metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­[4-(4H-1,2,4-triazol-4-yl)benzoato-κN1]nickel(II) deca­hydrate

aDepartment of Preventive Medicine, School of Public Health, Jilin University, Changchun 130021, People's Republic of China, bDepartment of Hematology, the First Hospital of Jilin University, Changchun 130021, People's Republic of China, and cSchool of Public Health, Jilin University, Changchun 130021, People's Republic of China
*Correspondence e-mail: doctorwanggj@163.com

(Received 19 November 2011; accepted 28 November 2011; online 3 December 2011)

In the title compound, [Ni(C9H6N3O2)2(H2O)4]·10H2O, the NiII ion lies on a twofold rotation axis and displays a slightly distorted octa­hedral geometry defined by two N atoms from two monodentate 4-(1,2,4-triazol-4-yl)benzoate ligands and four water mol­ecules, two of which also lie on the twofold rotation axis. In the crystal, the complex mol­ecules and uncoordinated water mol­ecules are linked via inter­molecular O—H⋯N and O—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network. ππ inter­actions between the benzene rings provide additional stability of the crystal packing [centroid–centroid distance = 3.792 (2) Å].

Related literature

For general background to the applications and structures of metal coordination polymers, see: Rowsell & Yaghi (2005[Rowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670-4679.]); Su et al. (2010[Su, S.-Q., Guo, Z.-Y., Li, G.-H., Deng, R.-P., Song, S.-Y., Qin, C., Pan, C.-L., Guo, H.-D., Gao, F., Wang, S. & Zhang, H.-J. (2010). Dalton Trans. 39, 9123-9130.]); Wang et al. (2009[Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568-m1569.]); Zhang & Chen (2008[Zhang, J.-P. & Chen, X.-M. (2008). J. Am. Chem. Soc. 130, 6010-6017.]). For a related structure, see: Cui & Zhao (2011[Cui, F.-H. & Zhao, P.-Z. (2011). Acta Cryst. E67, m1341-m1342.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H6N3O2)2(H2O)4]·10H2O

  • Mr = 687.25

  • Monoclinic, C 2/c

  • a = 25.840 (3) Å

  • b = 7.8664 (8) Å

  • c = 16.8013 (17) Å

  • β = 112.712 (1)°

  • V = 3150.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.83, Tmax = 0.90

  • 8290 measured reflections

  • 3079 independent reflections

  • 2273 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.119

  • S = 1.04

  • 3079 reflections

  • 238 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.84 (2) 1.93 (2) 2.751 (3) 167 (4)
O4—H4A⋯O1ii 0.84 (2) 1.86 (2) 2.692 (3) 172 (4)
O5—H5A⋯O8 0.82 (2) 1.94 (2) 2.752 (3) 169 (4)
O5—H5B⋯O7 0.83 (2) 1.84 (2) 2.670 (3) 171 (4)
O6—H6A⋯O7 0.82 (2) 1.95 (2) 2.773 (4) 178 (4)
O6—H6B⋯O10 0.84 (2) 1.91 (3) 2.747 (4) 177 (6)
O7—H7A⋯O2iii 0.84 (2) 1.84 (2) 2.674 (3) 170 (4)
O7—H7B⋯O9iv 0.84 (2) 1.88 (2) 2.715 (4) 171 (4)
O8—H8A⋯N3v 0.82 (2) 2.16 (2) 2.943 (3) 160 (4)
O8—H8B⋯O2vi 0.85 (2) 1.92 (2) 2.763 (3) 175 (4)
O9—H9A⋯O1ii 0.84 (2) 1.93 (2) 2.751 (3) 169 (4)
O9—H9B⋯O8 0.85 (2) 1.93 (2) 2.757 (3) 164 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y+1, z; (v) [x, -y+1, z-{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the chemists have devoted themselves to design and synthesize coordination polymers, not only due to their potential applications in the realm of gas adsorption and separation, catalysis, magnetism, luminescence, host–guest chemistry etc, but also for their aesthetic and often complicated architectures and topologies (Su et al., 2010; Wang et al., 2009). It is well known that carboxylic acids are excellent building blocks for the construction of coordination polymers because the carboxylate groups may induce core aggregation and link these discrete clusters into an extended framework by virtue of its bridging ability (Rowsell & Yaghi, 2005; Zhang & Chen, 2008). Taking these into account, we chose a carboxylate ligand, 4-(1,2,4-triazol-4-yl)benzoic acid, generating the title compound, which is reported here.

In the title compound, the NiII ion lies on a twofold rotation axis and displays a slightly distorted octahedral geometry defined by two N atoms from two 4-(1,2,4-triazol-4-yl)benzoate ligands and four water molecules, two of which lie on the twofold rotation axis (Fig. 1). The bond lengths and angles are in a normal range (Cui & Zhao, 2011). In the crystal, the complex molecules and uncoordinated water molecules are linked via intermolecular O—H···N and O—H···O hydrogen bonds, forming a three-dimensional supramolecular network (Fig. 2). ππ interactions between the benzene rings, with a centroid–centroid distance of 3.792 (2) Å, provide additional stability of the crystal packing.

Related literature top

For general background to the applications and structures of metal coordination polymers, see: Rowsell & Yaghi (2005); Su et al. (2010); Wang et al. (2009); Zhang & Chen (2008). For a related structure, see: Cui & Zhao (2011).

Experimental top

The synthesis was performed under hydrothermal conditions. A mixture of Ni(CH3COO)2.4H2O (0.2 mmol, 0.050 g), 4-(1,2,4-triazol-4-yl)benzoic acid (0.4 mmol, 0.075 g), NaOH (0.4 mmol, 0.016 g) and H2O (15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h. After the mixture was cooled to 298 K, pink crystals of the title compound were obtained from the reaction.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms were located in a difference Fourier map and refined with O—H distance restraints of 0.85 (2) Å and with Uiso(H) = 0.054 Å2.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structute of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 1-x, y, 3/2-z.]
[Figure 2] Fig. 2. View of the three-dimensional structure of the title compound built by hydrogen bonds (dashed lines).
Tetraaquabis[4-(4H-1,2,4-triazol-4-yl)benzoato-κN1]nickel(II) decahydrate top
Crystal data top
[Ni(C9H6N3O2)2(H2O)4]·10H2OF(000) = 1448
Mr = 687.25Dx = 1.449 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3079 reflections
a = 25.840 (3) Åθ = 1.0–25.9°
b = 7.8664 (8) ŵ = 0.70 mm1
c = 16.8013 (17) ÅT = 293 K
β = 112.712 (1)°Block, pink
V = 3150.3 (6) Å30.22 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3079 independent reflections
Radiation source: fine-focus sealed tube2273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 25.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3131
Tmin = 0.83, Tmax = 0.90k = 69
8290 measured reflectionsl = 2017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0451P)2 + 2.4003P]
where P = (Fo2 + 2Fc2)/3
3079 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.55 e Å3
14 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Ni(C9H6N3O2)2(H2O)4]·10H2OV = 3150.3 (6) Å3
Mr = 687.25Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.840 (3) ŵ = 0.70 mm1
b = 7.8664 (8) ÅT = 293 K
c = 16.8013 (17) Å0.22 × 0.20 × 0.19 mm
β = 112.712 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3079 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2273 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.90Rint = 0.057
8290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04914 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.55 e Å3
3079 reflectionsΔρmin = 0.63 e Å3
238 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.59822 (8)0.75000.01918 (19)
C10.83480 (12)0.4306 (4)1.04342 (19)0.0186 (7)
C20.79863 (12)0.3835 (4)0.96082 (19)0.0200 (7)
H20.81260.32360.92570.024*
C30.74225 (13)0.4242 (4)0.93015 (19)0.0205 (7)
H30.71820.38900.87550.025*
C40.72201 (12)0.5180 (4)0.98169 (19)0.0163 (7)
C50.75769 (13)0.5702 (4)1.0635 (2)0.0209 (7)
H50.74410.63511.09750.025*
C60.81360 (12)0.5246 (4)1.0939 (2)0.0194 (7)
H60.83740.55751.14910.023*
C70.89538 (13)0.3748 (4)1.0778 (2)0.0196 (7)
C80.62534 (12)0.5537 (4)0.86818 (19)0.0192 (7)
H80.63340.52220.82090.023*
C90.63313 (13)0.6112 (4)0.9971 (2)0.0231 (7)
H90.64800.62751.05650.028*
N10.66358 (10)0.5587 (3)0.95053 (15)0.0170 (6)
N20.57580 (10)0.5986 (3)0.86385 (15)0.0193 (6)
N30.58082 (11)0.6353 (4)0.94733 (16)0.0230 (7)
O10.92384 (9)0.3974 (3)1.15821 (13)0.0218 (5)
O20.91424 (9)0.3070 (3)1.02773 (14)0.0302 (6)
O30.50000.8594 (4)0.75000.0294 (8)
O40.50000.3349 (4)0.75000.0228 (7)
O50.54970 (9)0.5800 (3)0.67831 (14)0.0211 (5)
O60.70477 (12)0.6665 (4)0.74921 (19)0.0430 (7)
O70.60752 (10)0.8271 (3)0.64103 (15)0.0280 (6)
O80.52147 (10)0.3127 (3)0.56372 (15)0.0255 (6)
O90.60244 (10)0.1461 (3)0.69923 (16)0.0315 (6)
O100.69525 (11)0.3274 (4)0.70686 (17)0.0363 (7)
H3A0.5254 (13)0.921 (4)0.784 (2)0.054*
H4A0.5231 (14)0.265 (4)0.783 (2)0.054*
H5A0.5411 (17)0.510 (4)0.639 (2)0.054*
H5B0.5653 (16)0.656 (4)0.661 (3)0.054*
H6A0.6758 (12)0.715 (5)0.718 (2)0.054*
H6B0.7026 (18)0.562 (3)0.738 (3)0.054*
H7A0.6022 (17)0.833 (5)0.5885 (14)0.054*
H7B0.6041 (18)0.929 (3)0.654 (3)0.054*
H8A0.5304 (17)0.319 (6)0.5218 (19)0.054*
H8B0.4879 (10)0.279 (5)0.550 (3)0.054*
H9A0.5962 (17)0.146 (6)0.7445 (18)0.054*
H9B0.5732 (12)0.191 (5)0.662 (2)0.054*
H10A0.7237 (12)0.268 (5)0.727 (2)0.054*
H10B0.6695 (14)0.275 (5)0.712 (3)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0147 (3)0.0216 (3)0.0196 (3)0.0000.0049 (2)0.000
C10.0117 (15)0.0238 (18)0.0189 (16)0.0005 (13)0.0044 (13)0.0017 (14)
C20.0179 (17)0.0281 (19)0.0144 (16)0.0013 (14)0.0069 (13)0.0005 (14)
C30.0155 (16)0.0305 (19)0.0121 (15)0.0005 (14)0.0014 (12)0.0006 (14)
C40.0105 (15)0.0197 (16)0.0172 (16)0.0021 (13)0.0035 (13)0.0023 (14)
C50.0188 (17)0.0258 (19)0.0174 (16)0.0041 (14)0.0062 (13)0.0042 (14)
C60.0153 (16)0.0223 (17)0.0170 (16)0.0007 (13)0.0024 (13)0.0029 (14)
C70.0145 (16)0.0217 (18)0.0214 (17)0.0004 (13)0.0057 (14)0.0031 (15)
C80.0144 (16)0.0263 (18)0.0148 (15)0.0000 (13)0.0034 (13)0.0012 (14)
C90.0170 (17)0.037 (2)0.0146 (16)0.0034 (15)0.0055 (13)0.0029 (15)
N10.0123 (13)0.0229 (15)0.0136 (13)0.0014 (11)0.0026 (10)0.0014 (11)
N20.0151 (13)0.0272 (15)0.0155 (13)0.0008 (12)0.0058 (11)0.0021 (12)
N30.0144 (14)0.0370 (17)0.0149 (14)0.0017 (12)0.0026 (11)0.0043 (13)
O10.0167 (11)0.0254 (12)0.0180 (11)0.0023 (10)0.0010 (9)0.0010 (10)
O20.0169 (13)0.0498 (17)0.0221 (13)0.0123 (12)0.0056 (10)0.0020 (12)
O30.0210 (19)0.0179 (18)0.032 (2)0.0000.0087 (15)0.000
O40.0194 (18)0.0150 (17)0.0248 (19)0.0000.0015 (14)0.000
O50.0195 (12)0.0248 (13)0.0213 (12)0.0055 (10)0.0106 (10)0.0034 (10)
O60.0341 (17)0.0381 (17)0.0489 (18)0.0012 (14)0.0073 (14)0.0007 (15)
O70.0318 (14)0.0289 (14)0.0249 (13)0.0017 (12)0.0126 (12)0.0015 (12)
O80.0190 (13)0.0378 (15)0.0209 (12)0.0077 (11)0.0090 (10)0.0023 (11)
O90.0255 (14)0.0388 (15)0.0315 (15)0.0064 (12)0.0123 (12)0.0047 (13)
O100.0282 (16)0.0390 (17)0.0373 (16)0.0016 (12)0.0080 (13)0.0061 (13)
Geometric parameters (Å, º) top
Ni1—O32.054 (3)C8—H80.9300
Ni1—O42.071 (3)C9—N31.300 (4)
Ni1—O52.077 (2)C9—N11.370 (4)
Ni1—N22.145 (2)C9—H90.9300
C1—C61.387 (4)N2—N31.388 (3)
C1—C21.391 (4)O3—H3A0.836 (18)
C1—C71.510 (4)O4—H4A0.840 (18)
C2—C31.382 (4)O5—H5A0.822 (19)
C2—H20.9300O5—H5B0.835 (19)
C3—C41.385 (4)O6—H6A0.824 (19)
C3—H30.9300O6—H6B0.838 (19)
C4—C51.389 (4)O7—H7A0.840 (18)
C4—N11.430 (4)O7—H7B0.844 (19)
C5—C61.381 (4)O8—H8A0.823 (18)
C5—H50.9300O8—H8B0.848 (19)
C6—H60.9300O9—H9A0.836 (19)
C7—O21.243 (4)O9—H9B0.847 (19)
C7—O11.277 (4)O10—H10A0.824 (19)
C8—N21.303 (4)O10—H10B0.817 (19)
C8—N11.355 (4)
O3—Ni1—O4180.000 (2)C5—C6—C1121.1 (3)
O3—Ni1—O5i93.97 (6)C5—C6—H6119.5
O4—Ni1—O5i86.03 (7)C1—C6—H6119.5
O3—Ni1—O593.97 (7)O2—C7—O1124.0 (3)
O4—Ni1—O586.03 (7)O2—C7—C1119.0 (3)
O5i—Ni1—O5172.07 (13)O1—C7—C1116.9 (3)
O3—Ni1—N289.93 (7)N2—C8—N1111.3 (3)
O4—Ni1—N290.07 (7)N2—C8—H8124.4
O5i—Ni1—N292.24 (9)N1—C8—H8124.4
O5—Ni1—N287.77 (9)N3—C9—N1111.2 (3)
O3—Ni1—N2i89.93 (7)N3—C9—H9124.4
O4—Ni1—N2i90.07 (7)N1—C9—H9124.4
O5i—Ni1—N2i87.77 (9)C8—N1—C9103.8 (3)
O5—Ni1—N2i92.24 (9)C8—N1—C4128.2 (3)
N2—Ni1—N2i179.85 (16)C9—N1—C4128.1 (2)
C6—C1—C2118.7 (3)C8—N2—N3107.1 (2)
C6—C1—C7121.1 (3)C8—N2—Ni1126.1 (2)
C2—C1—C7120.1 (3)N3—N2—Ni1126.73 (18)
C3—C2—C1121.0 (3)C9—N3—N2106.7 (2)
C3—C2—H2119.5Ni1—O3—H3A125 (3)
C1—C2—H2119.5Ni1—O4—H4A131 (3)
C2—C3—C4119.3 (3)Ni1—O5—H5A118 (3)
C2—C3—H3120.4Ni1—O5—H5B130 (3)
C4—C3—H3120.4H5A—O5—H5B103 (4)
C3—C4—C5120.6 (3)H6A—O6—H6B110 (4)
C3—C4—N1119.4 (3)H7A—O7—H7B103 (4)
C5—C4—N1120.0 (3)H8A—O8—H8B112 (4)
C6—C5—C4119.3 (3)H9A—O9—H9B103 (4)
C6—C5—H5120.4H10A—O10—H10B108 (4)
C4—C5—H5120.4
C6—C1—C2—C32.1 (5)C3—C4—N1—C817.2 (5)
C7—C1—C2—C3175.9 (3)C5—C4—N1—C8163.8 (3)
C1—C2—C3—C42.0 (5)C3—C4—N1—C9162.5 (3)
C2—C3—C4—C50.3 (5)C5—C4—N1—C916.5 (5)
C2—C3—C4—N1179.3 (3)N1—C8—N2—N30.1 (4)
C3—C4—C5—C61.3 (5)N1—C8—N2—Ni1176.2 (2)
N1—C4—C5—C6177.7 (3)O3—Ni1—N2—C8109.7 (3)
C4—C5—C6—C11.2 (5)O4—Ni1—N2—C870.3 (3)
C2—C1—C6—C50.4 (5)O5i—Ni1—N2—C8156.4 (3)
C7—C1—C6—C5177.5 (3)O5—Ni1—N2—C815.7 (3)
C6—C1—C7—O2172.3 (3)O3—Ni1—N2—N375.0 (2)
C2—C1—C7—O29.8 (5)O4—Ni1—N2—N3105.0 (2)
C6—C1—C7—O19.3 (5)O5i—Ni1—N2—N319.0 (3)
C2—C1—C7—O1168.6 (3)O5—Ni1—N2—N3169.0 (3)
N2—C8—N1—C90.1 (4)N1—C9—N3—N20.4 (4)
N2—C8—N1—C4179.7 (3)C8—N2—N3—C90.3 (4)
N3—C9—N1—C80.3 (4)Ni1—N2—N3—C9176.4 (2)
N3—C9—N1—C4179.5 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1ii0.84 (2)1.93 (2)2.751 (3)167 (4)
O4—H4A···O1iii0.84 (2)1.86 (2)2.692 (3)172 (4)
O5—H5A···O80.82 (2)1.94 (2)2.752 (3)169 (4)
O5—H5B···O70.83 (2)1.84 (2)2.670 (3)171 (4)
O6—H6A···O70.82 (2)1.95 (2)2.773 (4)178 (4)
O6—H6B···O100.84 (2)1.91 (3)2.747 (4)177 (6)
O7—H7A···O2iv0.84 (2)1.84 (2)2.674 (3)170 (4)
O7—H7B···O9v0.84 (2)1.88 (2)2.715 (4)171 (4)
O8—H8A···N3vi0.82 (2)2.16 (2)2.943 (3)160 (4)
O8—H8B···O2vii0.85 (2)1.92 (2)2.763 (3)175 (4)
O9—H9A···O1iii0.84 (2)1.93 (2)2.751 (3)169 (4)
O9—H9B···O80.85 (2)1.93 (2)2.757 (3)164 (4)
Symmetry codes: (ii) x+3/2, y+3/2, z+2; (iii) x+3/2, y+1/2, z+2; (iv) x+3/2, y+1/2, z+3/2; (v) x, y+1, z; (vi) x, y+1, z1/2; (vii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C9H6N3O2)2(H2O)4]·10H2O
Mr687.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.840 (3), 7.8664 (8), 16.8013 (17)
β (°) 112.712 (1)
V3)3150.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.22 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.83, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
8290, 3079, 2273
Rint0.057
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.119, 1.04
No. of reflections3079
No. of parameters238
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.63

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.84 (2)1.93 (2)2.751 (3)167 (4)
O4—H4A···O1ii0.84 (2)1.86 (2)2.692 (3)172 (4)
O5—H5A···O80.82 (2)1.94 (2)2.752 (3)169 (4)
O5—H5B···O70.83 (2)1.84 (2)2.670 (3)171 (4)
O6—H6A···O70.82 (2)1.95 (2)2.773 (4)178 (4)
O6—H6B···O100.84 (2)1.91 (3)2.747 (4)177 (6)
O7—H7A···O2iii0.84 (2)1.84 (2)2.674 (3)170 (4)
O7—H7B···O9iv0.84 (2)1.88 (2)2.715 (4)171 (4)
O8—H8A···N3v0.82 (2)2.16 (2)2.943 (3)160 (4)
O8—H8B···O2vi0.85 (2)1.918 (19)2.763 (3)175 (4)
O9—H9A···O1ii0.84 (2)1.93 (2)2.751 (3)169 (4)
O9—H9B···O80.85 (2)1.93 (2)2.757 (3)164 (4)
Symmetry codes: (i) x+3/2, y+3/2, z+2; (ii) x+3/2, y+1/2, z+2; (iii) x+3/2, y+1/2, z+3/2; (iv) x, y+1, z; (v) x, y+1, z1/2; (vi) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank Jilin University for supporting this work.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, F.-H. & Zhao, P.-Z. (2011). Acta Cryst. E67, m1341–m1342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670–4679.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, S.-Q., Guo, Z.-Y., Li, G.-H., Deng, R.-P., Song, S.-Y., Qin, C., Pan, C.-L., Guo, H.-D., Gao, F., Wang, S. & Zhang, H.-J. (2010). Dalton Trans. 39, 9123–9130.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568–m1569.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J.-P. & Chen, X.-M. (2008). J. Am. Chem. Soc. 130, 6010–6017.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds