metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m35-m36

Ethyl 3-ferrocenyl-1-(pyridin-2-ylmeth­yl)-1H-pyrazole-5-carboxyl­ate

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and bDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 18 October 2011; accepted 5 December 2011; online 10 December 2011)

The title compound, [Fe(C5H5)(C17H16N3O2)], crystallizes with an essentially eclipsed conformation of the cyclo­penta­dienyl (Cp) rings. The unsubstituted ring is disordered over two positions with the major component being present 90 (1)% of the time. The substituted Cp ring, the pyrazole ring and three atoms of the eth­oxy­carbonyl group form a conjugated π-system. These 13 atoms are coplanar within 0.09 Å.

Related literature

For the preparation of (pyrazol-1-ylmeth­yl)pyridine compounds, see: House et al. (1986[House, D. A., Steel, P. J. & Watson, A. A. (1986). Aust. J. Chem. 39, 1525-1536.]). For modification of the chemistry of metal (pyrazol-1-ylmeth­yl)pyridine compounds due to the substituents on the pyrazolyl ring, see: Ojwach et al. (2007[Ojwach, S. O., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2007). Polyhedron, 26, 851-861.], 2009[Ojwach, S. O., Guzei, I. A., Benade, L. L., Mapolie, S. F. & Darkwa, J. (2009). Organometallics, 28, 2127-2133.]). Typical structural parameters were confirmed by a Mogul geometry check, see: Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). Fe(II)–centroid distances for related compounds were found in the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For discussion of the twinning of a nickel complex utilizing (3-ferrocenyl-5-ethyl­carboxyl­ate-pyrazolyl-1-yl-meth­yl)pyridine as a ligand, see: Guzei et al. (2012[Guzei, I. A., Herbst-Irmer, R., Munyaneza, A. & Darkwa, J. (2012). Inorg. Chem. Submitted.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C17H16N3O2)]

  • Mr = 415.27

  • Triclinic, [P \overline 1]

  • a = 10.3913 (2) Å

  • b = 10.6343 (2) Å

  • c = 10.7371 (2) Å

  • α = 86.6909 (8)°

  • β = 65.5907 (7)°

  • γ = 63.8778 (7)°

  • V = 958.82 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 296 K

  • 0.35 × 0.28 × 0.21 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: analytical (SADABS; Bruker, 2011)[Bruker (2011). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.765, Tmax = 0.851

  • 19702 measured reflections

  • 3852 independent reflections

  • 3672 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.05

  • 3852 reflections

  • 261 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2011[Bruker (2011). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL, OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), FCF_filter (Guzei, 2007[Guzei, I. A. (2007). FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]) and INSerter (Guzei, 2007[Guzei, I. A. (2007). FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and modiCIFer (Guzei, 2007[Guzei, I. A. (2007). FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]).

Supporting information


Comment top

(Pyrazol-1-ylmethyl)pyridine compounds have been used as ligands in coordination chemistry since they were first prepared by House et al. in 1986. The chemistry of their metal compounds can be modified electronically and sterically by a careful selection of the substituents on the pyrazolyl ring (Ojwach et al., 2007; Ojwach et al.; 2009). Herein we report the structure of the title compound (I).

The crystal structure of (I) was determined at room temperature because the crystals cracked upon flash- and slow-cooling to 100 K. The structural parameters of (I) are typical as confirmed by a Mogul geometry check (Bruno et al., 2002). The Fe1—centroid(C1—C5), Fe1—Centroid(C6—C10), and Fe1—centroid(C6A—C10A) distances measure 1.643 (2), 1.651 (2), and 1.61 (2) Å, respectively, and agree well with Fe(II)—centroid distances reported for relevant complexes in the Cambridge Structural Database (August 2011, Allen (2002)).

The Cp ligands in the ferrocenyl unit are close to being eclipsed. The unsubstituted Cp ring is disordered over two positions with the major component being occupied 90 (1)% of the time. The two positions of the disordered Cp ring are on both sides of the ideally eclipsed position of the rings. The C1—centroid(C1—C5)—centroid(C6—C10)—C7 torsion angle involving the major Cp component is 11.5 (2)°; the corresponding C1—centroid(C1—C5)—centroid(C6a—C10a)—C7a to the minor component is -14.76 (6)°. The torsion angle between the substituted Cp ring and the attached pyrazolyl ligand is 9.91 (6)°; the torsion angle between the pyrazolyl ligand and the plane defined by atoms C14,O1,O2 is 3.66 (9)°; thus these three fragments form a conjugated system.

We also note that compound (I) was a ligand in a Ni(II) complex {Bromo[di-(3-ferrocenyl-5-ethylcarboxylate-pyrazolyl-1-ylmethyl)pyridine]nickel(II)} tetrabromoferrate(III) that showed a very interesting example of pseudo-merohedral twinning. The twinning was scrupulously discussed by Guzei et al. (2012).

Related literature top

For the preparation of (pyrazol-1-ylmethyl)pyridine compounds, see: House et al. (1986). For modification of the chemistry of metal (pyrazol-1-ylmethyl)pyridine compounds due to the substituents on the pyrazolyl ring, see: Ojwach et al. (2007, 2009). Typical structural parameters were confirmed by a Mogul geometry check, see Bruno et al. (2002). Fe(II)–centroid distances for related compounds were found in the Cambridge Structural Database, see Allen (2002). For discussion of the twinning of a nickel complex utilizing (3-ferrocenyl-5-ethylcarboxylate-pyrazolyl-1-yl-methyl)pyridine as a ligand, see: Guzei et al. (2012).

Experimental top

To a benzene solution (20 ml) of 3-ferrocenyl-5-ethylcarboxylate-1H-pyrazole (0.11 g, 0.436 mmol) were added 2-picolylchloride hydrochloride (0.07 g, 0.436 mmol), 40% NaOH (12 ml) and 10 drops of 40% tertabutylammonium bromide (TBAB). The reaction mixture was refluxed for 18 h. The two phases were then separated and the organic phase dried over MgSO4. The solvent was removed in vacuo and the residue purified by preparative TLC (1: 2 petroleum ether/ethyl acetate). Yield: (0.030 g, 21%). Single crystals were obtained by slow evaporation of a solution of (I) in dichloromethane-toluene (3:1) solvent system at room temperature.

Refinement top

All H-atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 times Ueq(bearing atom) for aromatic and methylene H atoms, and 1.5 times Ueq(bearing atom) for the methyl H atoms.. The C—H distances were fixed at 0.93, 0.96, and 0.97 Å for aromatic, methyl, and methylene H atoms respectively. The C6a—C10a ring was refined with an idealized geometry. The thermal dsiplacement parameters for atoms C6a—C10a were contrained to be identical to those of atoms C6—C10, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT-Plus (Bruker, 2011); data reduction: SAINT-Plus (Bruker, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), FCF_filter (Guzei, 2007) and INSerter (Guzei, 2007); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) (Brandenburg, 1999). Thermal ellipsoids are shown at the 50% probability level. All hydrogen atoms were omitted for clarity.
Ethyl 3-ferrocenyl-1-(pyridin-2-ylmethyl)-1H-pyrazole-5-carboxylate top
Crystal data top
[Fe(C5H5)(C17H16N3O2)]Z = 2
Mr = 415.27F(000) = 432
Triclinic, P1Dx = 1.438 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3913 (2) ÅCell parameters from 9889 reflections
b = 10.6343 (2) Åθ = 2.1–26.4°
c = 10.7371 (2) ŵ = 0.81 mm1
α = 86.6909 (8)°T = 296 K
β = 65.5907 (7)°Block, orange
γ = 63.8778 (7)°0.35 × 0.28 × 0.21 mm
V = 958.82 (3) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3672 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.020
0.50° ω and 0.5° ϕ scansθmax = 26.4°, θmin = 2.1°
Absorption correction: analytical
(SADABS; Bruker, 211)
h = 1212
Tmin = 0.765, Tmax = 0.851k = 1313
19702 measured reflectionsl = 1313
3852 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0332P)2 + 0.246P]
where P = (Fo2 + 2Fc2)/3
3852 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
[Fe(C5H5)(C17H16N3O2)]γ = 63.8778 (7)°
Mr = 415.27V = 958.82 (3) Å3
Triclinic, P1Z = 2
a = 10.3913 (2) ÅMo Kα radiation
b = 10.6343 (2) ŵ = 0.81 mm1
c = 10.7371 (2) ÅT = 296 K
α = 86.6909 (8)°0.35 × 0.28 × 0.21 mm
β = 65.5907 (7)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3852 independent reflections
Absorption correction: analytical
(SADABS; Bruker, 211)
3672 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.851Rint = 0.020
19702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
3852 reflectionsΔρmin = 0.16 e Å3
261 parameters
Special details top

Experimental. 1H NMR (CDCl3): δ 1.43 (t, 3H, OCH2CH3), 4.07 (s, 5H, Fc), 4.27 (s, 2H, Fc), 4.41 (s, 2H, Fc), 4.46 (q, 2H, OCH2CH3), 5.76 (s, 2H, CH2py), 6.82 (d, 1H, py), 6.93 (s, 1H, pz), 7.22 (t, 1H, py), 7.63 (t, 1H, py), 8.62 (d, 1H, py).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.28200 (2)0.18372 (2)0.366315 (18)0.04291 (8)
O10.68655 (14)0.32795 (13)0.32948 (12)0.0623 (3)
O20.42373 (12)0.45284 (12)0.20210 (11)0.0523 (3)
N10.65978 (13)0.19596 (12)0.05966 (12)0.0420 (2)
N20.69717 (12)0.21986 (12)0.07203 (12)0.0401 (2)
N30.92774 (14)0.33270 (12)0.15160 (13)0.0482 (3)
C10.41872 (16)0.28397 (14)0.27729 (14)0.0405 (3)
C20.25905 (18)0.38446 (16)0.36209 (16)0.0513 (3)
H20.19280.45830.33270.062*
C30.2184 (2)0.3528 (2)0.49868 (16)0.0626 (4)
H30.12080.40200.57450.075*
C40.3512 (2)0.2339 (2)0.50013 (16)0.0604 (4)
H40.35640.19120.57710.072*
C50.47621 (18)0.19029 (17)0.36362 (15)0.0478 (3)
H50.57720.11440.33570.057*
C60.3420 (3)0.0224 (3)0.3165 (5)0.0706 (9)0.900 (10)
H60.43620.10020.30640.085*0.900 (10)
C70.3150 (4)0.0551 (5)0.2119 (2)0.0650 (8)0.900 (10)
H70.38870.03750.12000.078*0.900 (10)
C80.1568 (4)0.1645 (4)0.2697 (4)0.0647 (7)0.900 (10)
H80.10830.23140.22290.078*0.900 (10)
C90.0854 (3)0.1543 (4)0.4114 (4)0.0695 (8)0.900 (10)
H90.01850.21310.47440.083*0.900 (10)
C100.1991 (6)0.0396 (4)0.4404 (4)0.0727 (9)0.900 (10)
H100.18350.00940.52610.087*0.900 (10)
C10A0.261 (4)0.002 (3)0.402 (3)0.0727 (9)0.100 (10)
H10A0.28950.06620.46020.087*0.100 (10)
C6A0.356 (2)0.012 (2)0.259 (4)0.0706 (9)0.100 (10)
H6A0.45730.08520.20680.085*0.100 (10)
C7A0.270 (4)0.107 (3)0.2102 (18)0.0650 (8)0.100 (10)
H7A0.30390.12690.12000.078*0.100 (10)
C8A0.121 (3)0.192 (2)0.323 (3)0.0647 (7)0.100 (10)
H8A0.04130.27700.31970.078*0.100 (10)
C9A0.116 (3)0.125 (4)0.442 (2)0.0695 (8)0.100 (10)
H9A0.03240.15770.53000.083*0.100 (10)
C110.50334 (15)0.28020 (13)0.12904 (13)0.0371 (3)
C120.44094 (15)0.35814 (13)0.04066 (13)0.0385 (3)
H120.33590.42360.06370.046*
C130.56798 (15)0.31739 (13)0.08772 (13)0.0372 (3)
C140.57130 (16)0.36385 (14)0.22026 (14)0.0420 (3)
C150.4087 (2)0.5095 (2)0.32467 (17)0.0594 (4)
H15A0.42440.43680.38780.071*
H15B0.48780.54210.37220.071*
C160.2461 (3)0.6295 (3)0.2784 (2)0.0829 (6)
H16A0.23240.66920.35730.124*
H16B0.23200.70080.21620.124*
H16C0.16890.59590.23170.124*
C170.86328 (15)0.14457 (15)0.17311 (15)0.0467 (3)
H17A0.87030.15810.26540.056*
H17B0.90260.04400.16820.056*
C180.96598 (15)0.19558 (14)0.14829 (13)0.0391 (3)
C191.09484 (16)0.10195 (16)0.12568 (15)0.0478 (3)
H191.11780.00710.12360.057*
C201.18884 (18)0.15086 (19)0.10632 (17)0.0576 (4)
H201.27630.08960.09120.069*
C211.1511 (2)0.2917 (2)0.10968 (17)0.0596 (4)
H211.21230.32810.09740.072*
C221.0197 (2)0.37736 (17)0.13176 (17)0.0564 (4)
H220.99370.47290.13290.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.04003 (12)0.05551 (14)0.03486 (11)0.02580 (10)0.01357 (8)0.00789 (8)
O10.0552 (6)0.0692 (7)0.0459 (6)0.0252 (6)0.0119 (5)0.0163 (5)
O20.0487 (6)0.0682 (7)0.0461 (5)0.0272 (5)0.0272 (5)0.0219 (5)
N10.0352 (5)0.0441 (6)0.0450 (6)0.0158 (5)0.0188 (5)0.0100 (5)
N20.0313 (5)0.0422 (6)0.0426 (6)0.0150 (5)0.0143 (5)0.0067 (4)
N30.0422 (6)0.0419 (6)0.0523 (7)0.0146 (5)0.0184 (5)0.0070 (5)
C10.0396 (7)0.0449 (7)0.0419 (7)0.0223 (6)0.0188 (6)0.0071 (5)
C20.0465 (8)0.0486 (8)0.0488 (8)0.0175 (6)0.0156 (6)0.0004 (6)
C30.0619 (10)0.0723 (11)0.0408 (8)0.0296 (9)0.0101 (7)0.0079 (7)
C40.0748 (11)0.0818 (11)0.0391 (8)0.0436 (10)0.0296 (8)0.0127 (7)
C50.0485 (8)0.0587 (8)0.0466 (7)0.0271 (7)0.0274 (6)0.0122 (6)
C60.0692 (13)0.0608 (11)0.092 (3)0.0379 (10)0.0342 (17)0.0061 (11)
C70.0596 (14)0.084 (2)0.0565 (10)0.0435 (15)0.0154 (10)0.0094 (12)
C80.0621 (16)0.0932 (15)0.0593 (18)0.0467 (13)0.0322 (16)0.0100 (14)
C90.0490 (12)0.0991 (17)0.0668 (16)0.0475 (12)0.0158 (9)0.0119 (13)
C100.078 (2)0.084 (2)0.0711 (15)0.057 (2)0.0255 (14)0.0270 (13)
C10A0.078 (2)0.084 (2)0.0711 (15)0.057 (2)0.0255 (14)0.0270 (13)
C6A0.0692 (13)0.0608 (11)0.092 (3)0.0379 (10)0.0342 (17)0.0061 (11)
C7A0.0596 (14)0.084 (2)0.0565 (10)0.0435 (15)0.0154 (10)0.0094 (12)
C8A0.0621 (16)0.0932 (15)0.0593 (18)0.0467 (13)0.0322 (16)0.0100 (14)
C9A0.0490 (12)0.0991 (17)0.0668 (16)0.0475 (12)0.0158 (9)0.0119 (13)
C110.0337 (6)0.0380 (6)0.0427 (7)0.0184 (5)0.0173 (5)0.0082 (5)
C120.0312 (6)0.0394 (6)0.0441 (7)0.0156 (5)0.0167 (5)0.0094 (5)
C130.0347 (6)0.0370 (6)0.0432 (7)0.0185 (5)0.0178 (5)0.0094 (5)
C140.0450 (7)0.0436 (7)0.0443 (7)0.0255 (6)0.0202 (6)0.0113 (5)
C150.0743 (11)0.0762 (11)0.0544 (9)0.0447 (9)0.0429 (8)0.0302 (8)
C160.0765 (13)0.1023 (16)0.0912 (15)0.0423 (12)0.0582 (12)0.0498 (13)
C170.0326 (6)0.0469 (7)0.0488 (8)0.0128 (6)0.0119 (6)0.0020 (6)
C180.0301 (6)0.0416 (7)0.0344 (6)0.0125 (5)0.0081 (5)0.0045 (5)
C190.0378 (7)0.0460 (7)0.0515 (8)0.0150 (6)0.0170 (6)0.0111 (6)
C200.0406 (8)0.0699 (10)0.0590 (9)0.0199 (7)0.0248 (7)0.0108 (8)
C210.0504 (9)0.0780 (11)0.0536 (9)0.0368 (8)0.0158 (7)0.0007 (8)
C220.0579 (9)0.0485 (8)0.0572 (9)0.0270 (7)0.0167 (7)0.0045 (7)
Geometric parameters (Å, º) top
Fe1—C8A1.88 (2)C8—C91.413 (3)
Fe1—C9A1.94 (2)C8—H80.9300
Fe1—C7A1.979 (19)C9—C101.403 (4)
Fe1—C72.029 (2)C9—H90.9300
Fe1—C62.034 (2)C10—H100.9300
Fe1—C42.0365 (16)C10A—C9A1.4200
Fe1—C52.0382 (14)C10A—C6A1.4200
Fe1—C32.0398 (16)C10A—H10A0.9300
Fe1—C12.0402 (13)C6A—C7A1.4200
Fe1—C22.0410 (16)C6A—H6A0.9300
Fe1—C102.044 (2)C7A—C8A1.4200
Fe1—C82.045 (2)C7A—H7A0.9300
O1—C141.2015 (17)C8A—C9A1.4200
O2—C141.3346 (17)C8A—H8A0.9300
O2—C151.4543 (17)C9A—H9A0.9300
N1—C111.3393 (16)C11—C121.3973 (17)
N1—N21.3440 (16)C12—C131.3754 (18)
N2—C131.3590 (16)C12—H120.9300
N2—C171.4606 (17)C13—C141.4710 (18)
N3—C221.328 (2)C15—C161.487 (3)
N3—C181.3345 (18)C15—H15A0.9700
C1—C21.423 (2)C15—H15B0.9700
C1—C51.4268 (19)C16—H16A0.9600
C1—C111.4588 (18)C16—H16B0.9600
C2—C31.414 (2)C16—H16C0.9600
C2—H20.9300C17—C181.5053 (19)
C3—C41.408 (3)C17—H17A0.9700
C3—H30.9300C17—H17B0.9700
C4—C51.423 (2)C18—C191.3820 (19)
C4—H40.9300C19—C201.377 (2)
C5—H50.9300C19—H190.9300
C6—C71.403 (4)C20—C211.374 (3)
C6—C101.420 (4)C20—H200.9300
C6—H60.9300C21—C221.377 (2)
C7—C81.413 (3)C21—H210.9300
C7—H70.9300C22—H220.9300
C8A—Fe1—C9A43.7 (5)C10—C6—Fe170.00 (13)
C8A—Fe1—C7A43.1 (4)C7—C6—H6126.3
C9A—Fe1—C7A71.8 (5)C10—C6—H6126.3
C8A—Fe1—C754.7 (8)Fe1—C6—H6125.7
C9A—Fe1—C772.9 (6)C6—C7—C8108.4 (2)
C7A—Fe1—C715.8 (9)C6—C7—Fe169.98 (13)
C8A—Fe1—C675.5 (7)C8—C7—Fe170.32 (12)
C9A—Fe1—C661.8 (9)C6—C7—H7125.8
C7A—Fe1—C654.6 (8)C8—C7—H7125.8
C7—Fe1—C640.41 (10)Fe1—C7—H7125.5
C8A—Fe1—C4150.4 (9)C9—C8—C7107.8 (2)
C9A—Fe1—C4117.5 (7)C9—C8—Fe170.33 (12)
C7A—Fe1—C4166.4 (9)C7—C8—Fe169.10 (12)
C7—Fe1—C4152.72 (14)C9—C8—H8126.1
C6—Fe1—C4119.28 (13)C7—C8—H8126.1
C8A—Fe1—C5165.0 (10)Fe1—C8—H8126.1
C9A—Fe1—C5150.9 (10)C10—C9—C8107.9 (2)
C7A—Fe1—C5126.5 (8)C10—C9—Fe169.47 (12)
C7—Fe1—C5118.16 (10)C8—C9—Fe169.38 (11)
C6—Fe1—C5107.71 (8)C10—C9—H9126.1
C4—Fe1—C540.88 (6)C8—C9—H9126.1
C8A—Fe1—C3115.3 (7)Fe1—C9—H9126.7
C9A—Fe1—C3107.9 (7)C9—C10—C6108.4 (2)
C7A—Fe1—C3149.6 (10)C9—C10—Fe170.51 (13)
C7—Fe1—C3165.26 (15)C6—C10—Fe169.25 (12)
C6—Fe1—C3153.27 (15)C9—C10—H10125.8
C4—Fe1—C340.41 (7)C6—C10—H10125.8
C5—Fe1—C368.50 (7)Fe1—C10—H10126.0
C8A—Fe1—C1125.2 (9)C9A—C10A—C6A108.0
C9A—Fe1—C1166.9 (11)C9A—C10A—Fe164.3 (8)
C7A—Fe1—C1104.4 (6)C6A—C10A—Fe171.0 (8)
C7—Fe1—C1107.08 (8)C9A—C10A—H10A126.0
C6—Fe1—C1126.89 (12)C6A—C10A—H10A126.0
C4—Fe1—C168.73 (6)Fe1—C10A—H10A130.3
C5—Fe1—C140.95 (5)C7A—C6A—C10A108.0
C3—Fe1—C168.62 (6)C7A—C6A—Fe165.2 (8)
C8A—Fe1—C2104.3 (7)C10A—C6A—Fe169.2 (8)
C9A—Fe1—C2128.5 (10)C7A—C6A—H6A126.0
C7A—Fe1—C2114.9 (8)C10A—C6A—H6A126.0
C7—Fe1—C2127.20 (13)Fe1—C6A—H6A131.2
C6—Fe1—C2164.86 (15)C6A—C7A—C8A108.0
C4—Fe1—C268.20 (7)C6A—C7A—Fe174.1 (8)
C5—Fe1—C268.57 (6)C8A—C7A—Fe164.6 (8)
C3—Fe1—C240.54 (7)C6A—C7A—H7A126.0
C1—Fe1—C240.83 (6)C8A—C7A—H7A126.0
C8A—Fe1—C1063.9 (8)Fe1—C7A—H7A126.7
C9A—Fe1—C1026.9 (10)C7A—C8A—C9A108.0
C7A—Fe1—C1074.5 (6)C7A—C8A—Fe172.3 (8)
C7—Fe1—C1067.96 (11)C9A—C8A—Fe170.5 (9)
C6—Fe1—C1040.75 (10)C7A—C8A—H8A126.0
C4—Fe1—C10109.08 (9)C9A—C8A—H8A126.0
C5—Fe1—C10128.22 (12)Fe1—C8A—H8A122.9
C3—Fe1—C10119.57 (13)C10A—C9A—C8A108.0
C1—Fe1—C10165.64 (15)C10A—C9A—Fe174.5 (8)
C2—Fe1—C10152.81 (15)C8A—C9A—Fe165.8 (8)
C8A—Fe1—C815.3 (9)C10A—C9A—H9A126.0
C9A—Fe1—C853.2 (7)C8A—C9A—H9A126.0
C7A—Fe1—C828.0 (9)Fe1—C9A—H9A125.2
C7—Fe1—C840.58 (9)N1—C11—C12110.82 (11)
C6—Fe1—C868.13 (10)N1—C11—C1121.46 (11)
C4—Fe1—C8165.62 (13)C12—C11—C1127.72 (12)
C5—Fe1—C8152.11 (12)C13—C12—C11105.32 (11)
C3—Fe1—C8127.79 (12)C13—C12—H12127.3
C1—Fe1—C8118.02 (9)C11—C12—H12127.3
C2—Fe1—C8107.86 (9)N2—C13—C12106.66 (11)
C10—Fe1—C867.67 (11)N2—C13—C14124.30 (12)
C14—O2—C15115.57 (12)C12—C13—C14129.03 (12)
C11—N1—N2105.42 (10)O1—C14—O2124.07 (13)
N1—N2—C13111.78 (10)O1—C14—C13126.58 (13)
N1—N2—C17118.09 (11)O2—C14—C13109.35 (11)
C13—N2—C17130.10 (12)O2—C15—C16107.49 (15)
C22—N3—C18116.95 (13)O2—C15—H15A110.2
C2—C1—C5107.44 (13)C16—C15—H15A110.2
C2—C1—C11124.84 (13)O2—C15—H15B110.2
C5—C1—C11127.72 (13)C16—C15—H15B110.2
C2—C1—Fe169.61 (8)H15A—C15—H15B108.5
C5—C1—Fe169.45 (8)C15—C16—H16A109.5
C11—C1—Fe1125.73 (9)C15—C16—H16B109.5
C3—C2—C1108.29 (14)H16A—C16—H16B109.5
C3—C2—Fe169.68 (10)C15—C16—H16C109.5
C1—C2—Fe169.56 (8)H16A—C16—H16C109.5
C3—C2—H2125.9H16B—C16—H16C109.5
C1—C2—H2125.9N2—C17—C18111.90 (11)
Fe1—C2—H2126.5N2—C17—H17A109.2
C4—C3—C2108.23 (14)C18—C17—H17A109.2
C4—C3—Fe169.67 (9)N2—C17—H17B109.2
C2—C3—Fe169.77 (9)C18—C17—H17B109.2
C4—C3—H3125.9H17A—C17—H17B107.9
C2—C3—H3125.9N3—C18—C19122.68 (13)
Fe1—C3—H3126.2N3—C18—C17116.92 (12)
C3—C4—C5108.34 (14)C19—C18—C17120.39 (13)
C3—C4—Fe169.92 (9)C20—C19—C18119.17 (14)
C5—C4—Fe169.63 (8)C20—C19—H19120.4
C3—C4—H4125.8C18—C19—H19120.4
C5—C4—H4125.8C21—C20—C19118.81 (15)
Fe1—C4—H4126.2C21—C20—H20120.6
C4—C5—C1107.70 (14)C19—C20—H20120.6
C4—C5—Fe169.49 (9)C20—C21—C22117.97 (15)
C1—C5—Fe169.60 (8)C20—C21—H21121.0
C4—C5—H5126.2C22—C21—H21121.0
C1—C5—H5126.2N3—C22—C21124.42 (15)
Fe1—C5—H5126.3N3—C22—H22117.8
C7—C6—C10107.5 (2)C21—C22—H22117.8
C7—C6—Fe169.61 (13)
C11—N1—N2—C130.02 (14)C7—Fe1—C9—C1081.54 (18)
C11—N1—N2—C17178.37 (11)C6—Fe1—C9—C1037.80 (15)
C8A—Fe1—C1—C269.3 (10)C4—Fe1—C9—C1072.9 (2)
C9A—Fe1—C1—C240 (3)C5—Fe1—C9—C1037.1 (5)
C7A—Fe1—C1—C2111.5 (10)C3—Fe1—C9—C10113.8 (2)
C7—Fe1—C1—C2127.72 (16)C1—Fe1—C9—C10166.4 (2)
C6—Fe1—C1—C2167.79 (16)C2—Fe1—C9—C10157.0 (2)
C4—Fe1—C1—C280.86 (10)C8—Fe1—C9—C10119.4 (2)
C5—Fe1—C1—C2118.74 (12)C8A—Fe1—C9—C818.3 (14)
C3—Fe1—C1—C237.33 (9)C9A—Fe1—C9—C8144 (3)
C10—Fe1—C1—C2164.8 (3)C7A—Fe1—C9—C821.3 (10)
C8—Fe1—C1—C285.16 (15)C7—Fe1—C9—C837.88 (15)
C8A—Fe1—C1—C5172.0 (10)C6—Fe1—C9—C881.63 (17)
C9A—Fe1—C1—C5159 (3)C4—Fe1—C9—C8167.67 (17)
C7A—Fe1—C1—C5129.8 (10)C5—Fe1—C9—C8156.5 (3)
C7—Fe1—C1—C5113.53 (16)C3—Fe1—C9—C8126.75 (19)
C6—Fe1—C1—C573.47 (18)C1—Fe1—C9—C847.0 (3)
C4—Fe1—C1—C537.88 (9)C2—Fe1—C9—C883.53 (19)
C3—Fe1—C1—C581.41 (10)C10—Fe1—C9—C8119.4 (2)
C2—Fe1—C1—C5118.74 (12)C8—C9—C10—C60.2 (2)
C10—Fe1—C1—C546.0 (4)Fe1—C9—C10—C659.10 (15)
C8—Fe1—C1—C5156.10 (14)C8—C9—C10—Fe158.94 (15)
C8A—Fe1—C1—C1149.6 (10)C7—C6—C10—C90.1 (2)
C9A—Fe1—C1—C1179 (3)Fe1—C6—C10—C959.88 (16)
C7A—Fe1—C1—C117.4 (10)C7—C6—C10—Fe159.77 (15)
C7—Fe1—C1—C118.82 (19)C8A—Fe1—C10—C921.3 (9)
C6—Fe1—C1—C1148.9 (2)C9A—Fe1—C10—C914.1 (13)
C4—Fe1—C1—C11160.23 (14)C7A—Fe1—C10—C966.2 (10)
C5—Fe1—C1—C11122.35 (15)C7—Fe1—C10—C981.50 (16)
C3—Fe1—C1—C11156.24 (14)C6—Fe1—C10—C9119.4 (2)
C2—Fe1—C1—C11118.91 (15)C4—Fe1—C10—C9127.5 (2)
C10—Fe1—C1—C1176.3 (4)C5—Fe1—C10—C9169.27 (16)
C8—Fe1—C1—C1133.75 (18)C3—Fe1—C10—C984.4 (2)
C5—C1—C2—C30.28 (17)C1—Fe1—C10—C9153.8 (3)
C11—C1—C2—C3179.13 (13)C2—Fe1—C10—C948.3 (3)
Fe1—C1—C2—C359.10 (11)C8—Fe1—C10—C937.51 (15)
C5—C1—C2—Fe159.38 (10)C8A—Fe1—C10—C698.2 (9)
C11—C1—C2—Fe1120.03 (13)C9A—Fe1—C10—C6133.5 (14)
C8A—Fe1—C2—C3112.4 (10)C7A—Fe1—C10—C653.2 (10)
C9A—Fe1—C2—C371.0 (9)C7—Fe1—C10—C637.94 (15)
C7A—Fe1—C2—C3157.0 (10)C4—Fe1—C10—C6113.0 (2)
C7—Fe1—C2—C3168.65 (15)C5—Fe1—C10—C671.3 (2)
C6—Fe1—C2—C3160.0 (3)C3—Fe1—C10—C6156.15 (18)
C4—Fe1—C2—C337.43 (10)C1—Fe1—C10—C634.4 (4)
C5—Fe1—C2—C381.56 (11)C2—Fe1—C10—C6167.7 (2)
C1—Fe1—C2—C3119.68 (13)C8—Fe1—C10—C681.93 (17)
C10—Fe1—C2—C352.1 (2)C8A—Fe1—C10A—C9A40.0 (5)
C8—Fe1—C2—C3127.86 (15)C7A—Fe1—C10A—C9A86.0 (6)
C8A—Fe1—C2—C1127.9 (10)C7—Fe1—C10A—C9A99.6 (9)
C9A—Fe1—C2—C1169.3 (9)C6—Fe1—C10A—C9A136.3 (16)
C7A—Fe1—C2—C183.3 (10)C4—Fe1—C10A—C9A108.6 (10)
C7—Fe1—C2—C171.67 (15)C5—Fe1—C10A—C9A152.9 (10)
C6—Fe1—C2—C140.4 (4)C3—Fe1—C10A—C9A67.4 (11)
C4—Fe1—C2—C182.25 (9)C1—Fe1—C10A—C9A168.5 (12)
C5—Fe1—C2—C138.13 (8)C2—Fe1—C10A—C9A27 (3)
C3—Fe1—C2—C1119.68 (13)C10—Fe1—C10A—C9A21 (2)
C10—Fe1—C2—C1171.79 (19)C8—Fe1—C10A—C9A56.2 (9)
C8—Fe1—C2—C1112.46 (14)C8A—Fe1—C10A—C6A82.0 (6)
C1—C2—C3—C40.23 (19)C9A—Fe1—C10A—C6A121.9 (5)
Fe1—C2—C3—C459.26 (12)C7A—Fe1—C10A—C6A36.0 (4)
C1—C2—C3—Fe159.03 (10)C7—Fe1—C10A—C6A22.4 (9)
C8A—Fe1—C3—C4158.1 (11)C6—Fe1—C10A—C6A14.4 (15)
C9A—Fe1—C3—C4111.6 (11)C4—Fe1—C10A—C6A129.5 (10)
C7A—Fe1—C3—C4164.0 (13)C5—Fe1—C10A—C6A85.1 (9)
C7—Fe1—C3—C4157.5 (3)C3—Fe1—C10A—C6A170.6 (10)
C6—Fe1—C3—C449.1 (2)C1—Fe1—C10A—C6A46.6 (12)
C5—Fe1—C3—C437.73 (10)C2—Fe1—C10A—C6A149 (3)
C1—Fe1—C3—C481.88 (10)C10—Fe1—C10A—C6A143 (2)
C2—Fe1—C3—C4119.47 (14)C8—Fe1—C10A—C6A65.8 (9)
C10—Fe1—C3—C485.02 (17)C9A—C10A—C6A—C7A0.0
C8—Fe1—C3—C4168.55 (14)Fe1—C10A—C6A—C7A53.5 (8)
C8A—Fe1—C3—C282.4 (11)C9A—C10A—C6A—Fe153.5 (8)
C9A—Fe1—C3—C2128.9 (11)C8A—Fe1—C6A—C7A39.2 (4)
C7A—Fe1—C3—C244.5 (13)C9A—Fe1—C6A—C7A85.9 (7)
C7—Fe1—C3—C238.0 (4)C7—Fe1—C6A—C7A7.8 (15)
C6—Fe1—C3—C2168.57 (18)C6—Fe1—C6A—C7A145 (2)
C4—Fe1—C3—C2119.47 (14)C4—Fe1—C6A—C7A165.1 (10)
C5—Fe1—C3—C281.74 (10)C5—Fe1—C6A—C7A124.9 (10)
C1—Fe1—C3—C237.59 (9)C3—Fe1—C6A—C7A163 (3)
C10—Fe1—C3—C2155.51 (15)C1—Fe1—C6A—C7A81.2 (10)
C8—Fe1—C3—C271.98 (15)C2—Fe1—C6A—C7A45.9 (13)
C2—C3—C4—C50.10 (19)C10—Fe1—C6A—C7A110.7 (10)
Fe1—C3—C4—C559.23 (11)C8—Fe1—C6A—C7A27.2 (9)
C2—C3—C4—Fe159.32 (12)C8A—Fe1—C6A—C10A83.4 (7)
C8A—Fe1—C4—C343.0 (16)C9A—Fe1—C6A—C10A36.8 (4)
C9A—Fe1—C4—C385.7 (12)C7A—Fe1—C6A—C10A122.6 (5)
C7A—Fe1—C4—C3143 (3)C7—Fe1—C6A—C10A130.4 (14)
C7—Fe1—C4—C3167.7 (2)C6—Fe1—C6A—C10A23 (2)
C6—Fe1—C4—C3157.06 (16)C4—Fe1—C6A—C10A72.2 (9)
C5—Fe1—C4—C3119.54 (14)C5—Fe1—C6A—C10A112.4 (10)
C1—Fe1—C4—C381.59 (10)C3—Fe1—C6A—C10A40 (3)
C2—Fe1—C4—C337.55 (10)C1—Fe1—C6A—C10A156.1 (10)
C10—Fe1—C4—C3113.54 (18)C2—Fe1—C6A—C10A168.6 (13)
C8—Fe1—C4—C339.2 (4)C10—Fe1—C6A—C10A11.9 (9)
C8A—Fe1—C4—C5162.6 (16)C8—Fe1—C6A—C10A95.4 (9)
C9A—Fe1—C4—C5154.8 (12)C10A—C6A—C7A—C8A0.0
C7A—Fe1—C4—C524 (3)Fe1—C6A—C7A—C8A55.9 (8)
C7—Fe1—C4—C548.2 (2)C10A—C6A—C7A—Fe155.9 (8)
C6—Fe1—C4—C583.40 (16)C8A—Fe1—C7A—C6A119.4 (5)
C3—Fe1—C4—C5119.54 (14)C9A—Fe1—C7A—C6A79.1 (6)
C1—Fe1—C4—C537.95 (9)C7—Fe1—C7A—C6A12 (2)
C2—Fe1—C4—C581.99 (10)C6—Fe1—C7A—C6A11.3 (10)
C10—Fe1—C4—C5126.92 (17)C4—Fe1—C7A—C6A56 (3)
C8—Fe1—C4—C5158.7 (3)C5—Fe1—C7A—C6A75.2 (10)
C3—C4—C5—C10.07 (18)C3—Fe1—C7A—C6A173.7 (13)
Fe1—C4—C5—C159.34 (10)C1—Fe1—C7A—C6A114.0 (11)
C3—C4—C5—Fe159.41 (12)C2—Fe1—C7A—C6A156.1 (10)
C2—C1—C5—C40.21 (16)C10—Fe1—C7A—C6A51.2 (10)
C11—C1—C5—C4179.17 (13)C8—Fe1—C7A—C6A122.7 (13)
Fe1—C1—C5—C459.27 (11)C9A—Fe1—C7A—C8A40.3 (4)
C2—C1—C5—Fe159.48 (10)C7—Fe1—C7A—C8A132 (2)
C11—C1—C5—Fe1119.90 (13)C6—Fe1—C7A—C8A108.1 (11)
C8A—Fe1—C5—C4145 (3)C4—Fe1—C7A—C8A175 (3)
C9A—Fe1—C5—C451.1 (16)C5—Fe1—C7A—C8A165.4 (11)
C7A—Fe1—C5—C4173.2 (11)C3—Fe1—C7A—C8A54.4 (13)
C7—Fe1—C5—C4157.20 (17)C1—Fe1—C7A—C8A126.6 (12)
C6—Fe1—C5—C4114.56 (18)C2—Fe1—C7A—C8A84.5 (11)
C3—Fe1—C5—C437.31 (10)C10—Fe1—C7A—C8A68.2 (11)
C1—Fe1—C5—C4119.04 (13)C8—Fe1—C7A—C8A3.3 (15)
C2—Fe1—C5—C481.03 (11)C6A—C7A—C8A—C9A0.0
C10—Fe1—C5—C474.09 (19)Fe1—C7A—C8A—C9A61.8 (8)
C8—Fe1—C5—C4168.9 (2)C6A—C7A—C8A—Fe161.8 (8)
C8A—Fe1—C5—C126 (3)C9A—Fe1—C8A—C7A117.2 (4)
C9A—Fe1—C5—C1170.2 (16)C7—Fe1—C8A—C7A14.5 (9)
C7A—Fe1—C5—C167.8 (11)C6—Fe1—C8A—C7A53.1 (10)
C7—Fe1—C5—C183.77 (16)C4—Fe1—C8A—C7A177.8 (13)
C6—Fe1—C5—C1126.40 (17)C5—Fe1—C8A—C7A51 (2)
C4—Fe1—C5—C1119.04 (13)C3—Fe1—C8A—C7A152.9 (10)
C3—Fe1—C5—C181.73 (10)C1—Fe1—C8A—C7A72.1 (10)
C2—Fe1—C5—C138.01 (8)C2—Fe1—C8A—C7A111.2 (11)
C10—Fe1—C5—C1166.87 (16)C10—Fe1—C8A—C7A95.0 (10)
C8—Fe1—C5—C149.9 (2)C8—Fe1—C8A—C7A6 (3)
C8A—Fe1—C6—C751.8 (10)C7A—Fe1—C8A—C9A117.2 (4)
C9A—Fe1—C6—C796.6 (9)C7—Fe1—C8A—C9A102.7 (10)
C7A—Fe1—C6—C79.7 (9)C6—Fe1—C8A—C9A64.1 (11)
C4—Fe1—C6—C7155.95 (15)C4—Fe1—C8A—C9A60.6 (13)
C5—Fe1—C6—C7112.91 (16)C5—Fe1—C8A—C9A169 (2)
C3—Fe1—C6—C7169.88 (18)C3—Fe1—C8A—C9A89.9 (11)
C1—Fe1—C6—C771.64 (17)C1—Fe1—C8A—C9A170.7 (11)
C2—Fe1—C6—C739.7 (4)C2—Fe1—C8A—C9A131.5 (12)
C10—Fe1—C6—C7118.5 (2)C10—Fe1—C8A—C9A22.2 (10)
C8—Fe1—C6—C737.73 (13)C8—Fe1—C8A—C9A123 (3)
C8A—Fe1—C6—C1066.6 (10)C6A—C10A—C9A—C8A0.0
C9A—Fe1—C6—C1021.8 (9)Fe1—C10A—C9A—C8A57.5 (8)
C7A—Fe1—C6—C10108.8 (10)C6A—C10A—C9A—Fe157.5 (8)
C7—Fe1—C6—C10118.5 (2)C7A—C8A—C9A—C10A0.0
C4—Fe1—C6—C1085.60 (19)Fe1—C8A—C9A—C10A63.0 (8)
C5—Fe1—C6—C10128.64 (19)C7A—C8A—C9A—Fe163.0 (8)
C3—Fe1—C6—C1051.4 (3)C8A—Fe1—C9A—C10A118.4 (4)
C1—Fe1—C6—C10169.91 (16)C7A—Fe1—C9A—C10A78.7 (6)
C2—Fe1—C6—C10158.1 (3)C7—Fe1—C9A—C10A62.1 (10)
C8—Fe1—C6—C1080.72 (17)C6—Fe1—C9A—C10A19.7 (10)
C10—C6—C7—C80.0 (2)C4—Fe1—C9A—C10A90.6 (10)
Fe1—C6—C7—C860.04 (14)C5—Fe1—C9A—C10A55.5 (13)
C10—C6—C7—Fe160.02 (15)C3—Fe1—C9A—C10A133.4 (11)
C8A—Fe1—C7—C6111.1 (11)C1—Fe1—C9A—C10A154 (3)
C9A—Fe1—C7—C666.3 (11)C2—Fe1—C9A—C10A173.6 (11)
C7A—Fe1—C7—C6150 (2)C10—Fe1—C9A—C10A12.8 (15)
C4—Fe1—C7—C650.9 (2)C8—Fe1—C9A—C10A102.4 (10)
C5—Fe1—C7—C684.46 (16)C7A—Fe1—C9A—C8A39.8 (4)
C3—Fe1—C7—C6161.9 (3)C7—Fe1—C9A—C8A56.4 (10)
C1—Fe1—C7—C6127.43 (16)C6—Fe1—C9A—C8A98.7 (10)
C2—Fe1—C7—C6167.91 (15)C4—Fe1—C9A—C8A151.0 (10)
C10—Fe1—C7—C638.25 (14)C5—Fe1—C9A—C8A173.9 (13)
C8—Fe1—C7—C6119.19 (19)C3—Fe1—C9A—C8A108.2 (11)
C8A—Fe1—C7—C88.1 (11)C1—Fe1—C9A—C8A36 (3)
C9A—Fe1—C7—C852.9 (11)C2—Fe1—C9A—C8A68.0 (11)
C7A—Fe1—C7—C831 (2)C10—Fe1—C9A—C8A131.2 (15)
C6—Fe1—C7—C8119.19 (19)C8—Fe1—C9A—C8A16.0 (9)
C4—Fe1—C7—C8170.05 (17)N2—N1—C11—C120.02 (14)
C5—Fe1—C7—C8156.35 (15)N2—N1—C11—C1179.75 (11)
C3—Fe1—C7—C842.7 (4)C2—C1—C11—N1170.29 (13)
C1—Fe1—C7—C8113.38 (17)C5—C1—C11—N110.4 (2)
C2—Fe1—C7—C872.89 (18)Fe1—C1—C11—N1100.98 (14)
C10—Fe1—C7—C880.94 (17)C2—C1—C11—C129.4 (2)
C6—C7—C8—C90.1 (2)C5—C1—C11—C12169.84 (13)
Fe1—C7—C8—C959.92 (14)Fe1—C1—C11—C1279.29 (17)
C6—C7—C8—Fe159.84 (14)N1—C11—C12—C130.06 (15)
C8A—Fe1—C8—C935 (3)C1—C11—C12—C13179.69 (12)
C9A—Fe1—C8—C911.0 (12)N1—N2—C13—C120.06 (14)
C7A—Fe1—C8—C9136.2 (15)C17—N2—C13—C12178.15 (13)
C7—Fe1—C8—C9119.0 (2)N1—N2—C13—C14179.11 (11)
C6—Fe1—C8—C981.40 (17)C17—N2—C13—C142.8 (2)
C4—Fe1—C8—C942.4 (4)C11—C12—C13—N20.07 (14)
C5—Fe1—C8—C9168.09 (18)C11—C12—C13—C14179.06 (12)
C3—Fe1—C8—C973.6 (2)C15—O2—C14—O11.6 (2)
C1—Fe1—C8—C9157.33 (17)C15—O2—C14—C13179.15 (12)
C2—Fe1—C8—C9114.14 (19)N2—C13—C14—O13.4 (2)
C10—Fe1—C8—C937.26 (16)C12—C13—C14—O1177.78 (14)
C8A—Fe1—C8—C7154 (3)N2—C13—C14—O2175.85 (12)
C9A—Fe1—C8—C7107.9 (12)C12—C13—C14—O22.98 (19)
C7A—Fe1—C8—C717.3 (15)C14—O2—C15—C16166.88 (14)
C6—Fe1—C8—C737.58 (14)N1—N2—C17—C1869.18 (16)
C4—Fe1—C8—C7161.4 (3)C13—N2—C17—C18108.81 (16)
C5—Fe1—C8—C749.1 (3)C22—N3—C18—C190.1 (2)
C3—Fe1—C8—C7167.39 (17)C22—N3—C18—C17179.02 (13)
C1—Fe1—C8—C783.70 (18)N2—C17—C18—N358.92 (17)
C2—Fe1—C8—C7126.89 (18)N2—C17—C18—C19122.13 (14)
C10—Fe1—C8—C781.72 (17)N3—C18—C19—C200.3 (2)
C7—C8—C9—C100.1 (2)C17—C18—C19—C20178.57 (13)
Fe1—C8—C9—C1059.00 (16)C18—C19—C20—C210.2 (2)
C7—C8—C9—Fe159.14 (14)C19—C20—C21—C220.3 (2)
C8A—Fe1—C9—C10137.7 (15)C18—N3—C22—C210.7 (2)
C9A—Fe1—C9—C1025 (3)C20—C21—C22—N30.8 (3)
C7A—Fe1—C9—C1098.1 (10)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C17H16N3O2)]
Mr415.27
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.3913 (2), 10.6343 (2), 10.7371 (2)
α, β, γ (°)86.6909 (8), 65.5907 (7), 63.8778 (7)
V3)958.82 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.35 × 0.28 × 0.21
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionAnalytical
(SADABS; Bruker, 211)
Tmin, Tmax0.765, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
19702, 3852, 3672
Rint0.020
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.05
No. of reflections3852
No. of parameters261
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: APEX2 (Bruker, 2011), SAINT-Plus (Bruker, 2011), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), FCF_filter (Guzei, 2007) and INSerter (Guzei, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

 

Acknowledgements

We are grateful for financial support for this work through a postdoctoral fellowship to AM by the National Research Foundation (NRF) and the NRF–DST Centre of Excellence in Catalysis (c*change).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuzei, I. A. (2007). FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin–Madison, Madison, Wisconsin, USA.  Google Scholar
First citationGuzei, I. A., Herbst-Irmer, R., Munyaneza, A. & Darkwa, J. (2012). Inorg. Chem. Submitted.  Google Scholar
First citationHouse, D. A., Steel, P. J. & Watson, A. A. (1986). Aust. J. Chem. 39, 1525–1536.  CAS Google Scholar
First citationOjwach, S. O., Guzei, I. A., Benade, L. L., Mapolie, S. F. & Darkwa, J. (2009). Organometallics, 28, 2127–2133.  Web of Science CSD CrossRef CAS Google Scholar
First citationOjwach, S. O., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2007). Polyhedron, 26, 851–861.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m35-m36
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds