organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Nitro­anilino)benzoic acid

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhjnjut@hotmail.com

(Received 20 November 2011; accepted 12 December 2011; online 21 December 2011)

In the title compound, C13H10N2O4, the nitro N atom deviates by 0.031 (2) Å from the plane of the benzene ring to which it is attached. The aromatic rings are oriented at a dihedral angle of 50.6 (1)°. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, inversion dimers are formed by pairs of O—H⋯O inter­actions.

Related literature

For the use of the title compound as an inter­mediate in the synthesis pharmacologically important compounds, see: Kelleher et al. (2007[Kelleher, J. M., Mc Auliffe, M. T., Moynihan, H. A. & Mullins, M. D. (2007). Arkivoc, xvi, 209-226.]). For the synthesis, see: Rewcastle et al. (1987[Rewcastle, G. W., Denny, W. A. & Baguley, B. C. (1987). J. Med. Chem. 30, 843-851.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O4

  • Mr = 258.23

  • Monoclinic, P 21 /c

  • a = 7.1840 (14) Å

  • b = 21.546 (4) Å

  • c = 7.9070 (16) Å

  • β = 101.62 (3)°

  • V = 1198.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 4704 measured reflections

  • 2209 independent reflections

  • 1437 reflections with I > 2σ(I)

  • Rint = 0.046

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.158

  • S = 1.01

  • 2209 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.86 2.02 2.636 (3) 128
O1—H1C⋯O2i 0.82 1.82 2.636 (2) 176
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SET4 (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); data reduction: MolEN (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 2-(2-nitrophenylamino)benzoic acid is an important intermediate for the synthesis of 10,11-dihydro-5-acetyl-dibenzo[b,e][1,4]diazepin-11-one (Kelleher et al., 2007). The crystal structure of the title compound, (I), is reported herein.

The molecular structure of (I) is shown in Fig. 1, and the intermolecular O—H···O hydrogen bond (Table 1) results in the formation of centrosymmetric carboxylic acid dimers. The bond lengths and angles are within normal ranges (Allen et al., 1987).

In the molecule of the title compound, the rings are planar. The dihedral angle of the rings Cg1(C1—C6), Cg2(C8—C13) is: Cg1/Cg2 = 50.6 (1)°. The N atom is situated in the same plane as the phenyl ring to which it is attached.

In the crystal structure of the title compound, (I), intra- and intermolecular O—H···O and N—H···O hydrogen bonds are observed. Centrosymmetrical dimers are formed by the O—H···O interaction.

Related literature top

For the use of the title compound as an intermediate in the synthesis pharmacologically important compounds, see: Kelleher et al. (2007). For the synthesis, see: Rewcastle et al. (1987). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I), was prepared by a literature method (Rewcastle et al., 1987). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.20 g, 0.8 mmol) in acetone (25 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically and refined as riding groups, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: SET4 (Enraf–Nonius, 1994); data reduction: MolEN (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I). Hydrogen bonds are shown as dashed lines.
2-(2-Nitroanilino)benzoic acid top
Crystal data top
C13H10N2O4F(000) = 536
Mr = 258.23Dx = 1.431 Mg m3
Monoclinic, P21/cMelting point: 490 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.1840 (14) ÅCell parameters from 25 reflections
b = 21.546 (4) Åθ = 10–13°
c = 7.9070 (16) ŵ = 0.11 mm1
β = 101.62 (3)°T = 293 K
V = 1198.8 (4) Å3Block, yellow
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.046
Radiation source: fine-focus sealed tubeθmax = 25.4°, θmin = 1.9°
Graphite monochromatorh = 08
ω/2θ scansk = 2525
4704 measured reflectionsl = 99
2209 independent reflections3 standard reflections every 200 reflections
1437 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.092P)2]
where P = (Fo2 + 2Fc2)/3
2209 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C13H10N2O4V = 1198.8 (4) Å3
Mr = 258.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1840 (14) ŵ = 0.11 mm1
b = 21.546 (4) ÅT = 293 K
c = 7.9070 (16) Å0.30 × 0.20 × 0.10 mm
β = 101.62 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.046
4704 measured reflections3 standard reflections every 200 reflections
2209 independent reflections intensity decay: 1%
1437 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
2209 reflectionsΔρmin = 0.32 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3630 (3)0.63169 (9)0.8669 (2)0.0512 (6)
H1A0.29750.60830.78890.061*
O10.6904 (2)0.49333 (8)0.6877 (2)0.0644 (6)
H1C0.64780.47990.59060.097*
C10.5770 (4)0.62113 (12)1.1447 (3)0.0525 (6)
H1B0.51170.65271.18820.063*
O20.4326 (2)0.55260 (8)0.6238 (2)0.0565 (5)
N20.0301 (3)0.66483 (11)0.7232 (3)0.0617 (6)
C20.7255 (4)0.59204 (13)1.2522 (3)0.0584 (7)
H2A0.75940.60401.36730.070*
O30.0167 (3)0.61293 (10)0.6871 (3)0.0755 (6)
C30.8248 (4)0.54511 (14)1.1905 (3)0.0604 (7)
H3A0.92600.52571.26290.073*
C40.7721 (3)0.52775 (12)1.0218 (3)0.0550 (7)
H4A0.83760.49570.98090.066*
O40.1970 (3)0.68049 (12)0.6926 (4)0.1088 (9)
C50.6226 (3)0.55667 (10)0.9083 (3)0.0437 (6)
C60.5225 (3)0.60428 (11)0.9718 (3)0.0447 (6)
C70.5730 (3)0.53451 (11)0.7287 (3)0.0469 (6)
C80.2996 (3)0.69134 (11)0.8744 (3)0.0428 (6)
C90.1125 (3)0.70950 (11)0.8017 (3)0.0461 (6)
C100.0547 (4)0.77113 (13)0.8017 (3)0.0599 (7)
H10A0.06980.78170.75190.072*
C110.1794 (4)0.81632 (13)0.8742 (4)0.0618 (7)
H11A0.14140.85760.87230.074*
C120.3632 (4)0.79945 (11)0.9505 (3)0.0537 (7)
H12A0.44780.82961.00350.064*
C130.4222 (3)0.73919 (11)0.9492 (3)0.0492 (6)
H13A0.54730.72950.99930.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0457 (12)0.0446 (12)0.0561 (13)0.0086 (10)0.0068 (9)0.0118 (9)
O10.0490 (11)0.0629 (12)0.0772 (13)0.0150 (9)0.0031 (9)0.0213 (9)
C10.0485 (14)0.0528 (15)0.0545 (15)0.0053 (12)0.0068 (11)0.0022 (12)
O20.0558 (11)0.0512 (11)0.0580 (10)0.0111 (9)0.0009 (8)0.0077 (8)
N20.0439 (13)0.0625 (16)0.0708 (15)0.0036 (11)0.0069 (11)0.0035 (12)
C20.0530 (15)0.0641 (17)0.0522 (15)0.0082 (14)0.0036 (12)0.0016 (13)
O30.0606 (13)0.0603 (13)0.0932 (15)0.0053 (10)0.0141 (10)0.0106 (11)
C30.0407 (14)0.0642 (18)0.0697 (18)0.0035 (12)0.0049 (13)0.0077 (14)
C40.0385 (13)0.0537 (16)0.0705 (18)0.0056 (12)0.0051 (12)0.0014 (12)
O40.0413 (12)0.099 (2)0.171 (3)0.0063 (12)0.0146 (14)0.0119 (16)
C50.0347 (12)0.0401 (13)0.0557 (14)0.0018 (10)0.0076 (10)0.0007 (10)
C60.0358 (12)0.0447 (14)0.0507 (14)0.0008 (10)0.0016 (10)0.0023 (10)
C70.0405 (13)0.0360 (13)0.0637 (16)0.0013 (11)0.0095 (12)0.0001 (11)
C80.0408 (13)0.0457 (14)0.0407 (12)0.0064 (10)0.0053 (10)0.0035 (10)
C90.0399 (13)0.0509 (15)0.0445 (13)0.0042 (11)0.0013 (10)0.0017 (11)
C100.0501 (15)0.0627 (18)0.0640 (17)0.0177 (14)0.0043 (13)0.0021 (13)
C110.0689 (19)0.0462 (16)0.0692 (18)0.0145 (14)0.0113 (14)0.0005 (13)
C120.0631 (16)0.0470 (15)0.0495 (14)0.0038 (13)0.0081 (12)0.0047 (11)
C130.0434 (14)0.0513 (16)0.0494 (14)0.0011 (11)0.0013 (11)0.0036 (11)
Geometric parameters (Å, º) top
N1—C81.369 (3)C3—H3A0.9300
N1—C61.402 (3)C4—C51.399 (3)
N1—H1A0.8600C4—H4A0.9300
O1—C71.309 (3)C5—C61.402 (3)
O1—H1C0.8200C5—C71.472 (3)
C1—C21.374 (3)C8—C131.407 (3)
C1—C61.392 (3)C8—C91.407 (3)
C1—H1B0.9300C9—C101.391 (3)
O2—C71.233 (3)C10—C111.368 (4)
N2—O31.218 (3)C10—H10A0.9300
N2—O41.222 (3)C11—C121.385 (4)
N2—C91.451 (3)C11—H11A0.9300
C2—C31.382 (4)C12—C131.366 (3)
C2—H2A0.9300C12—H12A0.9300
C3—C41.363 (3)C13—H13A0.9300
C8—N1—C6127.5 (2)C1—C6—C5118.6 (2)
C8—N1—H1A116.2N1—C6—C5120.9 (2)
C6—N1—H1A116.2O2—C7—O1121.9 (2)
C7—O1—H1C109.5O2—C7—C5123.5 (2)
C2—C1—C6121.2 (2)O1—C7—C5114.6 (2)
C2—C1—H1B119.4N1—C8—C13121.4 (2)
C6—C1—H1B119.4N1—C8—C9122.9 (2)
O3—N2—O4120.9 (2)C13—C8—C9115.7 (2)
O3—N2—C9120.3 (2)C10—C9—C8121.7 (2)
O4—N2—C9118.8 (2)C10—C9—N2116.6 (2)
C1—C2—C3120.5 (2)C8—C9—N2121.6 (2)
C1—C2—H2A119.8C11—C10—C9120.6 (2)
C3—C2—H2A119.8C11—C10—H10A119.7
C4—C3—C2119.0 (2)C9—C10—H10A119.7
C4—C3—H3A120.5C10—C11—C12118.8 (2)
C2—C3—H3A120.5C10—C11—H11A120.6
C3—C4—C5122.1 (2)C12—C11—H11A120.6
C3—C4—H4A119.0C13—C12—C11121.0 (2)
C5—C4—H4A119.0C13—C12—H12A119.5
C4—C5—C6118.6 (2)C11—C12—H12A119.5
C4—C5—C7118.7 (2)C12—C13—C8122.1 (2)
C6—C5—C7122.7 (2)C12—C13—H13A119.0
C1—C6—N1120.3 (2)C8—C13—H13A119.0
C6—C1—C2—C30.0 (4)C6—N1—C8—C1322.6 (4)
C1—C2—C3—C40.6 (4)C6—N1—C8—C9160.5 (2)
C2—C3—C4—C51.1 (4)N1—C8—C9—C10176.0 (2)
C3—C4—C5—C61.1 (4)C13—C8—C9—C101.1 (3)
C3—C4—C5—C7179.1 (2)N1—C8—C9—N24.1 (4)
C2—C1—C6—N1175.9 (2)C13—C8—C9—N2178.8 (2)
C2—C1—C6—C50.0 (4)O3—N2—C9—C10165.3 (2)
C8—N1—C6—C134.3 (4)O4—N2—C9—C1014.0 (4)
C8—N1—C6—C5149.9 (2)O3—N2—C9—C814.8 (4)
C4—C5—C6—C10.5 (3)O4—N2—C9—C8165.9 (3)
C7—C5—C6—C1178.5 (2)C8—C9—C10—C110.4 (4)
C4—C5—C6—N1175.3 (2)N2—C9—C10—C11179.5 (2)
C7—C5—C6—N12.6 (4)C9—C10—C11—C121.2 (4)
C4—C5—C7—O2172.6 (2)C10—C11—C12—C132.1 (4)
C6—C5—C7—O25.4 (4)C11—C12—C13—C81.4 (4)
C4—C5—C7—O17.2 (3)N1—C8—C13—C12176.9 (2)
C6—C5—C7—O1174.8 (2)C9—C8—C13—C120.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.862.022.636 (3)128
O1—H1C···O2i0.821.822.636 (2)176
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H10N2O4
Mr258.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.1840 (14), 21.546 (4), 7.9070 (16)
β (°) 101.62 (3)
V3)1198.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4704, 2209, 1437
Rint0.046
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.158, 1.01
No. of reflections2209
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.32

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), SET4 (Enraf–Nonius, 1994), MolEN (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.86002.02002.636 (3)128.00
O1—H1C···O2i0.82001.82002.636 (2)176.00
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKelleher, J. M., Mc Auliffe, M. T., Moynihan, H. A. & Mullins, M. D. (2007). Arkivoc, xvi, 209–226.  CrossRef Google Scholar
First citationRewcastle, G. W., Denny, W. A. & Baguley, B. C. (1987). J. Med. Chem. 30, 843–851.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds