)0.045 (7)0.107 (9)0.007 (5)0.022 (6)0.034 (7)
C300.051 (5)0.043 (7)0.050 (6)0.011 (5)0.019 (5)0.010 (5)
Geometric parameters (Å, º) top
Sn1—C172.118 (7)C12—C131.379 (10)
Sn1—C242.134 (6)C12—H120.9300
Sn1—S52.482 (2)C13—C141.336 (11)
Sn1—S22.493 (2)C13—H130.9300
F1—C211.372 (10)C14—C151.377 (11)
F2—C281.352 (10)C14—H140.9300
N1—C11.307 (9)C15—C161.365 (10)
N1—N21.388 (8)C15—H150.9300
N2—C21.347 (9)C16—H160.9300
N2—C31.467 (10)C17—C181.486 (10)
N3—C91.305 (8)C17—H17A0.9700
N3—N41.376 (8)C17—H17B0.9700
N4—C101.370 (9)C18—C231.379 (10)
N4—C111.426 (8)C18—C191.387 (10)
S1—C11.731 (9)C19—C201.395 (11)
S1—C21.741 (9)C19—H190.9300
S2—C11.711 (9)C20—C211.345 (11)
S3—C21.642 (8)C20—H200.9300
S4—C91.711 (8)C21—C221.356 (12)
S4—C101.761 (8)C22—C231.366 (11)
S5—C91.717 (8)C22—H220.9300
S6—C101.631 (9)C23—H230.9300
C3—C41.364 (11)C24—C251.485 (10)
C3—C81.365 (10)C24—H24A0.9700
C4—C51.370 (11)C24—H24B0.9700
C4—H40.9300C25—C261.375 (10)
C5—C61.340 (12)C25—C301.375 (10)
C5—H50.9300C26—C271.397 (11)
C6—C71.364 (13)C26—H260.9300
C6—H60.9300C27—C281.355 (13)
C7—C81.368 (11)C27—H270.9300
C7—H70.9300C28—C291.348 (12)
C8—H80.9300C29—C301.368 (11)
C11—C161.357 (10)C29—H290.9300
C11—C121.368 (10)C30—H300.9300
C17—Sn1—C24133.4 (3)C13—C14—C15120.7 (8)
C17—Sn1—S5109.1 (2)C13—C14—H14119.7
C24—Sn1—S5104.6 (2)C15—C14—H14119.7
C17—Sn1—S2103.5 (2)C16—C15—C14118.5 (8)
C24—Sn1—S2106.2 (2)C16—C15—H15120.8
S5—Sn1—S292.46 (8)C14—C15—H15120.8
C1—N1—N2110.3 (7)C11—C16—C15120.9 (8)
C2—N2—N1118.2 (7)C11—C16—H16119.6
C2—N2—C3125.8 (7)C15—C16—H16119.6
N1—N2—C3115.9 (7)C18—C17—Sn1113.1 (5)
C9—N3—N4111.2 (7)C18—C17—H17A109.0
C10—N4—N3117.8 (7)Sn1—C17—H17A109.0
C10—N4—C11125.4 (7)C18—C17—H17B109.0
N3—N4—C11116.7 (7)Sn1—C17—H17B109.0
C1—S1—C291.1 (4)H17A—C17—H17B107.8
C1—S2—Sn190.0 (3)C23—C18—C19117.2 (8)
C9—S4—C1091.6 (4)C23—C18—C17122.1 (9)
C9—S5—Sn189.7 (3)C19—C18—C17120.8 (9)
N1—C1—S2121.0 (7)C18—C19—C20121.0 (9)
N1—C1—S1113.4 (7)C18—C19—H19119.5
S2—C1—S1125.6 (6)C20—C19—H19119.5
N2—C2—S3129.2 (7)C21—C20—C19118.2 (10)
N2—C2—S1106.8 (6)C21—C20—H20120.9
S3—C2—S1123.8 (5)C19—C20—H20120.9
C4—C3—C8122.1 (9)C20—C21—C22122.9 (10)
C4—C3—N2119.7 (8)C20—C21—F1118.0 (11)
C8—C3—N2118.0 (9)C22—C21—F1118.9 (11)
C3—C4—C5117.9 (9)C21—C22—C23118.3 (9)
C3—C4—H4121.0C21—C22—H22120.9
C5—C4—H4121.0C23—C22—H22120.9
C6—C5—C4121.4 (11)C22—C23—C18122.3 (9)
C6—C5—H5119.3C22—C23—H23118.8
C4—C5—H5119.3C18—C23—H23118.8
C5—C6—C7119.7 (11)C25—C24—Sn1110.3 (5)
C5—C6—H6120.1C25—C24—H24A109.6
C7—C6—H6120.1Sn1—C24—H24A109.6
C6—C7—C8121.0 (10)C25—C24—H24B109.6
C6—C7—H7119.5Sn1—C24—H24B109.6
C8—C7—H7119.5H24A—C24—H24B108.1
C3—C8—C7117.8 (10)C26—C25—C30117.9 (8)
C3—C8—H8121.1C26—C25—C24119.3 (9)
C7—C8—H8121.1C30—C25—C24122.7 (8)
N3—C9—S4113.6 (6)C25—C26—C27120.3 (10)
N3—C9—S5118.8 (7)C25—C26—H26119.8
S4—C9—S5127.6 (5)C27—C26—H26119.8
N4—C10—S6129.8 (7)C28—C27—C26118.7 (10)
N4—C10—S4105.6 (6)C28—C27—H27120.7
S6—C10—S4124.6 (5)C26—C27—H27120.7
C16—C11—C12120.4 (7)C29—C28—F2118.7 (12)
C16—C11—N4121.0 (8)C29—C28—C27122.5 (10)
C12—C11—N4118.2 (8)F2—C28—C27118.8 (11)
C11—C12—C13118.4 (8)C28—C29—C30118.3 (10)
C11—C12—H12120.8C28—C29—H29120.8
C13—C12—H12120.8C30—C29—H29120.8
C14—C13—C12121.1 (8)C29—C30—C25122.2 (8)
C14—C13—H13119.5C29—C30—H30118.9
C12—C13—H13119.5C25—C30—H30118.9

Experimental details

Crystal data
Chemical formula[Sn(C7H6F)2(C8H5N2S3)2]
Mr787.57
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.856 (1), 12.5901 (13), 13.3741 (15)
α, β, γ (°)80.278 (2), 66.686 (1), 77.918 (1)
V3)1634.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.10 × 0.08 × 0.05
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.889, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
8703, 5687, 2469
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.102, 0.83
No. of reflections5687
No. of parameters388
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.57

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Sn1—C172.118 (7)Sn1—S52.482 (2)
Sn1—C242.134 (6)Sn1—S22.493 (2)
C17—Sn1—C24133.4 (3)C24—Sn1—S5104.6 (2)
C17—Sn1—S5109.1 (2)C17—Sn1—S2103.5 (2)
 

Acknowledgements

The authors thank the State Key Laboratory of Crystal Materials (SRT11055HX2), Liaocheng University, China, and the Liaocheng University Foundation (xo9013) for financial support.

References

First citationMa, C.-L., Zhang, J.-H., Tian, G.-R. & Zhang, R.-F. (2005). J. Organomet. Chem. pp. 519–533.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds