organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[(3,5-Di­methyl-2H-pyrrol-2-yl­­idene-κN)(4-nitro­phen­yl)meth­yl]-3,5-di­methyl-1H-pyrrol-1-ido-κN}di­fluoridoboron

aKey Laboratory of Fine Petrochemical Technology, Changzhou University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: aijuncui@yahoo.com

(Received 2 November 2011; accepted 3 December 2011; online 10 December 2011)

In an effort to discover novel and potential boron–dipyrromethene (BODIPY) dyes, the title compound, C19H18BF2N3O2, was prepared from 2,4-dimethyl­pyrrole, 4-nitro­benzaldehyde and BF3·Et2O in a one-pot reaction. There are two independent mol­ecules, A and B, in the asymmetric unit in which the dihedral angles between the benzene ring and boron–dipyrromethene mean plane have significantly different values [82.71 (8)° for mol­ecule A and 73.16 (8)° for mol­ecule B]. Inter­molecular C—H⋯π inter­actions help to stabilize the crystal structure.

Related literature

For the use of related compounds in fluorescence analysis, see: Weiner et al. (2001[Weiner, A. L., Lewis, A., Ottolenghi, M. & Sheves, M. (2001). J. Am. Chem. Soc. 123, 6612-6616.]); Gabe et al. (2004[Gabe, Y., Urano, Y., Kikuchi, K., Kojima, H. & Nagano, T. (2004). J. Am. Chem. Soc. 126, 3357-3367.]). For related structures, see: Euler et al. (2002a[Euler, H., Kirfel, A., Freudenthal, S. J. & Müller, C. E. (2002a). Z. Kristallogr. New Cryst. Struct. 217, 541-542.],b[Euler, H., Kirfel, A., Freudenthal, S. J. & Müller, C. E. (2002b). Z. Kristallogr. New Cryst. Struct. 217, 543-544.]); Cui et al. (2006[Cui, A.-J., Peng, X.-J., Gao, Y.-L. & Fan, J.-L. (2006). Acta Cryst. E62, o4697-o4698.]). For the synthetic procedure, see: Kollmannsberger et al. (1998[Kollmannsberger, M., Rurack, K., Resch-Genger, U. & Daub, J. (1998). J. Phys. Chem. A, 102, 10211-10220.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18BF2N3O2

  • Mr = 369.17

  • Monoclinic, C 2/c

  • a = 30.5729 (6) Å

  • b = 11.8625 (2) Å

  • c = 19.8975 (5) Å

  • β = 96.732 (1)°

  • V = 7166.5 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.60 × 0.31 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.989

  • 10802 measured reflections

  • 6278 independent reflections

  • 4790 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.193

  • S = 1.26

  • 6278 reflections

  • 492 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N4/C26/C28/C29/C31 and N5/C21–C23/C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18ACg1 0.93 2.93 3.784 (4) 154
C35—H35ACg2i 0.93 2.90 3.648 (5) 139
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, many novel boron-dipyrromethene (BODIPY) dyes were developed for fluorescence analysis (Weiner et al., 2001; Gabe et al., 2004) and their crystal structures were investigated at the same time (Euler et al., 2002a,b). As part of our ongoing studies of the substituent effect on the solid-state structures of BODIPY derivatives (Cui et al., 2006), we report herein the crystal strcuture of the title compound, 4,4-difluoro- 1,3,5,7-tetramethyl-8-(4'-nitrophenyl)-4-bora-3a,4a-diaza-s-indacene, (I).

The asymmetric unit of the title compound is shown in Fig. 1. There are two independent unique molecules [lablled A and B], in which the dihedral angles between the benzene ring and boron-dipyrromethene mean plane have significantly different values [82.71 (8)° for molecule A, 73.16 (8)° for molecule B]. In the crystal structure, there also exist intermolecular weak edge-to-face C—H···π [C18-H18A···Cg1i (Cg1 = N4, C26, C28, C29, C31): H18A···Cg1, 2.93 Å, C18···Cg1, 3.784 (4) Å, i = x, y, z; and C35-H35A···Cg2ii (Cg2 = N5, C21-C23, C25): H35A···Cg2, 2.90 Å, C35···Cg2, 3.648 (5) Å, i = -x + 3/2, y + 1/2, -z + 1/2 ] interactions, which help to reinforce the packing lattice.

Related literature top

For the use of related compounds in fluorescence analysis, see: Weiner et al. (2001); Gabe et al. (2004). For related structures, see Euler et al. (2002a,b); Cui et al. (2006). For the synthetic procedure, see Kollmannsberger et al. (1998).

Experimental top

Compound (I) was prepared from 2,4-dimethylpyrrole and p-nitrobenzaldehyde in a one-pot reaction (Kollmannsberger et al., 1998). General procedure: 4.5 mmol of 2,4-dimethylpyrrole and 2 mmol of the aldehyde were dissolved in 150 ml of absolute dichloromethane under nitrogen atmosphere. One drop of trifluoroacetic acid was added and the solution was stirred at room temperature until TLC-control showed complete consumption of the aldehyde. At this point, 2 mmol dichlorodicyanobenzoquinone (DDQ) was added, and stirring was continued for 10 min followed by addition of 4 ml of triethylamine and 4 ml of boron trifluoride etherate quickly. After stirring for another 2 h, the reaction mixture was washed with water and dried, and the solvent was evaporated. The residue was chromatographed twice on a silica column (the mixture of dichloromethane and hexane as eluted solvent). Total yield: 48%. Orange crystals. 1H NMR (CDCl3): δ 1.36 (s, 6H, CH3), 2.57 (s, 6H, CH3), 6.02 (s, 2H, CH), 7.55 (d, 2H, CH, J = 21 Hz), 8.40 (d, 2H, CH, J = 22 Hz). MS (ESI), m/z: 368.2 [M—H]-. HRMS: [M—H]- calculated: 368.1496, measured: 368.1472.

Red single crystals suitable for X-ray analysis were obtained by dissolving (I) (0.2 g) in a hexane/dichloromethane (15 ml, v:v: 1:3) mixture and slowly evaporating the solvent at room temperature for a period of about two weeks.

Refinement top

All H atoms bound to C atoms were assigned to calculated positions, with C—H = 0.96 Å (methyl) and 0.93 Å (aromatic), and refined using a riding model, with Uiso(H)=1.2Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.
{2-[(3,5-Dimethyl-2H-pyrrol-2-ylidene-κN)(4-nitrophenyl)methyl]- 3,5-dimethyl-1H-pyrrol-1-ido-κN}difluoridoboron top
Crystal data top
C19H18BF2N3O2F(000) = 3072
Mr = 369.17Dx = 1.369 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9250 reflections
a = 30.5729 (6) Åθ = 2.9–27.5°
b = 11.8625 (2) ŵ = 0.10 mm1
c = 19.8975 (5) ÅT = 295 K
β = 96.732 (1)°Cuboid, red
V = 7166.5 (3) Å30.60 × 0.31 × 0.12 mm
Z = 16
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6278 independent reflections
Radiation source: fine-focus sealed tube4790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 3036
Tmin = 0.961, Tmax = 0.989k = 714
10802 measured reflectionsl = 1923
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0295P)2 + 25.3515P]
where P = (Fo2 + 2Fc2)/3
6278 reflections(Δ/σ)max = 0.010
492 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C19H18BF2N3O2V = 7166.5 (3) Å3
Mr = 369.17Z = 16
Monoclinic, C2/cMo Kα radiation
a = 30.5729 (6) ŵ = 0.10 mm1
b = 11.8625 (2) ÅT = 295 K
c = 19.8975 (5) Å0.60 × 0.31 × 0.12 mm
β = 96.732 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6278 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4790 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.989Rint = 0.027
10802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.193H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0295P)2 + 25.3515P]
where P = (Fo2 + 2Fc2)/3
6278 reflectionsΔρmax = 0.27 e Å3
492 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F20.40972 (7)0.4438 (2)0.09898 (13)0.0572 (7)
F30.70073 (9)0.6621 (2)0.00916 (13)0.0657 (7)
F40.66392 (7)0.7021 (2)0.09842 (13)0.0587 (7)
F10.44996 (9)0.3905 (2)0.01603 (13)0.0635 (7)
N10.48764 (10)0.4758 (3)0.11631 (17)0.0435 (8)
N20.43918 (10)0.5886 (3)0.03340 (16)0.0409 (7)
N50.74189 (10)0.7350 (3)0.11064 (16)0.0416 (8)
N30.60065 (13)1.0688 (3)0.18716 (19)0.0551 (9)
N40.69020 (10)0.8575 (3)0.03739 (17)0.0456 (8)
C320.75062 (12)0.9378 (3)0.11245 (19)0.0390 (9)
C120.46331 (12)0.6856 (3)0.05529 (19)0.0412 (9)
C130.49862 (11)0.6774 (3)0.10695 (19)0.0375 (8)
O20.63489 (11)1.0849 (3)0.16285 (17)0.0702 (10)
O10.58641 (13)1.1319 (3)0.2283 (2)0.0891 (12)
C60.51053 (12)0.5738 (3)0.13813 (19)0.0404 (9)
C310.71389 (12)0.9519 (3)0.06439 (19)0.0434 (9)
C330.77694 (12)1.0395 (3)0.13595 (19)0.0414 (9)
C140.52499 (12)0.7800 (3)0.12746 (18)0.0387 (9)
N60.85035 (16)1.3323 (3)0.1947 (2)0.0703 (13)
C180.59202 (13)0.8870 (3)0.1283 (2)0.0460 (10)
H18A0.62030.89520.11600.055*
C210.80155 (13)0.7954 (4)0.1816 (2)0.0470 (10)
C170.57416 (13)0.9679 (3)0.16588 (19)0.0421 (9)
C190.56702 (12)0.7928 (3)0.1091 (2)0.0448 (9)
H19A0.57860.73710.08350.054*
C70.40959 (13)0.6181 (4)0.0198 (2)0.0492 (10)
O40.88462 (14)1.3493 (3)0.1696 (2)0.0955 (14)
C260.65831 (13)0.8948 (4)0.0104 (2)0.0539 (11)
C230.76288 (13)0.6440 (4)0.1387 (2)0.0486 (10)
C380.81430 (13)1.0667 (4)0.1053 (2)0.0478 (10)
H38A0.82301.02030.07160.057*
C250.76480 (12)0.8318 (3)0.1355 (2)0.0424 (9)
C360.82497 (14)1.2290 (3)0.1748 (2)0.0503 (10)
C100.44704 (13)0.7764 (4)0.0132 (2)0.0507 (10)
B10.44561 (14)0.4707 (4)0.0653 (2)0.0419 (10)
B20.69829 (14)0.7354 (4)0.0628 (2)0.0437 (11)
C370.83858 (13)1.1622 (4)0.1247 (2)0.0512 (11)
H37A0.86351.18080.10440.061*
C350.78890 (16)1.2029 (4)0.2069 (2)0.0605 (12)
H35A0.78081.24850.24140.073*
C40.50634 (14)0.3885 (4)0.1522 (2)0.0539 (11)
C280.66037 (14)1.0116 (4)0.0143 (2)0.0604 (13)
H28A0.64171.05670.04320.072*
C20.54438 (13)0.5435 (4)0.1908 (2)0.0496 (10)
C80.37869 (15)0.5364 (4)0.0570 (2)0.0629 (13)
H8A0.36820.48460.02550.094*
H8B0.39380.49550.08900.094*
H8C0.35420.57650.08060.094*
C160.53216 (14)0.9590 (4)0.1841 (2)0.0512 (10)
H16A0.52061.01580.20900.061*
C150.50768 (13)0.8643 (4)0.1649 (2)0.0496 (10)
H15A0.47940.85680.17700.060*
C30.54139 (14)0.4284 (4)0.1979 (2)0.0598 (12)
H3A0.55960.38430.22810.072*
C290.69449 (13)1.0504 (4)0.0315 (2)0.0512 (11)
C200.83614 (15)0.8649 (4)0.2222 (2)0.0633 (13)
H20A0.85320.81770.25450.095*
H20B0.82230.92330.24550.095*
H20C0.85510.89820.19250.095*
O30.83572 (15)1.3958 (3)0.2354 (2)0.0983 (14)
C220.79973 (13)0.6791 (4)0.1823 (2)0.0526 (11)
H22A0.81960.63190.20760.063*
C340.76472 (15)1.1072 (4)0.1870 (2)0.0547 (11)
H34A0.74011.08850.20810.066*
C90.41390 (14)0.7324 (4)0.0321 (2)0.0582 (12)
H9A0.39710.77300.06580.070*
C110.46221 (17)0.8973 (4)0.0132 (3)0.0782 (17)
H11A0.44870.93440.02680.117*
H11B0.49370.89950.01400.117*
H11C0.45400.93500.05260.117*
C270.62621 (15)0.8169 (5)0.0502 (2)0.0710 (14)
H27A0.63300.74030.03720.106*
H27B0.62830.82590.09760.106*
H27C0.59680.83460.04110.106*
C300.70618 (16)1.1719 (4)0.0431 (3)0.0757 (16)
H30A0.68921.21720.00960.114*
H30B0.73701.18240.03970.114*
H30C0.69981.19390.08730.114*
C50.48987 (17)0.2703 (4)0.1433 (3)0.0732 (15)
H5A0.46570.26800.10790.110*
H5B0.48020.24430.18480.110*
H5C0.51320.22250.13150.110*
C240.74717 (16)0.5255 (4)0.1245 (3)0.0674 (13)
H24A0.71670.51990.13110.101*
H24B0.76420.47460.15470.101*
H24C0.75070.50620.07850.101*
C10.57686 (15)0.6163 (4)0.2332 (2)0.0654 (13)
H1A0.59550.56980.26400.098*
H1B0.56140.66900.25830.098*
H1C0.59450.65650.20440.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F20.0406 (12)0.0610 (16)0.0716 (16)0.0079 (11)0.0130 (11)0.0080 (13)
F30.0670 (16)0.0669 (17)0.0618 (16)0.0016 (14)0.0019 (13)0.0213 (14)
F40.0402 (13)0.0596 (15)0.0777 (17)0.0075 (11)0.0129 (12)0.0030 (13)
F10.0705 (17)0.0545 (15)0.0642 (16)0.0017 (13)0.0020 (13)0.0210 (13)
N10.0387 (17)0.0398 (18)0.0515 (19)0.0023 (15)0.0027 (15)0.0001 (15)
N20.0385 (17)0.0409 (18)0.0423 (18)0.0067 (14)0.0004 (14)0.0022 (14)
N50.0382 (17)0.0434 (19)0.0441 (18)0.0041 (15)0.0088 (14)0.0029 (15)
N30.060 (2)0.041 (2)0.059 (2)0.0081 (18)0.0122 (19)0.0037 (18)
N40.0351 (17)0.055 (2)0.0464 (19)0.0046 (15)0.0038 (15)0.0011 (16)
C320.0324 (19)0.046 (2)0.039 (2)0.0021 (17)0.0073 (16)0.0011 (17)
C120.040 (2)0.041 (2)0.043 (2)0.0040 (17)0.0051 (17)0.0022 (17)
C130.0322 (19)0.041 (2)0.040 (2)0.0045 (16)0.0052 (15)0.0044 (17)
O20.065 (2)0.069 (2)0.075 (2)0.0318 (18)0.0029 (18)0.0075 (18)
O10.088 (3)0.061 (2)0.116 (3)0.009 (2)0.005 (2)0.041 (2)
C60.036 (2)0.042 (2)0.044 (2)0.0085 (17)0.0044 (16)0.0043 (17)
C310.037 (2)0.050 (2)0.044 (2)0.0051 (18)0.0072 (17)0.0024 (19)
C330.040 (2)0.040 (2)0.044 (2)0.0010 (17)0.0023 (17)0.0013 (18)
C140.040 (2)0.040 (2)0.035 (2)0.0031 (17)0.0004 (16)0.0011 (17)
N60.076 (3)0.047 (2)0.078 (3)0.006 (2)0.034 (2)0.003 (2)
C180.036 (2)0.049 (2)0.053 (2)0.0078 (18)0.0051 (18)0.003 (2)
C210.039 (2)0.056 (3)0.045 (2)0.0044 (19)0.0024 (17)0.006 (2)
C170.050 (2)0.038 (2)0.037 (2)0.0085 (18)0.0024 (17)0.0003 (17)
C190.037 (2)0.047 (2)0.051 (2)0.0042 (18)0.0086 (17)0.0099 (19)
C70.044 (2)0.055 (3)0.047 (2)0.0107 (19)0.0028 (18)0.001 (2)
O40.085 (3)0.080 (3)0.116 (3)0.035 (2)0.015 (3)0.012 (2)
C260.040 (2)0.076 (3)0.045 (2)0.003 (2)0.0005 (18)0.008 (2)
C230.043 (2)0.045 (2)0.058 (3)0.0049 (19)0.0096 (19)0.005 (2)
C380.042 (2)0.052 (3)0.050 (2)0.0006 (19)0.0073 (18)0.003 (2)
C250.041 (2)0.044 (2)0.042 (2)0.0020 (18)0.0044 (17)0.0018 (18)
C360.050 (2)0.040 (2)0.057 (3)0.0040 (19)0.013 (2)0.001 (2)
C100.045 (2)0.048 (2)0.058 (3)0.0070 (19)0.0022 (19)0.008 (2)
B10.039 (2)0.042 (2)0.046 (3)0.007 (2)0.0058 (19)0.005 (2)
B20.037 (2)0.047 (3)0.048 (3)0.005 (2)0.008 (2)0.011 (2)
C370.039 (2)0.057 (3)0.057 (3)0.004 (2)0.0007 (19)0.003 (2)
C350.070 (3)0.053 (3)0.057 (3)0.000 (2)0.003 (2)0.017 (2)
C40.049 (2)0.042 (2)0.070 (3)0.0012 (19)0.004 (2)0.006 (2)
C280.045 (2)0.076 (3)0.059 (3)0.002 (2)0.002 (2)0.026 (2)
C20.039 (2)0.055 (3)0.052 (2)0.0047 (19)0.0040 (18)0.004 (2)
C80.056 (3)0.070 (3)0.060 (3)0.019 (2)0.009 (2)0.003 (2)
C160.057 (3)0.043 (2)0.056 (3)0.005 (2)0.015 (2)0.009 (2)
C150.041 (2)0.051 (2)0.059 (3)0.0058 (19)0.0182 (19)0.004 (2)
C30.050 (3)0.054 (3)0.071 (3)0.003 (2)0.007 (2)0.014 (2)
C290.039 (2)0.059 (3)0.055 (3)0.002 (2)0.0039 (19)0.014 (2)
C200.056 (3)0.062 (3)0.066 (3)0.008 (2)0.016 (2)0.007 (2)
O30.117 (3)0.058 (2)0.111 (3)0.007 (2)0.025 (3)0.027 (2)
C220.041 (2)0.057 (3)0.058 (3)0.000 (2)0.001 (2)0.012 (2)
C340.057 (3)0.054 (3)0.055 (3)0.003 (2)0.017 (2)0.009 (2)
C90.053 (3)0.062 (3)0.055 (3)0.009 (2)0.012 (2)0.016 (2)
C110.077 (3)0.055 (3)0.094 (4)0.019 (3)0.026 (3)0.025 (3)
C270.055 (3)0.094 (4)0.060 (3)0.015 (3)0.011 (2)0.001 (3)
C300.059 (3)0.061 (3)0.102 (4)0.005 (2)0.009 (3)0.028 (3)
C50.069 (3)0.045 (3)0.102 (4)0.001 (2)0.005 (3)0.011 (3)
C240.066 (3)0.047 (3)0.088 (4)0.006 (2)0.006 (3)0.002 (3)
C10.060 (3)0.069 (3)0.061 (3)0.008 (2)0.017 (2)0.008 (2)
Geometric parameters (Å, º) top
F2—B11.389 (5)C23—C241.501 (6)
F3—B21.385 (5)C38—C371.385 (6)
F4—B21.392 (5)C38—H38A0.9300
F1—B11.383 (5)C36—C351.373 (6)
N1—C41.346 (5)C36—C371.375 (6)
N1—C61.400 (5)C10—C91.378 (6)
N1—B11.543 (5)C10—C111.507 (6)
N2—C71.355 (5)C37—H37A0.9300
N2—C121.408 (5)C35—C341.387 (6)
N2—B11.539 (6)C35—H35A0.9300
N5—C231.343 (5)C4—C31.405 (6)
N5—C251.404 (5)C4—C51.494 (6)
N5—B21.544 (5)C28—C291.381 (6)
N3—O21.219 (5)C28—H28A0.9300
N3—O11.226 (5)C2—C31.377 (6)
N3—C171.479 (5)C2—C11.498 (6)
N4—C261.354 (5)C8—H8A0.9600
N4—C311.406 (5)C8—H8B0.9600
N4—B21.545 (6)C8—H8C0.9600
C32—C311.397 (5)C16—C151.379 (6)
C32—C251.391 (5)C16—H16A0.9300
C32—C331.494 (5)C15—H15A0.9300
C12—C131.404 (5)C3—H3A0.9300
C12—C101.419 (5)C29—C301.496 (6)
C13—C61.405 (5)C20—H20A0.9600
C13—C141.490 (5)C20—H20B0.9600
C6—C21.430 (5)C20—H20C0.9600
C31—C291.432 (6)C22—H22A0.9300
C33—C341.380 (6)C34—H34A0.9300
C33—C381.394 (5)C9—H9A0.9300
C14—C191.385 (5)C11—H11A0.9600
C14—C151.388 (5)C11—H11B0.9600
N6—O31.227 (6)C11—H11C0.9600
N6—O41.229 (6)C27—H27A0.9600
N6—C361.479 (6)C27—H27B0.9600
C18—C171.369 (5)C27—H27C0.9600
C18—C191.383 (5)C30—H30A0.9600
C18—H18A0.9300C30—H30B0.9600
C21—C221.381 (6)C30—H30C0.9600
C21—C251.432 (5)C5—H5A0.9600
C21—C201.500 (6)C5—H5B0.9600
C17—C161.379 (6)C5—H5C0.9600
C19—H19A0.9300C24—H24A0.9600
C7—C91.387 (6)C24—H24B0.9600
C7—C81.488 (6)C24—H24C0.9600
C26—C281.390 (7)C1—H1A0.9600
C26—C271.504 (6)C1—H1B0.9600
C23—C221.403 (6)C1—H1C0.9600
C4—N1—C6108.0 (3)C36—C37—C38118.4 (4)
C4—N1—B1126.0 (3)C36—C37—H37A120.8
C6—N1—B1125.8 (3)C38—C37—H37A120.8
C7—N2—C12108.0 (3)C36—C35—C34118.8 (4)
C7—N2—B1126.7 (3)C36—C35—H35A120.6
C12—N2—B1125.3 (3)C34—C35—H35A120.6
C23—N5—C25108.4 (3)N1—C4—C3109.2 (4)
C23—N5—B2126.4 (3)N1—C4—C5122.9 (4)
C25—N5—B2125.0 (3)C3—C4—C5127.9 (4)
O2—N3—O1123.9 (4)C29—C28—C26109.3 (4)
O2—N3—C17118.7 (4)C29—C28—H28A125.4
O1—N3—C17117.4 (4)C26—C28—H28A125.4
C26—N4—C31107.7 (4)C3—C2—C6105.9 (4)
C26—N4—B2127.7 (4)C3—C2—C1124.1 (4)
C31—N4—B2124.5 (3)C6—C2—C1130.0 (4)
C31—C32—C25121.9 (4)C7—C8—H8A109.5
C31—C32—C33118.6 (3)C7—C8—H8B109.5
C25—C32—C33119.4 (3)H8A—C8—H8B109.5
N2—C12—C13120.0 (3)C7—C8—H8C109.5
N2—C12—C10107.7 (3)H8A—C8—H8C109.5
C13—C12—C10132.2 (4)H8B—C8—H8C109.5
C6—C13—C12121.4 (3)C15—C16—C17118.7 (4)
C6—C13—C14119.3 (3)C15—C16—H16A120.6
C12—C13—C14119.3 (3)C17—C16—H16A120.6
C13—C6—N1119.7 (3)C16—C15—C14120.5 (4)
C13—C6—C2132.2 (4)C16—C15—H15A119.7
N1—C6—C2108.1 (3)C14—C15—H15A119.7
C32—C31—N4120.2 (4)C2—C3—C4108.8 (4)
C32—C31—C29131.8 (4)C2—C3—H3A125.6
N4—C31—C29107.9 (3)C4—C3—H3A125.6
C34—C33—C38119.6 (4)C28—C29—C31105.7 (4)
C34—C33—C32121.2 (4)C28—C29—C30124.8 (4)
C38—C33—C32119.3 (4)C31—C29—C30129.5 (4)
C19—C14—C15119.1 (4)C21—C20—H20A109.5
C19—C14—C13120.4 (3)C21—C20—H20B109.5
C15—C14—C13120.5 (3)H20A—C20—H20B109.5
O3—N6—O4124.2 (5)C21—C20—H20C109.5
O3—N6—C36117.7 (5)H20A—C20—H20C109.5
O4—N6—C36118.2 (5)H20B—C20—H20C109.5
C17—C18—C19118.4 (4)C21—C22—C23108.7 (4)
C17—C18—H18A120.8C21—C22—H22A125.7
C19—C18—H18A120.8C23—C22—H22A125.7
C22—C21—C25106.2 (4)C33—C34—C35120.4 (4)
C22—C21—C20124.8 (4)C33—C34—H34A119.8
C25—C21—C20129.0 (4)C35—C34—H34A119.8
C18—C17—C16122.2 (4)C10—C9—C7109.4 (4)
C18—C17—N3118.9 (4)C10—C9—H9A125.3
C16—C17—N3118.8 (4)C7—C9—H9A125.3
C18—C19—C14121.1 (4)C10—C11—H11A109.5
C18—C19—H19A119.5C10—C11—H11B109.5
C14—C19—H19A119.5H11A—C11—H11B109.5
N2—C7—C9108.8 (4)C10—C11—H11C109.5
N2—C7—C8123.2 (4)H11A—C11—H11C109.5
C9—C7—C8128.0 (4)H11B—C11—H11C109.5
N4—C26—C28109.4 (4)C26—C27—H27A109.5
N4—C26—C27122.7 (4)C26—C27—H27B109.5
C28—C26—C27127.9 (4)H27A—C27—H27B109.5
N5—C23—C22109.2 (4)C26—C27—H27C109.5
N5—C23—C24123.2 (4)H27A—C27—H27C109.5
C22—C23—C24127.6 (4)H27B—C27—H27C109.5
C37—C38—C33120.5 (4)C29—C30—H30A109.5
C37—C38—H38A119.8C29—C30—H30B109.5
C33—C38—H38A119.8H30A—C30—H30B109.5
C32—C25—N5120.0 (3)C29—C30—H30C109.5
C32—C25—C21132.5 (4)H30A—C30—H30C109.5
N5—C25—C21107.5 (3)H30B—C30—H30C109.5
C35—C36—C37122.3 (4)C4—C5—H5A109.5
C35—C36—N6119.2 (4)C4—C5—H5B109.5
C37—C36—N6118.5 (4)H5A—C5—H5B109.5
C9—C10—C12106.2 (4)C4—C5—H5C109.5
C9—C10—C11124.3 (4)H5A—C5—H5C109.5
C12—C10—C11129.5 (4)H5B—C5—H5C109.5
F2—B1—F1109.4 (3)C23—C24—H24A109.5
F2—B1—N2109.7 (3)C23—C24—H24B109.5
F1—B1—N2110.6 (3)H24A—C24—H24B109.5
F2—B1—N1109.6 (3)C23—C24—H24C109.5
F1—B1—N1110.6 (3)H24A—C24—H24C109.5
N2—B1—N1106.9 (3)H24B—C24—H24C109.5
F3—B2—F4109.1 (3)C2—C1—H1A109.5
F3—B2—N5110.6 (3)C2—C1—H1B109.5
F4—B2—N5109.5 (3)H1A—C1—H1B109.5
F3—B2—N4110.9 (4)C2—C1—H1C109.5
F4—B2—N4109.3 (3)H1A—C1—H1C109.5
N5—B2—N4107.3 (3)H1B—C1—H1C109.5
C7—N2—C12—C13175.3 (4)O4—N6—C36—C375.9 (6)
B1—N2—C12—C135.0 (6)N2—C12—C10—C90.2 (5)
C7—N2—C12—C100.2 (4)C13—C12—C10—C9175.0 (4)
B1—N2—C12—C10179.4 (4)N2—C12—C10—C11177.7 (5)
N2—C12—C13—C60.4 (6)C13—C12—C10—C112.9 (8)
C10—C12—C13—C6174.7 (4)C7—N2—B1—F270.0 (5)
N2—C12—C13—C14177.4 (3)C12—N2—B1—F2109.6 (4)
C10—C12—C13—C143.1 (7)C7—N2—B1—F150.8 (5)
C12—C13—C6—N11.7 (6)C12—N2—B1—F1129.7 (4)
C14—C13—C6—N1176.1 (3)C7—N2—B1—N1171.2 (4)
C12—C13—C6—C2179.9 (4)C12—N2—B1—N19.2 (5)
C14—C13—C6—C22.3 (7)C4—N1—B1—F265.3 (5)
C4—N1—C6—C13177.7 (4)C6—N1—B1—F2108.3 (4)
B1—N1—C6—C137.8 (6)C4—N1—B1—F155.4 (5)
C4—N1—C6—C21.0 (5)C6—N1—B1—F1131.1 (4)
B1—N1—C6—C2173.5 (4)C4—N1—B1—N2175.8 (4)
C25—C32—C31—N40.5 (6)C6—N1—B1—N210.6 (5)
C33—C32—C31—N4175.4 (3)C23—N5—B2—F352.3 (5)
C25—C32—C31—C29177.0 (4)C25—N5—B2—F3131.9 (4)
C33—C32—C31—C291.2 (6)C23—N5—B2—F467.9 (5)
C26—N4—C31—C32176.4 (4)C25—N5—B2—F4107.8 (4)
B2—N4—C31—C327.4 (6)C23—N5—B2—N4173.5 (4)
C26—N4—C31—C291.0 (4)C25—N5—B2—N410.8 (5)
B2—N4—C31—C29175.3 (4)C26—N4—B2—F352.0 (5)
C31—C32—C33—C3484.0 (5)C31—N4—B2—F3132.5 (4)
C25—C32—C33—C34100.1 (5)C26—N4—B2—F468.3 (5)
C31—C32—C33—C3895.5 (4)C31—N4—B2—F4107.2 (4)
C25—C32—C33—C3880.4 (5)C26—N4—B2—N5173.0 (4)
C6—C13—C14—C1971.7 (5)C31—N4—B2—N511.5 (5)
C12—C13—C14—C19106.2 (4)C35—C36—C37—C381.4 (6)
C6—C13—C14—C15108.7 (4)N6—C36—C37—C38178.8 (4)
C12—C13—C14—C1573.4 (5)C33—C38—C37—C360.1 (6)
C19—C18—C17—C160.9 (6)C37—C36—C35—C341.6 (7)
C19—C18—C17—N3179.6 (4)N6—C36—C35—C34178.6 (4)
O2—N3—C17—C1810.3 (5)C6—N1—C4—C30.3 (5)
O1—N3—C17—C18170.1 (4)B1—N1—C4—C3174.1 (4)
O2—N3—C17—C16169.2 (4)C6—N1—C4—C5178.8 (4)
O1—N3—C17—C1610.4 (6)B1—N1—C4—C54.3 (7)
C17—C18—C19—C140.2 (6)N4—C26—C28—C290.5 (6)
C15—C14—C19—C181.0 (6)C27—C26—C28—C29179.3 (4)
C13—C14—C19—C18179.4 (4)C13—C6—C2—C3177.2 (4)
C12—N2—C7—C90.6 (5)N1—C6—C2—C31.3 (5)
B1—N2—C7—C9179.1 (4)C13—C6—C2—C14.2 (8)
C12—N2—C7—C8178.9 (4)N1—C6—C2—C1177.3 (4)
B1—N2—C7—C81.4 (6)C18—C17—C16—C151.2 (6)
C31—N4—C26—C280.9 (5)N3—C17—C16—C15179.3 (4)
B2—N4—C26—C28175.2 (4)C17—C16—C15—C140.4 (6)
C31—N4—C26—C27179.8 (4)C19—C14—C15—C160.7 (6)
B2—N4—C26—C273.7 (7)C13—C14—C15—C16179.7 (4)
C25—N5—C23—C220.1 (5)C6—C2—C3—C41.1 (5)
B2—N5—C23—C22176.2 (4)C1—C2—C3—C4177.6 (4)
C25—N5—C23—C24179.0 (4)N1—C4—C3—C20.5 (6)
B2—N5—C23—C242.7 (6)C5—C4—C3—C2177.9 (5)
C34—C33—C38—C371.4 (6)C26—C28—C29—C310.1 (5)
C32—C33—C38—C37178.1 (4)C26—C28—C29—C30178.4 (5)
C31—C32—C25—N50.3 (6)C32—C31—C29—C28176.2 (4)
C33—C32—C25—N5176.1 (3)N4—C31—C29—C280.7 (5)
C31—C32—C25—C21177.4 (4)C32—C31—C29—C305.3 (8)
C33—C32—C25—C211.7 (7)N4—C31—C29—C30177.8 (5)
C23—N5—C25—C32177.8 (4)C25—C21—C22—C230.6 (5)
B2—N5—C25—C325.8 (6)C20—C21—C22—C23179.6 (4)
C23—N5—C25—C210.5 (4)N5—C23—C22—C210.3 (5)
B2—N5—C25—C21175.9 (3)C24—C23—C22—C21178.6 (4)
C22—C21—C25—C32177.4 (4)C38—C33—C34—C351.2 (7)
C20—C21—C25—C322.5 (8)C32—C33—C34—C35178.3 (4)
C22—C21—C25—N50.6 (5)C36—C35—C34—C330.3 (7)
C20—C21—C25—N5179.5 (4)C12—C10—C9—C70.5 (5)
O3—N6—C36—C356.1 (6)C11—C10—C9—C7177.5 (5)
O4—N6—C36—C35173.9 (4)N2—C7—C9—C100.7 (5)
O3—N6—C36—C37174.1 (4)C8—C7—C9—C10178.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N4/C26/C28/C29/C31 and N5/C21–C23/C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18A···Cg10.932.933.784 (4)154
C35—H35A···Cg2i0.932.903.648 (5)139
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H18BF2N3O2
Mr369.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)30.5729 (6), 11.8625 (2), 19.8975 (5)
β (°) 96.732 (1)
V3)7166.5 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.60 × 0.31 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.961, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
10802, 6278, 4790
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.193, 1.26
No. of reflections6278
No. of parameters492
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0295P)2 + 25.3515P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N4/C26/C28/C29/C31 and N5/C21–C23/C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18A···Cg10.932.933.784 (4)154
C35—H35A···Cg2i0.932.903.648 (5)139
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support from the Open Foundation of Jiangsu Province Key Laboratory of Fine Petrochemical Technology (KF1005) and the Analysis Center of Changzhou University.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, A.-J., Peng, X.-J., Gao, Y.-L. & Fan, J.-L. (2006). Acta Cryst. E62, o4697–o4698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEuler, H., Kirfel, A., Freudenthal, S. J. & Müller, C. E. (2002a). Z. Kristallogr. New Cryst. Struct. 217, 541–542.  CAS Google Scholar
First citationEuler, H., Kirfel, A., Freudenthal, S. J. & Müller, C. E. (2002b). Z. Kristallogr. New Cryst. Struct. 217, 543–544.  CAS Google Scholar
First citationGabe, Y., Urano, Y., Kikuchi, K., Kojima, H. & Nagano, T. (2004). J. Am. Chem. Soc. 126, 3357–3367.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKollmannsberger, M., Rurack, K., Resch-Genger, U. & Daub, J. (1998). J. Phys. Chem. A, 102, 10211–10220.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeiner, A. L., Lewis, A., Ottolenghi, M. & Sheves, M. (2001). J. Am. Chem. Soc. 123, 6612–6616.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds