metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(μ-2-formyl-6-meth­­oxy­phenolato-1:2κ4O1,O6:O1,O2)copper(II)sodium]-μ-tetra­fluorido­borate-1:1′κ2F:F′]

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gaoting1218@yahoo.com.cn

(Received 16 November 2011; accepted 1 December 2011; online 10 December 2011)

In the title heterodinuclear complex, [CuNa(BF4)(C8H7O3)2]n, the CuII ion is four-coordinated by four O atoms of two 2-formyl-6-meth­oxy­phenolate ligands, giving rise to a square-planar geometry. The Na+ ion is six-coordinated by four O atoms from the two ligands and two F atoms of two tetra­fluoridoborate anions. The tetra­fluoridoborate anion links the Na+ ions, forming a one-dimensional structure along [001]. Three F atoms of the tetra­fluoridoborate anion are disordered over two sets of sites, with an occupancy ratio of 0.790 (11):0.210 (11).

Related literature

For related heterodinuclear complexes, see: Gao et al. (2011[Gao, P., Hou, H.-G., Gao, T., Yang, J.-L. & Yang, Y. (2011). Acta Cryst. E67, m1522.]); Kajiwara et al. (2008[Kajiwara, T., Nakano, M., Takaishi, S. & Yamashita, M. (2008). Inorg. Chem. 47, 8604-8606.]).

[Scheme 1]

Experimental

Crystal data
  • [CuNa(BF4)(C8H7O3)2]

  • Mr = 475.62

  • Monoclinic, P 21 /c

  • a = 9.932 (2) Å

  • b = 19.349 (4) Å

  • c = 9.940 (2) Å

  • β = 105.16 (3)°

  • V = 1843.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.779, Tmax = 0.820

  • 17729 measured reflections

  • 4201 independent reflections

  • 2278 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.143

  • S = 1.04

  • 4201 reflections

  • 292 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.888 (3)
Cu1—O3 1.929 (3)
Cu1—O5 1.889 (3)
Cu1—O6 1.936 (3)
Na1—O1 2.615 (3)
Na1—O2 2.377 (3)
Na1—O4 2.614 (4)
Na1—O5 2.370 (3)
Na1—F1 2.215 (7)
Na1—F3′ 2.344 (17)
Na1—F4i 2.243 (4)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Orthovanillin is a commercial ligand that can yeild heterodinuclear 3d-4f complexes with two different coordination sites; 3d ions have a marked affinity for the inner O2O2 site, whereas 4f ions prefer the larger outer O2O2 coordination site (Kajiwara et al., 2008). Recently, we were interested in the nature of the products obtained by reacting a 3d complex with alkali metal ions (Gao et al., 2011). In this paper we reacted a Cu complex with sodium tetrafluoridoborate to yield a heterodinuclear complex. As shown in Fig. 1, the CuII ion is four-coordinated by two aldehyde O atoms and two phenolate O atoms from two orthovanillin ligands (Table 1). The CuII ion is inserted to inner cavity in a square-planar geometry. The Na+ ion is ligated by two phenolate O atoms, two methoxyl O atoms and two F atoms from two tetrafluoridoborate anions. The CuII and Na+ ions are bridged by the phenolate O atoms.

Related literature top

For related heterodinuclear complexes, see: Gao et al. (2011); Kajiwara et al. (2008).

Experimental top

To a solution of o-vanillin (0.046 g, 0.20 mmol) in dichloromethane (5 ml) was added to a solution of copper(II) acetate monohydrate (0.040 g, 0.20 mmol) and sodium tetrafluoridoborate (0.034 g, 0.20 mmol) in ethanol (5 ml). The mixture was stirred, heated under reflux (30 min) and then allowed to cool to room temperature (yield: 70%). The crystals suitable for X-ray determination were obtained by slow diffusion of diethylether into the solution for one week. Analysis, calculated for C16H14BCuF4NaO6: C 40.40, H 2.97%; found: C 40.38, H 2.98%.

Refinement top

Three F atoms were disordered each in two positions with an occupancy factors of 0.790 (11) for F1, F2, F3 and 0.210 (11) for F1', F2', F3'. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic and aldehyde) and 0.96 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the 30% probability displacement ellipsoids. [Symmetry code: (i) x, 3/2-y, 1/2+z.]
catena-Poly[[bis(µ-2-formyl-6-methoxyphenolato- 1:2κ4O1,O6:O1,O2)copper(II)sodium]- µ-tetrafluoridoborate-1:1'κ2F:F'] top
Crystal data top
[CuNa(BF4)(C8H7O3)2]F(000) = 956
Mr = 475.62Dx = 1.714 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9827 reflections
a = 9.932 (2) Åθ = 3.0–27.5°
b = 19.349 (4) ŵ = 1.28 mm1
c = 9.940 (2) ÅT = 293 K
β = 105.16 (3)°Block, colorless
V = 1843.7 (7) Å30.21 × 0.18 × 0.16 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4201 independent reflections
Radiation source: fine-focus sealed tube2278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.779, Tmax = 0.820k = 2525
17729 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0582P)2]
where P = (Fo2 + 2Fc2)/3
4201 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.50 e Å3
30 restraintsΔρmin = 0.34 e Å3
Crystal data top
[CuNa(BF4)(C8H7O3)2]V = 1843.7 (7) Å3
Mr = 475.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.932 (2) ŵ = 1.28 mm1
b = 19.349 (4) ÅT = 293 K
c = 9.940 (2) Å0.21 × 0.18 × 0.16 mm
β = 105.16 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4201 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2278 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.820Rint = 0.100
17729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06130 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
4201 reflectionsΔρmin = 0.34 e Å3
292 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F1'0.821 (3)0.8431 (15)0.453 (4)0.135 (10)0.210 (11)
F2'0.979 (4)0.8027 (19)0.428 (4)0.174 (14)0.210 (11)
F3'0.874 (2)0.7798 (9)0.6030 (15)0.075 (6)0.210 (11)
F10.7789 (9)0.8066 (5)0.5476 (9)0.144 (3)0.790 (11)
F20.8679 (9)0.8364 (4)0.3784 (7)0.132 (3)0.790 (11)
F30.9995 (6)0.7795 (3)0.5612 (7)0.131 (3)0.790 (11)
F40.8288 (4)0.72587 (18)0.4087 (4)0.1037 (13)
B10.8662 (8)0.7866 (3)0.4740 (7)0.0628 (17)
C11.1275 (4)0.9403 (3)0.8798 (5)0.0456 (11)
C21.2649 (5)0.9573 (3)0.9383 (5)0.0550 (13)
H21.33100.92240.96560.066*
C31.3060 (5)1.0264 (3)0.9568 (5)0.0615 (14)
H31.39911.03720.99710.074*
C41.2118 (5)1.0780 (3)0.9166 (5)0.0549 (13)
H41.24121.12380.92660.066*
C51.0682 (4)1.0625 (2)0.8591 (4)0.0427 (11)
C61.0246 (4)0.9926 (2)0.8378 (4)0.0402 (10)
C70.9744 (5)1.1182 (3)0.8252 (4)0.0503 (12)
H71.01381.16210.83620.060*
C81.1712 (5)0.8188 (3)0.8887 (6)0.0687 (15)
H8A1.24270.82500.84090.103*
H8B1.12310.77610.86000.103*
H8C1.21270.81780.98750.103*
C90.4449 (5)0.8729 (3)0.6389 (5)0.0559 (13)
C100.3042 (5)0.8629 (3)0.5859 (5)0.0650 (15)
H100.27000.81810.56870.078*
C110.2110 (5)0.9186 (3)0.5569 (5)0.0659 (16)
H110.11600.91070.52120.079*
C120.2593 (5)0.9832 (3)0.5809 (5)0.0621 (15)
H120.19711.02010.56270.075*
C130.4038 (5)0.9963 (3)0.6338 (4)0.0477 (12)
C140.4998 (4)0.9407 (2)0.6613 (4)0.0435 (11)
C150.4493 (5)1.0659 (3)0.6616 (5)0.0598 (14)
H150.37931.09920.64350.072*
C160.5011 (7)0.7525 (3)0.6450 (9)0.120 (3)
H16A0.43280.74110.69410.180*
H16B0.58040.72250.67530.180*
H16C0.46140.74650.54670.180*
Cu10.73679 (5)1.03129 (3)0.74231 (6)0.0460 (2)
Na10.80631 (19)0.85912 (9)0.75096 (19)0.0555 (5)
O11.0749 (3)0.87466 (17)0.8560 (3)0.0542 (8)
O20.8957 (3)0.97361 (15)0.7830 (3)0.0468 (8)
O30.8430 (3)1.11575 (16)0.7817 (3)0.0538 (8)
O40.5441 (3)0.82251 (18)0.6728 (4)0.0732 (11)
O50.6356 (3)0.94771 (15)0.7049 (3)0.0482 (8)
O60.5707 (3)1.08808 (17)0.7071 (3)0.0589 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1'0.144 (13)0.108 (12)0.148 (14)0.046 (9)0.031 (9)0.023 (9)
F2'0.165 (16)0.181 (17)0.184 (17)0.004 (10)0.061 (10)0.001 (10)
F3'0.108 (11)0.074 (9)0.043 (7)0.021 (8)0.021 (7)0.014 (6)
F10.160 (6)0.160 (6)0.149 (6)0.009 (5)0.106 (5)0.052 (5)
F20.175 (6)0.118 (5)0.116 (4)0.009 (4)0.058 (4)0.059 (4)
F30.110 (5)0.084 (4)0.151 (6)0.006 (3)0.051 (4)0.006 (3)
F40.133 (3)0.070 (3)0.095 (3)0.002 (2)0.008 (2)0.034 (2)
B10.083 (4)0.038 (3)0.068 (4)0.008 (3)0.020 (4)0.009 (3)
C10.044 (2)0.049 (3)0.044 (2)0.003 (2)0.010 (2)0.006 (2)
C20.047 (3)0.063 (4)0.053 (3)0.006 (2)0.010 (2)0.003 (3)
C30.041 (2)0.082 (4)0.061 (3)0.009 (3)0.014 (2)0.006 (3)
C40.050 (3)0.063 (4)0.052 (3)0.018 (3)0.015 (2)0.010 (3)
C50.045 (2)0.046 (3)0.037 (2)0.006 (2)0.013 (2)0.001 (2)
C60.043 (2)0.042 (3)0.035 (2)0.007 (2)0.0077 (19)0.0005 (19)
C70.063 (3)0.039 (3)0.048 (3)0.008 (2)0.012 (2)0.005 (2)
C80.073 (3)0.052 (3)0.079 (4)0.022 (3)0.017 (3)0.008 (3)
C90.047 (3)0.062 (4)0.055 (3)0.011 (2)0.007 (2)0.006 (3)
C100.055 (3)0.074 (4)0.069 (3)0.018 (3)0.021 (3)0.012 (3)
C110.042 (3)0.095 (5)0.060 (3)0.014 (3)0.012 (2)0.000 (3)
C120.041 (3)0.089 (5)0.054 (3)0.007 (3)0.008 (2)0.010 (3)
C130.046 (2)0.055 (3)0.040 (2)0.003 (2)0.009 (2)0.001 (2)
C140.043 (2)0.050 (3)0.036 (2)0.002 (2)0.007 (2)0.005 (2)
C150.049 (3)0.064 (4)0.062 (3)0.014 (3)0.007 (2)0.002 (3)
C160.079 (4)0.054 (4)0.212 (8)0.016 (3)0.010 (5)0.023 (5)
Cu10.0427 (3)0.0384 (3)0.0514 (3)0.0002 (3)0.0023 (2)0.0014 (3)
Na10.0595 (10)0.0392 (11)0.0616 (11)0.0008 (9)0.0046 (9)0.0018 (9)
O10.0483 (17)0.041 (2)0.068 (2)0.0085 (15)0.0063 (15)0.0036 (16)
O20.0418 (15)0.0359 (17)0.0562 (18)0.0042 (14)0.0011 (14)0.0001 (15)
O30.0541 (19)0.042 (2)0.058 (2)0.0009 (15)0.0031 (16)0.0009 (15)
O40.055 (2)0.045 (2)0.110 (3)0.0091 (17)0.0063 (19)0.014 (2)
O50.0379 (15)0.0449 (19)0.0561 (19)0.0041 (13)0.0019 (14)0.0034 (15)
O60.0485 (18)0.049 (2)0.074 (2)0.0037 (16)0.0064 (17)0.0013 (18)
Geometric parameters (Å, º) top
F1'—B11.18 (3)C10—C111.400 (7)
F2'—B11.35 (3)C10—H100.9300
F3'—B11.270 (16)C11—C121.339 (8)
F1—B11.331 (9)C11—H110.9300
F2—B11.357 (9)C12—C131.416 (6)
F3—B11.387 (8)C12—H120.9300
F4—B11.346 (7)C13—C141.415 (6)
C1—O11.370 (5)C13—C151.425 (7)
C1—C21.376 (6)C14—O51.311 (5)
C1—C61.422 (6)C15—O61.248 (5)
C2—C31.397 (7)C15—H150.9300
C2—H20.9300C16—O41.426 (6)
C3—C41.354 (7)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.423 (6)C16—H16C0.9600
C4—H40.9300Cu1—O21.888 (3)
C5—C71.407 (6)Cu1—O31.929 (3)
C5—C61.418 (6)Cu1—O51.889 (3)
C6—O21.306 (5)Cu1—O61.936 (3)
C7—O31.263 (5)Cu1—Na13.399 (2)
C7—H70.9300Na1—O12.615 (3)
C8—O11.423 (5)Na1—O22.377 (3)
C8—H8A0.9600Na1—O42.614 (4)
C8—H8B0.9600Na1—O52.370 (3)
C8—H8C0.9600Na1—F12.215 (7)
C9—O41.364 (6)Na1—F3'2.344 (17)
C9—C101.373 (6)Na1—F4i2.243 (4)
C9—C141.415 (6)
B1—F3'—Na1127.8 (12)O6—C15—H15115.7
B1—F1—Na1133.9 (6)C13—C15—H15115.7
B1—F4—Na1ii160.3 (4)O4—C16—H16A109.5
F1'—B1—F3'101 (2)O4—C16—H16B109.5
F1'—B1—F2'92 (2)H16A—C16—H16B109.5
F3'—B1—F2'121.7 (19)O4—C16—H16C109.5
F1'—B1—F4132.8 (15)H16A—C16—H16C109.5
F3'—B1—F4109.5 (10)H16B—C16—H16C109.5
F4—B1—F2'100.8 (15)O2—Cu1—O584.72 (13)
F1—B1—F2107.9 (7)O2—Cu1—O394.30 (13)
F4—B1—F2109.6 (6)O5—Cu1—O3179.02 (12)
F1—B1—F3109.8 (7)O2—Cu1—O6177.29 (14)
F4—B1—F3108.3 (5)O5—Cu1—O693.78 (13)
F2—B1—F3108.9 (6)O3—Cu1—O687.19 (13)
F1—B1—F4112.4 (7)O2—Cu1—Na142.47 (9)
O1—C1—C2125.9 (4)O5—Cu1—Na142.27 (9)
O1—C1—C6113.4 (4)O3—Cu1—Na1136.76 (10)
C2—C1—C6120.7 (5)O6—Cu1—Na1135.94 (11)
C1—C2—C3120.5 (5)F1—Na1—F4i105.5 (3)
C1—C2—H2119.7F1—Na1—F3'27.6 (4)
C3—C2—H2119.7F4i—Na1—F3'88.1 (4)
C4—C3—C2120.7 (4)F1—Na1—O5104.2 (3)
C4—C3—H3119.6F4i—Na1—O5126.93 (16)
C2—C3—H3119.6F3'—Na1—O5131.4 (5)
C3—C4—C5120.4 (5)F1—Na1—O2120.2 (3)
C3—C4—H4119.8F4i—Na1—O2128.62 (14)
C5—C4—H4119.8F3'—Na1—O2122.4 (5)
C7—C5—C6122.5 (4)O5—Na1—O264.85 (11)
C7—C5—C4117.8 (4)F1—Na1—O474.3 (2)
C6—C5—C4119.7 (4)F4i—Na1—O485.33 (15)
O2—C6—C5124.0 (4)F3'—Na1—O493.7 (6)
O2—C6—C1118.2 (4)O5—Na1—O462.07 (11)
C5—C6—C1117.8 (4)O2—Na1—O4126.91 (13)
O3—C7—C5127.8 (4)F1—Na1—O1106.6 (2)
O3—C7—H7116.1F4i—Na1—O184.28 (14)
C5—C7—H7116.1F3'—Na1—O183.9 (6)
O1—C8—H8A109.5O5—Na1—O1126.69 (12)
O1—C8—H8B109.5O2—Na1—O162.17 (10)
H8A—C8—H8B109.5O4—Na1—O1169.41 (13)
O1—C8—H8C109.5F1—Na1—Cu1116.8 (3)
H8A—C8—H8C109.5F4i—Na1—Cu1135.96 (13)
H8B—C8—H8C109.5F3'—Na1—Cu1135.7 (4)
O4—C9—C10126.1 (5)O5—Na1—Cu132.42 (7)
O4—C9—C14113.6 (4)O2—Na1—Cu132.44 (7)
C10—C9—C14120.2 (5)O4—Na1—Cu194.48 (10)
C9—C10—C11121.4 (5)O1—Na1—Cu194.40 (9)
C9—C10—H10119.3C1—O1—C8117.4 (4)
C11—C10—H10119.3C1—O1—Na1118.6 (2)
C12—C11—C10119.7 (5)C8—O1—Na1124.0 (3)
C12—C11—H11120.1C6—O2—Cu1126.6 (3)
C10—C11—H11120.1C6—O2—Na1127.5 (3)
C11—C12—C13120.9 (5)Cu1—O2—Na1105.09 (12)
C11—C12—H12119.5C7—O3—Cu1124.2 (3)
C13—C12—H12119.5C9—O4—C16118.2 (4)
C14—C13—C12120.1 (5)C9—O4—Na1118.6 (3)
C14—C13—C15121.2 (4)C16—O4—Na1122.6 (3)
C12—C13—C15118.7 (5)C14—O5—Cu1127.0 (3)
O5—C14—C9117.9 (4)C14—O5—Na1127.7 (3)
O5—C14—C13124.6 (4)Cu1—O5—Na1105.31 (13)
C9—C14—C13117.5 (4)C15—O6—Cu1124.6 (3)
O6—C15—C13128.5 (5)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[CuNa(BF4)(C8H7O3)2]
Mr475.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.932 (2), 19.349 (4), 9.940 (2)
β (°) 105.16 (3)
V3)1843.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.21 × 0.18 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.779, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
17729, 4201, 2278
Rint0.100
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.143, 1.04
No. of reflections4201
No. of parameters292
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.34

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O21.888 (3)Na1—O42.614 (4)
Cu1—O31.929 (3)Na1—O52.370 (3)
Cu1—O51.889 (3)Na1—F12.215 (7)
Cu1—O61.936 (3)Na1—F3'2.344 (17)
Na1—O12.615 (3)Na1—F4i2.243 (4)
Na1—O22.377 (3)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from Heilongjiang Province (11551334) and the Students Innovation Programme of Heilongjiang University (CX11073).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGao, P., Hou, H.-G., Gao, T., Yang, J.-L. & Yang, Y. (2011). Acta Cryst. E67, m1522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKajiwara, T., Nakano, M., Takaishi, S. & Yamashita, M. (2008). Inorg. Chem. 47, 8604–8606.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds