metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1,1′-(1,3-phenyl­enedi­methyl­ene)di(1H-imidazol-3-ium)] β-octa­molybdate

aEngineering Research Center of Pesticides of Heilongjiang University, Heilongjiang University, Harbin 150050, People's Republic of China, and College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 24 November 2011; accepted 9 December 2011; online 14 December 2011)

In the title compound, (C14H16N4)2[Mo8O26], the β-octa­molybdate anion is centrosymmetric. N—H⋯O hydrogen bonds link the diimidazolium cations and the polyoxidoanions into a chain structure along [100]. ππ inter­actions between the imidazole rings and between the imidazole and benzene rings [centroid–centroid distances = 3.611 (2) and 3.689 (3) Å, respectively] connect the chains.

Related literature

For general background to polyoxidometalate-based organic-inorganic hybrid compounds, see: Xie et al. (2011[Xie, Y.-M., Yu, R.-M., Wu, X.-Y., Wang, F., Zhang, J. & Lu, C.-Z. (2011). Cryst. Growth Des. 11, 4739-4741.]); Xu et al. (1999[Xu, Q., Wang, R.-Z., Yang, G.-Y., Xing, Y.-H., Li, D.-M., Bu, W.-M., Ye, L., Fan, Y.-G., Yang, G.-D., Xong, Y., Lin, Y.-H. & Jia, H.-Q. (1999). Chem. Commun. pp. 983-984.]). For the synthesis of the ligand, see: Yang et al. (2006[Yang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C., Jia, H.-Q. & Hu, N.-H. (2006). Eur. J. Inorg. Chem. pp. 1208-1215.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H16N4)2[Mo8O26]

  • Mr = 1664.14

  • Monoclinic, P 21 /c

  • a = 12.163 (2) Å

  • b = 12.785 (3) Å

  • c = 14.937 (3) Å

  • β = 96.82 (3)°

  • V = 2306.3 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.20 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.780, Tmax = 0.809

  • 21595 measured reflections

  • 5261 independent reflections

  • 4579 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.057

  • S = 1.01

  • 5261 reflections

  • 324 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.12 e Å−3

  • Δρmin = −1.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O12i 0.90 (1) 1.96 (2) 2.844 (4) 168 (4)
N4—H41⋯O5ii 0.90 (1) 2.51 (5) 3.003 (5) 115 (4)
N4—H41⋯O8ii 0.90 (1) 2.23 (4) 2.909 (5) 132 (5)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The synthesis and characterization of coordination networks based on the idea of self-assembly of specifically designed building blocks have been an area of rapid growth in recent years. In the last decades, more and more attention has been paid to the rational design and assembly of new polyoxometalate(POM)-based organic-inorganic hybrid compounds due to their structural diversities and abundant potential applications in catalysis, ion exchange, sorption and magnetism (Xie et al., 2011). Octamolybdate family with a variety of structural isomers is a kind of important POMs building blocks (Xu et al., 1999). The title compound was synthesized at a low pH value condition, as an unexpected product during the process of preparing POM-based Cu(II)–ligand complex. We report its structure here.

The asymmertric unit of the title compound contains one half of β-[Mo8O26]4- polyoxoanion and one (1,3-phenylenedimethylene)-di-1H-imidazolium cation (Fig. 1). The polyoxoanion is centrosymmetric. N—H···O hydrogen bonds link the cations and polyoxoanions into a chain structure along [1 0 0] (Fig. 2, Table 1). ππ interactions between the imidazole rings and between the imidazole and benzene rings [centroid–centroid distances = 3.611 (2) and 3.689 (3) Å] connect the chains.

Related literature top

For general background to polyoxidometalate-based organic-inorganic hybrid compounds, see: Xie et al. (2011); Xu et al. (1999). For the synthesis of the ligand, see: Yang et al. (2006).

Experimental top

The 1,3-bis(imidazol-l-yl-methyl)benzene (bimb) ligand was synthesized following the literature method (Yang et al., 2006). The title compound was synthesized by mixing bimb (0.101 g, 0.5 mmol), Cu(NO3)2.4H2O (0.102 g, 0.05 mmol), sodium molybdate (0.505 g, 2.5 mmol), H2O (8 ml) and ethanol (2 ml) and stirring at room temperature for 10 min. The pH value of the mixture was adjusted to 2.0 with 1M HCl, and then the mixture was sealed in a Teflon-lined autoclave and heated at 125°C for 4 days. After slow cooling to room temperature, black block crystals were obtained in 22% yield based on Mo atoms.

Refinement top

The electron density residual peak (1.12) and hole (-1.30) are all around of Mo4 atom with distances of 0.71 and 0.81 Å, respectively. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic) and 0.97 (methylene) Å and with Uiso(H) = 1.2Ueq(C). H atoms bound to N atoms were located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. Dashed lines denote hydrogen bonds. [Symmetry codes: (i) 1-x, 2-y, 2-z; (ii) x, 1+y, z; (iii) -1+x, 1+y, z.]
[Figure 2] Fig. 2. A view of the hydrogen-bonded chain structure along [1 0 0]. Dashed lines denote hydrogen bonds.
Bis[1,1'-(1,3-phenylenedimethylene)di(1H-imidazol-3-ium)] β-octamolybdate top
Crystal data top
(C14H16N4)2[Mo8O26]F(000) = 1600
Mr = 1664.14Dx = 2.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17887 reflections
a = 12.163 (2) Åθ = 3.1–27.5°
b = 12.785 (3) ŵ = 2.20 mm1
c = 14.937 (3) ÅT = 293 K
β = 96.82 (3)°Block, colorless
V = 2306.3 (8) Å30.12 × 0.10 × 0.10 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5261 independent reflections
Radiation source: fine-focus sealed tube4579 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1515
Tmin = 0.780, Tmax = 0.809k = 1615
21595 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0219P)2 + 3.6973P]
where P = (Fo2 + 2Fc2)/3
5261 reflections(Δ/σ)max = 0.003
324 parametersΔρmax = 1.12 e Å3
2 restraintsΔρmin = 1.30 e Å3
Crystal data top
(C14H16N4)2[Mo8O26]V = 2306.3 (8) Å3
Mr = 1664.14Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.163 (2) ŵ = 2.20 mm1
b = 12.785 (3) ÅT = 293 K
c = 14.937 (3) Å0.12 × 0.10 × 0.10 mm
β = 96.82 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5261 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4579 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.809Rint = 0.032
21595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0262 restraints
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 1.12 e Å3
5261 reflectionsΔρmin = 1.30 e Å3
324 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6205 (3)0.5883 (3)1.0719 (2)0.0442 (9)
H10.60320.62161.12370.053*
C20.6426 (3)0.6343 (3)0.9957 (2)0.0411 (8)
H20.64430.70590.98500.049*
C30.6529 (3)0.4656 (3)0.9766 (3)0.0414 (8)
H30.66230.40030.95120.050*
C40.6943 (3)0.5749 (3)0.8462 (2)0.0375 (8)
H4A0.67470.64560.82690.045*
H4B0.65420.52680.80390.045*
C50.8175 (3)0.5588 (3)0.8459 (2)0.0334 (7)
C60.8932 (4)0.6252 (3)0.8933 (3)0.0574 (11)
H60.86870.68200.92450.069*
C71.0057 (4)0.6069 (4)0.8944 (4)0.0722 (15)
H71.05640.65060.92750.087*
C81.0431 (3)0.5248 (4)0.8469 (4)0.0638 (13)
H81.11880.51400.84730.077*
C90.9687 (3)0.4581 (3)0.7984 (3)0.0416 (9)
C100.8560 (3)0.4767 (3)0.7982 (2)0.0332 (7)
H100.80540.43280.76520.040*
C111.0073 (3)0.3659 (3)0.7484 (3)0.0517 (11)
H11A0.95290.34990.69740.062*
H11B1.07640.38330.72540.062*
C120.9427 (4)0.2172 (4)0.8436 (4)0.0673 (14)
H120.86700.23000.83420.081*
C130.9922 (5)0.1420 (4)0.8937 (4)0.0722 (15)
H130.95810.09200.92640.087*
C141.1198 (3)0.2305 (3)0.8354 (3)0.0503 (10)
H141.18820.25210.82020.060*
Mo10.547848 (19)0.90288 (2)1.084672 (17)0.02207 (6)
Mo20.30667 (2)1.04699 (2)1.134611 (18)0.02643 (7)
Mo30.27124 (2)0.86907 (2)0.973110 (19)0.02576 (7)
Mo40.45286 (2)0.80953 (3)0.81444 (2)0.03626 (8)
N10.6622 (2)0.5573 (2)0.93667 (18)0.0312 (6)
N20.6281 (3)0.4835 (3)1.0589 (2)0.0463 (8)
N31.0240 (2)0.2736 (3)0.8073 (2)0.0425 (7)
N41.1028 (4)0.1517 (3)0.8884 (3)0.0622 (10)
O10.6277 (2)0.9749 (2)1.01029 (18)0.0472 (7)
O20.6373 (2)0.8237 (2)1.14858 (18)0.0477 (7)
O30.48333 (18)0.9874 (2)1.15775 (16)0.0372 (6)
O40.2810 (2)1.0400 (2)1.24323 (16)0.0439 (6)
O50.1925 (2)1.1056 (2)1.08042 (19)0.0500 (7)
O60.27884 (17)0.90605 (17)1.09648 (15)0.0298 (5)
O70.45232 (19)0.82404 (19)1.01803 (19)0.0429 (6)
O80.1530 (2)0.9344 (2)0.93423 (17)0.0417 (6)
O90.2328 (2)0.7420 (2)0.97568 (19)0.0439 (6)
O100.33456 (19)0.8728 (2)0.85883 (16)0.0361 (5)
O110.6000 (2)0.82712 (18)0.86168 (17)0.0371 (5)
O120.4326 (2)0.6786 (2)0.8263 (2)0.0548 (7)
O130.4385 (3)0.8367 (2)0.70317 (19)0.0555 (7)
H210.619 (4)0.433 (3)1.099 (2)0.066 (14)*
H411.155 (3)0.107 (4)0.911 (4)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.052 (2)0.054 (2)0.0275 (18)0.0126 (18)0.0089 (15)0.0002 (17)
C20.058 (2)0.0311 (18)0.035 (2)0.0116 (16)0.0088 (16)0.0002 (15)
C30.051 (2)0.0339 (19)0.039 (2)0.0056 (16)0.0056 (16)0.0060 (15)
C40.0397 (19)0.046 (2)0.0268 (17)0.0124 (15)0.0046 (14)0.0046 (15)
C50.0370 (18)0.0339 (18)0.0295 (17)0.0007 (14)0.0049 (13)0.0056 (14)
C60.062 (3)0.047 (2)0.064 (3)0.013 (2)0.012 (2)0.013 (2)
C70.048 (3)0.074 (3)0.093 (4)0.028 (2)0.001 (2)0.012 (3)
C80.031 (2)0.082 (4)0.079 (3)0.004 (2)0.010 (2)0.010 (3)
C90.0353 (19)0.052 (2)0.039 (2)0.0081 (16)0.0115 (15)0.0141 (17)
C100.0288 (16)0.043 (2)0.0277 (17)0.0024 (14)0.0033 (12)0.0024 (14)
C110.049 (2)0.063 (3)0.047 (2)0.022 (2)0.0226 (18)0.016 (2)
C120.044 (2)0.076 (3)0.087 (4)0.012 (2)0.025 (2)0.026 (3)
C130.085 (4)0.059 (3)0.081 (4)0.021 (3)0.044 (3)0.024 (3)
C140.038 (2)0.056 (3)0.057 (3)0.0151 (18)0.0060 (18)0.006 (2)
Mo10.02070 (12)0.02499 (13)0.02034 (12)0.00065 (9)0.00169 (9)0.00309 (10)
Mo20.02634 (13)0.03154 (14)0.02250 (13)0.00129 (10)0.00740 (10)0.00118 (11)
Mo30.02085 (12)0.02662 (13)0.03005 (15)0.00019 (10)0.00399 (10)0.00093 (11)
Mo40.03172 (15)0.04101 (17)0.03793 (17)0.01049 (12)0.01196 (12)0.01119 (13)
N10.0332 (14)0.0329 (15)0.0278 (14)0.0086 (11)0.0043 (11)0.0027 (11)
N20.0480 (19)0.052 (2)0.0386 (18)0.0027 (15)0.0048 (14)0.0181 (15)
N30.0321 (15)0.0544 (19)0.0423 (18)0.0143 (14)0.0101 (13)0.0102 (15)
N40.072 (3)0.057 (2)0.057 (2)0.030 (2)0.005 (2)0.0138 (19)
O10.0685 (18)0.0394 (14)0.0395 (15)0.0240 (13)0.0304 (13)0.0137 (11)
O20.0417 (14)0.0540 (17)0.0440 (16)0.0217 (12)0.0092 (11)0.0005 (13)
O30.0266 (12)0.0462 (14)0.0375 (14)0.0049 (10)0.0015 (9)0.0123 (11)
O40.0429 (14)0.0641 (18)0.0268 (13)0.0067 (12)0.0124 (10)0.0035 (12)
O50.0521 (16)0.0485 (16)0.0464 (16)0.0204 (13)0.0062 (12)0.0066 (13)
O60.0279 (11)0.0316 (12)0.0299 (12)0.0047 (9)0.0038 (9)0.0041 (9)
O70.0268 (12)0.0363 (14)0.0635 (18)0.0056 (10)0.0038 (11)0.0175 (12)
O80.0347 (13)0.0524 (16)0.0370 (14)0.0147 (11)0.0001 (10)0.0028 (12)
O90.0382 (13)0.0332 (13)0.0588 (17)0.0100 (10)0.0004 (12)0.0036 (12)
O100.0316 (12)0.0479 (15)0.0290 (12)0.0017 (10)0.0045 (9)0.0064 (11)
O110.0449 (14)0.0251 (11)0.0435 (15)0.0036 (10)0.0149 (11)0.0008 (10)
O120.0512 (16)0.0449 (16)0.070 (2)0.0018 (13)0.0158 (14)0.0089 (14)
O130.073 (2)0.0581 (18)0.0390 (16)0.0120 (15)0.0235 (14)0.0048 (14)
Geometric parameters (Å, º) top
C1—C21.336 (5)C13—H130.9300
C1—N21.359 (5)C14—N31.312 (5)
C1—H10.9300C14—N41.313 (6)
C2—N11.362 (4)C14—H140.9300
C2—H20.9300Mo1—O21.695 (2)
C3—N21.319 (5)Mo1—O71.756 (2)
C3—N11.326 (4)Mo1—O31.783 (2)
C3—H30.9300Mo1—O11.811 (2)
C4—N11.468 (4)Mo2—O41.690 (2)
C4—C51.513 (5)Mo2—O51.697 (3)
C4—H4A0.9700Mo2—O61.908 (2)
C4—H4B0.9700Mo2—O11i1.966 (2)
C5—C101.381 (5)Mo2—O32.267 (2)
C5—C61.384 (5)Mo2—O1i2.410 (3)
C6—C71.387 (7)Mo3—O91.692 (2)
C6—H60.9300Mo3—O81.704 (2)
C7—C81.374 (7)Mo3—O61.894 (2)
C7—H70.9300Mo3—O101.955 (2)
C8—C91.383 (6)Mo3—O72.298 (2)
C8—H80.9300Mo3—O1i2.341 (2)
C9—C101.391 (5)Mo4—O131.687 (3)
C9—C111.501 (6)Mo4—O121.704 (3)
C10—H100.9300Mo4—O101.842 (2)
C11—N31.472 (5)Mo4—O111.858 (3)
C11—H11A0.9700N2—H210.901 (10)
C11—H11B0.9700N4—H410.896 (10)
C12—C131.320 (7)O1—Mo3i2.341 (2)
C12—N31.385 (5)O1—Mo2i2.410 (2)
C12—H120.9300O11—Mo2i1.966 (2)
C13—N41.364 (7)
C2—C1—N2106.7 (3)O4—Mo2—O6100.96 (12)
C2—C1—H1126.6O5—Mo2—O699.70 (12)
N2—C1—H1126.6O4—Mo2—O11i100.83 (12)
C1—C2—N1107.6 (3)O5—Mo2—O11i95.11 (13)
C1—C2—H2126.2O6—Mo2—O11i149.63 (10)
N1—C2—H2126.2O4—Mo2—O396.62 (11)
N2—C3—N1107.9 (3)O5—Mo2—O3158.19 (12)
N2—C3—H3126.1O6—Mo2—O381.93 (9)
N1—C3—H3126.1O11i—Mo2—O374.76 (10)
N1—C4—C5110.7 (3)O4—Mo2—O1i166.93 (12)
N1—C4—H4A109.5O5—Mo2—O1i87.85 (12)
C5—C4—H4A109.5O6—Mo2—O1i71.84 (9)
N1—C4—H4B109.5O11i—Mo2—O1i82.45 (9)
C5—C4—H4B109.5O3—Mo2—O1i71.88 (10)
H4A—C4—H4B108.1O9—Mo3—O8104.73 (13)
C10—C5—C6119.0 (4)O9—Mo3—O6101.50 (12)
C10—C5—C4120.1 (3)O8—Mo3—O698.69 (11)
C6—C5—C4121.0 (3)O9—Mo3—O10100.47 (12)
C5—C6—C7119.9 (4)O8—Mo3—O1095.41 (11)
C5—C6—H6120.1O6—Mo3—O10149.84 (10)
C7—C6—H6120.1O9—Mo3—O790.60 (11)
C8—C7—C6120.6 (4)O8—Mo3—O7164.34 (12)
C8—C7—H7119.7O6—Mo3—O781.03 (10)
C6—C7—H7119.7O10—Mo3—O778.34 (10)
C7—C8—C9120.3 (4)O9—Mo3—O1i163.48 (12)
C7—C8—H8119.8O8—Mo3—O1i91.69 (12)
C9—C8—H8119.8O6—Mo3—O1i73.73 (9)
C8—C9—C10118.6 (4)O10—Mo3—O1i79.36 (10)
C8—C9—C11121.4 (4)O7—Mo3—O1i73.12 (10)
C10—C9—C11120.0 (4)O13—Mo4—O12107.75 (16)
C5—C10—C9121.5 (3)O13—Mo4—O10105.68 (13)
C5—C10—H10119.2O12—Mo4—O10105.41 (13)
C9—C10—H10119.2O13—Mo4—O11109.38 (14)
N3—C11—C9111.1 (3)O12—Mo4—O11102.95 (12)
N3—C11—H11A109.4O10—Mo4—O11124.66 (10)
C9—C11—H11A109.4C3—N1—C2108.4 (3)
N3—C11—H11B109.4C3—N1—C4126.6 (3)
C9—C11—H11B109.4C2—N1—C4124.9 (3)
H11A—C11—H11B108.0C3—N2—C1109.3 (3)
C13—C12—N3107.7 (4)C3—N2—H21124 (3)
C13—C12—H12126.2C1—N2—H21127 (3)
N3—C12—H12126.2C14—N3—C12107.7 (4)
C12—C13—N4106.7 (4)C14—N3—C11125.6 (3)
C12—C13—H13126.7C12—N3—C11126.7 (3)
N4—C13—H13126.7C14—N4—C13109.4 (4)
N3—C14—N4108.6 (4)C14—N4—H41125 (4)
N3—C14—H14125.7C13—N4—H41125 (4)
N4—C14—H14125.7Mo1—O1—Mo3i132.92 (13)
O2—Mo1—O7108.29 (13)Mo1—O1—Mo2i138.66 (13)
O2—Mo1—O3108.47 (12)Mo3i—O1—Mo2i88.18 (8)
O7—Mo1—O3112.67 (11)Mo1—O3—Mo2126.04 (12)
O2—Mo1—O1107.09 (14)Mo3—O6—Mo2120.84 (11)
O7—Mo1—O1108.11 (13)Mo1—O7—Mo3124.65 (12)
O3—Mo1—O1111.99 (12)Mo4—O10—Mo3135.18 (14)
O4—Mo2—O5104.33 (14)Mo4—O11—Mo2i129.54 (13)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O12ii0.90 (1)1.96 (2)2.844 (4)168 (4)
N4—H41···O5iii0.90 (1)2.51 (5)3.003 (5)115 (4)
N4—H41···O8iii0.90 (1)2.23 (4)2.909 (5)132 (5)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formula(C14H16N4)2[Mo8O26]
Mr1664.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.163 (2), 12.785 (3), 14.937 (3)
β (°) 96.82 (3)
V3)2306.3 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.20
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.780, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
21595, 5261, 4579
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.057, 1.01
No. of reflections5261
No. of parameters324
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.12, 1.30

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O12i0.90 (1)1.96 (2)2.844 (4)168 (4)
N4—H41···O5ii0.90 (1)2.51 (5)3.003 (5)115 (4)
N4—H41···O8ii0.90 (1)2.23 (4)2.909 (5)132 (5)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y1, z.
 

Acknowledgements

The authors thank the Project of Innovation Service Platform of Heilongjiang Province (PG09J001) and Heilongjiang University for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y.-M., Yu, R.-M., Wu, X.-Y., Wang, F., Zhang, J. & Lu, C.-Z. (2011). Cryst. Growth Des. 11, 4739–4741.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, Q., Wang, R.-Z., Yang, G.-Y., Xing, Y.-H., Li, D.-M., Bu, W.-M., Ye, L., Fan, Y.-G., Yang, G.-D., Xong, Y., Lin, Y.-H. & Jia, H.-Q. (1999). Chem. Commun. pp. 983–984.  Web of Science CSD CrossRef Google Scholar
First citationYang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C., Jia, H.-Q. & Hu, N.-H. (2006). Eur. J. Inorg. Chem. pp. 1208–1215.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds