organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o54-o55

The desoxazoline asidiacyclamide analogue cyclo(Gly–Thr–D-Val–Thz–Ile–Thr–D-Val–Thz) aceto­nitrile monosolvate

aOsaka University of Pharmaceutical Sciences, Nasahara, Osaka 569-1094, Japan
*Correspondence e-mail: doit@gly.oups.ac.jp

(Received 16 November 2011; accepted 30 November 2011; online 10 December 2011)

The title peptide [systematic name: 4-(butan-2-yl)-7,20-bis­(1-hy­droxy­eth­yl)-10,23-bis­(propan-2-yl)-12,25-dithia-3,6,9,16,19,22,27,28-octa­aza­tricyclo­[22.2.1.111,14]octa­cosa-1(26),11(28),13,24(27)-tetra­ene-2,5,8,15,18,21-hexone acetonitrile monosolvate], C32H48N8O8S2·CH3CN, an analogue of ascidiacyclamide (ASC) [cyclo(–Ile–Oxz–D-Val–Thz–)2], lies about a twofold rotation axis, so that the glycine (Gly) and isoleucine (Ile) residues are each disordered over two sites with equal occupancies. The acetonitrile mol­ecule is also located on a twofold axis passing through the C and N atoms. In the peptide, the thia­zole rings are faced to each other with a dihedral angle of 9.63 (15)° and intra­molecular N—H⋯O and O—H⋯O hydrogen bonds are observed. A bifurcated N—H⋯(O,O) hydrogen bond links the peptide mol­ecules into a layer parallel to the ab plane.

Related literature

For general background to ascidiacyclamide, see: Hamamoto et al. (1983[Hamamoto, Y., Endo, M., Nakagawa, M., Nakanishi, T. & Mizukawa, K. (1983). Chem. Commun. pp. 323-324.]); Shioiri et al. (1987[Shioiri, T., Hamada, Y., Kato, S., Shibata, M., Kondo, Y., Nakagawa, H. & Kohda, K. (1987). Biochem. Pharmacol. 36, 4181-4185.]); Ishida et al. (1988[Ishida, T., Tanaka, M., Nabae, M., Inoue, M., Kato, S., Hamada, Y. & Shioiri, T. (1988). J. Org. Chem. 53, 107-112.]); Degnan et al. (1989[Degnan, B. M., Hawkins, C. J., Lavin, M. F., McCaffrey, E. J., Parry, D. L., Van den Brenk, A. L. & Watters, D. J. (1989). J. Med. Chem. 32, 1349-1354.]); Doi et al. (1999[Doi, M., Shinozaki, F., In, Y., Ishida, T., Yamamoto, D., Kamigauchi, M., Sugiura, M., Hamada, Y., Kohda, K. & Shioiri, T. (1999). Biopolymers, 49, 459-469.]); Haberhauer & Rominger (2003[Haberhauer, G. & Rominger, F. (2003). Eur. J. Org. Chem. pp. 3209-3218.]). For related structures, see: Schmitz et al. (1989[Schmitz, F. J., Ksebati, M. B., Chang, J. S., Wang, J. L., Hossain, M. B., Van der Helm, D., Engel, M. H., Serban, A. & Silfer, J. A. (1989). J. Org. Chem. 54, 3463-3472.]); Asano, Doi et al. (2001[Asano, A., Doi, M., Kobayashi, K., Arimoto, M., Ishida, T., Katsuya, Y., Mezaki, Y., Hasegawa, H., Nakai, M., Sasaki, M., Taniguchi, T. & Terashima, A. (2001). Biopolymers, 58, 295-304.]); Asano, Taniguchi et al. (2001[Asano, A., Taniguchi, T., Sasaki, M., Hasegawa, H., Katsuya, Y. & Doi, M. (2001). Acta Cryst. E57, o834-o838.]); Asano et al. (2002[Asano, A., Yamada, T., Numata, A., Katsuya, Y., Sasaki, M., Taniguchi, T. & Doi, M. (2002). Biochem. Biophys. Res. Commun. 297, 143-147.], 2003[Asano, A., Yamada, T., Numata, A. & Doi, M. (2003). Acta Cryst. C59, o488-o490.], 2005[Asano, A., Yamada, T., Katsuya, Y., Taniguchi, T., Sasaki, M. & Doi, M. (2005). J. Pept. Res. 66 (Suppl. 1), 90-98.]).

[Scheme 1]

Experimental

Crystal data
  • C32H48N8O8S2·C2H3N

  • Mr = 777.96

  • Orthorhombic, P 21 21 2

  • a = 18.2019 (9) Å

  • b = 10.4667 (5) Å

  • c = 11.0695 (6) Å

  • V = 2108.89 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 200 K

  • 0.40 × 0.40 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.909, Tmax = 0.982

  • 24275 measured reflections

  • 4669 independent reflections

  • 4359 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.213

  • S = 1.09

  • 4669 reflections

  • 269 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −1.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2016 Friedel pairs

  • Flack parameter: 0.11 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H22⋯O16 0.84 1.87 2.674 (4) 160
N11—H11⋯O16i 0.88 2.12 2.984 (3) 166
N21—H21⋯O22ii 0.88 2.29 2.953 (4) 132
N21—H21⋯O24ii 0.88 2.25 3.013 (4) 145
N31—H31⋯O44i 0.88 2.27 3.074 (3) 152
Symmetry codes: (i) -x+1, -y+2, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ascidiacyclamide (ASC) is an unique cyclic peptide accommodating the unusual amino acids of oxazoline (Oxz) and thiazole (Thz) units (Fig. 1) (Hamamoto et al., 1983; Shioiri et al., 1987). These five-membered rings limit the rotations of N—Cα bonds (the ϕ angel) causing the conformational restrictions to the molecule. The title peptide has only the Thz units and the conformation is more flexible than ASC. The first residue, Ile, is replaced with Gly which has less steric hindrances. This analogue is designed for the fundamental studies to control the peptide structure and to develop new class analogues of ASC.

The structure is shown in Fig. 2. The peptide and MeCN molecules are located on the two-fold axis and the figure is drawn to show the whole molecular structure with the crystallographically independent atoms and duplicated atoms related by the symmetry of (3/2 - x, y - 1/2, -z). The Gly and Ile residues are coexisted with the disordering state, but they are independently drawn in the figure for clarity. The peptide molecule is folded at the Thr residue and the Thz rings are faced to each other. The atomic radius of sulfur atom (S42), which is larger than that of carbon, causes a slight tilt between the Thz ring with a dihedral angle of 9.63 (15)°. The distance between the S42 atoms of Thz is 4.303 (1) Å. These structural characteristics indicate the similarity with the folded forms of ASC analogues (Schmitz et al., 1989; Asano, Doi et al., 2001).

The intramolecular hydrogen bonds are formed between the amide groups related by twofold axis: N11···O16 = 2.984 (3) and N31···O44 = 3.074 (3) Å (Table 1). These interactions stabilize the folded structure. The N21 atom of Thr is hydrogen-bonding to the O22 and O24 atoms of the adjacent molecule related by the symmetry of (3/2 - x, y - 1/2, -z).

The hydroxyl group of Thr (O22) is hydrogen-bonding to the preceding carbonyl group (O16) of Gly or Ile forming 7-membered ring. This interaction seems to be caused by 3R-configuration of Cβ atom (C22). In the previous studies for desoxazoline ASC analogues (Asano, Doi et al., 2001), the hydroxyl group of allo-Thr (3S-configuration) is interacted with its carbonyl group (O24 in this structure) forming 6-membered ring. In this structure, the O22···O24 hydrogen bond causing the rotation of Cα—Cβ bond would result the steric hindrances at the methyl group (C23). Therefore, the O22···O16 hydrogen bond is formed at the Thr residue. The configuration of Cβ atom interestingly contributes the direction of hydroxyl group of allo-Thr and Thr.

Related literature top

For general background to ascidiacyclamide, see: Hamamoto et al. (1983); Shioiri et al. (1987); Ishida et al. (1988); Degnan et al. (1989); Doi et al. (1999); Haberhauer & Rominger (2003). For related structures, see: Schmitz et al. (1989); Asano, Doi et al. (2001); Asano, Taniguchi et al. (2001); Asano et al. (2002, 2003, 2005).

Experimental top

The title peptide was synthesized by the previously described method (Asano et al., 2005). The peptide was purified by using preparative thin-layer chromatography. Single crystals were grown from an aqueous MeCN solution.

Refinement top

The side chain atoms of Gly and Ile residues were observed as disordered state, and refined with the site of occupancy 0.5. C-bound H atoms were placed in idealized positions with C—H distances 0.95–1.00 Å and treated as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). N-bound H atoms were also placed in idealized positions with N—H distances 0.88 Å and treated as riding, with Uiso(H) = 1.2Ueq(N). The H atom of hydroxyl group (O22) was placed guided by difference maps, based on hydrogen bonding considerations, and fixed during the refinement, with Uiso(H) = 1.5Ueq(O). The highest residual peak was located at (0.0200,0.7970,0.3512), 0.48 Å from atom H15C, and the deepest residual hole at (0, 0, 0.9130), 0.06 Å from atom N1.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Chemical structure of ascidiacyclamide.
[Figure 2] Fig. 2. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level and H atoms with arbitrary radius. The molecule is located on the twofold axis. The crystallographically duplicated atoms are drawn in figure to show the whole peptide structure.
4-(butan-2-yl)-7,20-bis(1-hydroxyethyl)-10,23-bis(propan-2-yl)-12,25-dithia- 3,6,9,16,19,22,27,28-octaazatricyclo[22.2.1.111,14]octacosa- 1(26),11 (28),13,24 (27)-tetraene-2,5,8,15,18,21-hexone acetonitrile monosolvate top
Crystal data top
C32H48N8O8S2·C2H3NF(000) = 828
Mr = 777.96Dx = 1.225 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 8940 reflections
a = 18.2019 (9) Åθ = 2.2–25.5°
b = 10.4667 (5) ŵ = 0.18 mm1
c = 11.0695 (6) ÅT = 200 K
V = 2108.89 (18) Å3Plate, colourless
Z = 20.40 × 0.40 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4669 independent reflections
Radiation source: MacScience, M18XCE rotating anode4359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.366 pixels mm-1θmax = 27.1°, θmin = 1.8°
ω–scanh = 2323
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.909, Tmax = 0.982l = 1414
24275 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1468P)2 + 0.6849P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.075(Δ/σ)max = 0.017
wR(F2) = 0.213Δρmax = 0.92 e Å3
S = 1.09Δρmin = 1.42 e Å3
4669 reflectionsAbsolute structure: Flack (1983), 2016 Friedel pairs
269 parametersAbsolute structure parameter: 0.11 (13)
0 restraints
Crystal data top
C32H48N8O8S2·C2H3NV = 2108.89 (18) Å3
Mr = 777.96Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 18.2019 (9) ŵ = 0.18 mm1
b = 10.4667 (5) ÅT = 200 K
c = 11.0695 (6) Å0.40 × 0.40 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4669 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4359 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.982Rint = 0.026
24275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.213Δρmax = 0.92 e Å3
S = 1.09Δρmin = 1.42 e Å3
4669 reflectionsAbsolute structure: Flack (1983), 2016 Friedel pairs
269 parametersAbsolute structure parameter: 0.11 (13)
0 restraints
Special details top

Geometry. Thz-Thz plane angle = 9.54 °, S(Thz)···S(Thz) = 4.303 A (mercury)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.50000.50000.2003 (14)0.108 (3)
C20.50000.50000.3182 (14)0.130 (4)
H2A0.44970.51160.34770.195*0.50
H2B0.53090.57000.34770.195*0.50
H2C0.51940.41840.34770.195*0.50
N10.50000.50000.0925 (9)0.107 (3)
N110.51634 (15)0.8447 (3)0.0697 (3)0.0418 (6)
H110.47320.87690.05050.050*
C110.572 (3)0.812 (4)0.024 (4)0.045 (6)0.50
H11A0.54800.80330.10350.054*0.50
H11B0.59560.72930.00350.054*0.50
C11'0.564 (2)0.827 (5)0.038 (4)0.044 (6)0.50
H11C0.58360.73820.03450.053*0.50
C12'0.5197 (4)0.8380 (9)0.1579 (7)0.0539 (18)0.50
H120.49500.92330.15680.065*0.50
C13'0.5723 (5)0.8385 (12)0.2662 (7)0.070 (2)0.50
H13A0.60900.90600.25540.106*0.50
H13B0.54440.85430.34040.106*0.50
H13C0.59700.75550.27180.106*0.50
C14'0.4574 (6)0.7354 (11)0.1663 (12)0.081 (3)0.50
H14A0.44810.69520.08680.097*0.50
H14B0.41110.77330.19660.097*0.50
C15'0.4887 (8)0.6390 (16)0.2562 (14)0.116 (5)0.50
H15A0.45270.57100.27010.174*0.50
H15B0.53390.60200.22340.174*0.50
H15C0.49950.68220.33270.174*0.50
C160.62923 (19)0.9158 (3)0.0285 (3)0.0467 (8)
O160.61582 (14)1.0319 (3)0.0393 (2)0.0525 (6)
N210.69723 (16)0.8697 (3)0.0161 (3)0.0505 (7)
H210.70220.78610.01760.061*
C210.76449 (19)0.9454 (4)0.0001 (3)0.0482 (8)
H21A0.80560.88220.00490.058*
C220.7838 (2)1.0347 (4)0.1057 (3)0.0564 (9)
H22A0.83561.06320.09290.068*
O220.73999 (17)1.1466 (3)0.1100 (3)0.0661 (8)
H220.69641.12780.09210.099*
C230.7822 (3)0.9632 (6)0.2260 (4)0.0814 (15)
H23A0.79481.02220.29160.122*
H23B0.73290.92850.23970.122*
H23C0.81790.89320.22400.122*
C240.76604 (19)1.0189 (4)0.1201 (3)0.0459 (7)
O240.80873 (17)1.1097 (3)0.1328 (2)0.0615 (7)
N310.27760 (14)1.0230 (3)0.2096 (2)0.0403 (6)
H310.30121.09580.20060.048*
C310.28693 (17)0.9514 (3)0.3208 (3)0.0390 (6)
H31A0.25780.87100.31140.047*
C320.2561 (2)1.0205 (4)0.4338 (3)0.0504 (8)
H320.27070.97000.50660.061*
C330.2876 (3)1.1554 (5)0.4473 (4)0.0688 (12)
H33A0.34131.15090.45030.103*
H33B0.26911.19390.52210.103*
H33C0.27241.20760.37820.103*
C340.1722 (3)1.0227 (7)0.4279 (5)0.0808 (16)
H34A0.15370.93540.41810.121*
H34B0.15651.07490.35910.121*
H34C0.15261.05930.50280.121*
C430.36703 (17)0.9114 (3)0.3314 (3)0.0377 (6)
N410.40907 (14)0.8932 (2)0.2387 (2)0.0380 (5)
C410.47758 (17)0.8488 (3)0.2747 (3)0.0396 (6)
C420.4862 (2)0.8312 (3)0.3948 (3)0.0457 (7)
H420.52950.80020.43250.055*
S420.40690 (5)0.87335 (9)0.46931 (7)0.0496 (3)
C440.53543 (17)0.8225 (3)0.1831 (3)0.0406 (7)
O440.59620 (14)0.7815 (2)0.2133 (2)0.0506 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.114 (7)0.077 (6)0.133 (10)0.045 (5)0.0000.000
C20.148 (11)0.073 (6)0.168 (13)0.009 (6)0.0000.000
N10.116 (6)0.098 (5)0.106 (6)0.056 (5)0.0000.000
N110.0380 (13)0.0362 (13)0.0512 (14)0.0033 (10)0.0115 (11)0.0055 (11)
C110.052 (15)0.038 (10)0.044 (7)0.010 (8)0.007 (7)0.014 (7)
C11'0.033 (5)0.044 (11)0.056 (13)0.003 (6)0.010 (7)0.010 (7)
C12'0.038 (3)0.066 (5)0.058 (4)0.000 (3)0.001 (3)0.015 (4)
C13'0.061 (4)0.108 (7)0.042 (4)0.002 (5)0.002 (3)0.020 (4)
C14'0.072 (6)0.079 (6)0.092 (8)0.014 (5)0.003 (5)0.019 (6)
C15'0.098 (9)0.125 (11)0.125 (10)0.022 (9)0.025 (8)0.055 (10)
C160.0473 (17)0.0529 (18)0.0400 (15)0.0156 (15)0.0093 (14)0.0128 (14)
O160.0527 (13)0.0491 (13)0.0558 (14)0.0133 (11)0.0054 (11)0.0011 (11)
N210.0476 (15)0.0455 (15)0.0582 (16)0.0079 (12)0.0158 (13)0.0106 (14)
C210.0416 (16)0.0538 (18)0.0493 (19)0.0067 (14)0.0093 (13)0.0060 (15)
C220.0501 (18)0.074 (2)0.0449 (18)0.0171 (19)0.0121 (15)0.0031 (17)
O220.0568 (15)0.0703 (18)0.0714 (18)0.0174 (14)0.0051 (13)0.0133 (15)
C230.084 (3)0.112 (4)0.048 (2)0.028 (3)0.016 (2)0.011 (3)
C240.0427 (16)0.0491 (17)0.0461 (17)0.0031 (14)0.0028 (13)0.0028 (14)
O240.0681 (16)0.0656 (17)0.0508 (13)0.0296 (14)0.0026 (13)0.0035 (13)
N310.0395 (12)0.0372 (12)0.0444 (13)0.0020 (11)0.0003 (11)0.0003 (10)
C310.0369 (14)0.0423 (15)0.0378 (14)0.0009 (12)0.0027 (11)0.0025 (12)
C320.0476 (17)0.061 (2)0.0428 (16)0.0097 (16)0.0065 (14)0.0050 (15)
C330.081 (3)0.063 (2)0.062 (2)0.006 (2)0.014 (2)0.026 (2)
C340.053 (2)0.118 (4)0.071 (3)0.021 (3)0.009 (2)0.022 (3)
C430.0417 (15)0.0330 (13)0.0383 (14)0.0008 (11)0.0043 (12)0.0015 (11)
N410.0410 (12)0.0297 (10)0.0432 (12)0.0017 (10)0.0068 (11)0.0010 (10)
C410.0384 (14)0.0285 (12)0.0518 (17)0.0003 (11)0.0065 (13)0.0025 (12)
C420.0450 (17)0.0422 (16)0.0499 (18)0.0029 (14)0.0035 (14)0.0072 (14)
S420.0482 (4)0.0615 (5)0.0391 (4)0.0057 (4)0.0043 (3)0.0082 (4)
C440.0408 (15)0.0242 (11)0.0568 (18)0.0015 (11)0.0103 (14)0.0020 (12)
O440.0434 (12)0.0416 (11)0.0669 (16)0.0063 (10)0.0086 (12)0.0024 (11)
Geometric parameters (Å, º) top
C1—N11.193 (15)C21—H21A1.0000
C1—C21.305 (19)C22—O221.417 (6)
C2—H2A0.9800C22—C231.528 (6)
C2—H2B0.9800C22—H22A1.0000
C2—H2C0.9800O22—H220.84
N11—C441.324 (5)C23—H23A0.9800
N11—C11'1.49 (4)C23—H23B0.9800
N11—C111.49 (5)C23—H23C0.9800
N11—H110.8800C24—O241.236 (5)
C11—C161.51 (5)C24—N31i1.344 (4)
C11—H11A0.9900N31—C24i1.344 (4)
C11—H11B0.9900N31—C311.451 (4)
C11'—C161.51 (5)N31—H310.8800
C11'—C12'1.55 (4)C31—C431.521 (4)
C11'—H11C1.0000C31—C321.550 (4)
C12'—C13'1.534 (11)C31—H31A1.0000
C12'—C14'1.565 (13)C32—C341.529 (6)
C12'—H121.0000C32—C331.531 (6)
C13'—H13A0.9800C32—H321.0000
C13'—H13B0.9800C33—H33A0.9800
C13'—H13C0.9800C33—H33B0.9800
C14'—C15'1.527 (18)C33—H33C0.9800
C14'—H14A0.9900C34—H34A0.9800
C14'—H14B0.9900C34—H34B0.9800
C15'—H15A0.9800C34—H34C0.9800
C15'—H15B0.9800C43—N411.294 (4)
C15'—H15C0.9800C43—S421.736 (3)
C16—O161.245 (5)N41—C411.389 (4)
C16—N211.336 (5)C41—C421.351 (5)
N21—C211.469 (4)C41—C441.487 (4)
N21—H210.8800C42—S421.719 (4)
C21—C241.535 (5)C42—H420.9500
C21—C221.538 (5)C44—O441.233 (4)
N1—C1—C2180.000 (3)C24—C21—H21A105.8
C1—C2—H2A109.5C22—C21—H21A105.8
C1—C2—H2B109.5O22—C22—C23111.4 (4)
H2A—C2—H2B109.5O22—C22—C21113.5 (3)
C1—C2—H2C109.5C23—C22—C21111.2 (4)
H2A—C2—H2C109.5O22—C22—H22A106.7
H2B—C2—H2C109.5C23—C22—H22A106.7
C44—N11—C11'126.0 (16)C21—C22—H22A106.7
C44—N11—C11116.1 (17)C22—O22—H22109
C44—N11—H11122.0C22—C23—H23A109.5
C11'—N11—H11111.9C22—C23—H23B109.5
C11—N11—H11122.0H23A—C23—H23B109.5
N11—C11—C16109 (3)C22—C23—H23C109.5
N11—C11—H11A109.8H23A—C23—H23C109.5
C16—C11—H11A109.8H23B—C23—H23C109.5
N11—C11—H11B109.8O24—C24—N31i122.6 (3)
C16—C11—H11B109.8O24—C24—C21119.7 (3)
H11A—C11—H11B108.3N31i—C24—C21117.6 (3)
N11—C11'—C16109 (3)C24i—N31—C31121.7 (3)
N11—C11'—C12'112 (3)C24i—N31—H31119.1
C16—C11'—C12'115 (3)C31—N31—H31119.1
N11—C11'—H11C106.7N31—C31—C43108.7 (2)
C16—C11'—H11C106.7N31—C31—C32113.6 (3)
C12'—C11'—H11C106.7C43—C31—C32114.4 (3)
C13'—C12'—C11'110.0 (18)N31—C31—H31A106.5
C13'—C12'—C14'114.1 (8)C43—C31—H31A106.5
C11'—C12'—C14'112.2 (19)C32—C31—H31A106.5
C13'—C12'—H12106.7C34—C32—C33111.3 (4)
C11'—C12'—H12106.7C34—C32—C31109.6 (3)
C14'—C12'—H12106.7C33—C32—C31111.9 (3)
C12'—C13'—H13A109.5C34—C32—H32108.0
C12'—C13'—H13B109.5C33—C32—H32108.0
H13A—C13'—H13B109.5C31—C32—H32108.0
C12'—C13'—H13C109.5C32—C33—H33A109.5
H13A—C13'—H13C109.5C32—C33—H33B109.5
H13B—C13'—H13C109.5H33A—C33—H33B109.5
C15'—C14'—C12'102.8 (9)C32—C33—H33C109.5
C15'—C14'—H14A111.2H33A—C33—H33C109.5
C12'—C14'—H14A111.2H33B—C33—H33C109.5
C15'—C14'—H14B111.2C32—C34—H34A109.5
C12'—C14'—H14B111.2C32—C34—H34B109.5
H14A—C14'—H14B109.1H34A—C34—H34B109.5
C14'—C15'—H15A109.5C32—C34—H34C109.5
C14'—C15'—H15B109.5H34A—C34—H34C109.5
H15A—C15'—H15B109.5H34B—C34—H34C109.5
C14'—C15'—H15C109.5N41—C43—C31123.1 (3)
H15A—C15'—H15C109.5N41—C43—S42114.6 (2)
H15B—C15'—H15C109.5C31—C43—S42122.1 (2)
O16—C16—N21123.0 (3)C43—N41—C41110.6 (3)
O16—C16—C11124.9 (17)C42—C41—N41115.6 (3)
N21—C16—C11112.1 (17)C42—C41—C44124.3 (3)
O16—C16—C11'115.9 (18)N41—C41—C44120.1 (3)
N21—C16—C11'121.0 (18)C41—C42—S42109.9 (3)
C16—N21—C21126.2 (3)C41—C42—H42125.1
C16—N21—H21116.9S42—C42—H42125.1
C21—N21—H21116.9C42—S42—C4389.31 (16)
N21—C21—C24113.0 (3)O44—C44—N11123.6 (3)
N21—C21—C22115.1 (3)O44—C44—C41121.0 (3)
C24—C21—C22110.5 (3)N11—C44—C41115.4 (3)
N21—C21—H21A105.8
C44—N11—C11—C1679 (3)C22—C21—C24—O2431.0 (5)
C11'—N11—C11—C1683 (20)N21—C21—C24—N31i21.2 (5)
C44—N11—C11'—C1662 (3)C22—C21—C24—N31i151.9 (3)
C11—N11—C11'—C1682 (19)C24i—N31—C31—C43117.0 (3)
C44—N11—C11'—C12'169.4 (14)C24i—N31—C31—C32114.4 (4)
C11—N11—C11'—C12'149 (22)N31—C31—C32—C3470.0 (5)
N11—C11'—C12'—C13'172 (2)C43—C31—C32—C34164.4 (4)
C16—C11'—C12'—C13'47 (3)N31—C31—C32—C3354.0 (4)
N11—C11'—C12'—C14'60 (3)C43—C31—C32—C3371.6 (4)
C16—C11'—C12'—C14'175 (2)N31—C31—C43—N4127.9 (4)
C13'—C12'—C14'—C15'21.2 (13)C32—C31—C43—N41156.0 (3)
C11'—C12'—C14'—C15'105 (2)N31—C31—C43—S42157.8 (2)
N11—C11—C16—O1652 (3)C32—C31—C43—S4229.6 (4)
N11—C11—C16—N21126 (2)C31—C43—N41—C41175.8 (3)
N11—C11—C16—C11'83 (19)S42—C43—N41—C411.0 (3)
N11—C11'—C16—O1669 (3)C43—N41—C41—C421.3 (4)
C12'—C11'—C16—O1657 (3)C43—N41—C41—C44179.3 (3)
N11—C11'—C16—N21114 (2)N41—C41—C42—S420.9 (4)
C12'—C11'—C16—N21119 (2)C44—C41—C42—S42179.7 (2)
N11—C11'—C16—C1182 (18)C41—C42—S42—C430.3 (3)
C12'—C11'—C16—C11151 (21)N41—C43—S42—C420.4 (3)
O16—C16—N21—C217.0 (6)C31—C43—S42—C42175.2 (3)
C11—C16—N21—C21171.0 (18)C11'—N11—C44—O441 (2)
C11'—C16—N21—C21176.9 (19)C11—N11—C44—O443 (2)
C16—N21—C21—C2465.8 (5)C11'—N11—C44—C41179 (2)
C16—N21—C21—C2262.5 (5)C11—N11—C44—C41177 (2)
N21—C21—C22—O2276.3 (4)C42—C41—C44—O440.3 (5)
C24—C21—C22—O2253.2 (4)N41—C41—C44—O44179.1 (3)
N21—C21—C22—C2350.3 (5)C42—C41—C44—N11179.5 (3)
C24—C21—C22—C23179.8 (4)N41—C41—C44—N110.1 (4)
N21—C21—C24—O24161.7 (4)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O160.841.872.674 (4)160
N11—H11···O16i0.882.122.984 (3)166
N21—H21···O22ii0.882.292.953 (4)132
N21—H21···O24ii0.882.253.013 (4)145
N31—H31···O44i0.882.273.074 (3)152
Symmetry codes: (i) x+1, y+2, z; (ii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC32H48N8O8S2·C2H3N
Mr777.96
Crystal system, space groupOrthorhombic, P21212
Temperature (K)200
a, b, c (Å)18.2019 (9), 10.4667 (5), 11.0695 (6)
V3)2108.89 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.40 × 0.40 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.909, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
24275, 4669, 4359
Rint0.026
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.213, 1.09
No. of reflections4669
No. of parameters269
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 1.42
Absolute structureFlack (1983), 2016 Friedel pairs
Absolute structure parameter0.11 (13)

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O160.841.872.674 (4)160
N11—H11···O16i0.882.122.984 (3)166
N21—H21···O22ii0.882.292.953 (4)132
N21—H21···O24ii0.882.253.013 (4)145
N31—H31···O44i0.882.273.074 (3)152
Symmetry codes: (i) x+1, y+2, z; (ii) x+3/2, y1/2, z.
 

References

First citationAsano, A., Doi, M., Kobayashi, K., Arimoto, M., Ishida, T., Katsuya, Y., Mezaki, Y., Hasegawa, H., Nakai, M., Sasaki, M., Taniguchi, T. & Terashima, A. (2001). Biopolymers, 58, 295–304.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAsano, A., Taniguchi, T., Sasaki, M., Hasegawa, H., Katsuya, Y. & Doi, M. (2001). Acta Cryst. E57, o834–o838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsano, A., Yamada, T., Katsuya, Y., Taniguchi, T., Sasaki, M. & Doi, M. (2005). J. Pept. Res. 66 (Suppl. 1), 90–98.  Google Scholar
First citationAsano, A., Yamada, T., Numata, A. & Doi, M. (2003). Acta Cryst. C59, o488–o490.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAsano, A., Yamada, T., Numata, A., Katsuya, Y., Sasaki, M., Taniguchi, T. & Doi, M. (2002). Biochem. Biophys. Res. Commun. 297, 143–147.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDegnan, B. M., Hawkins, C. J., Lavin, M. F., McCaffrey, E. J., Parry, D. L., Van den Brenk, A. L. & Watters, D. J. (1989). J. Med. Chem. 32, 1349–1354.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDoi, M., Shinozaki, F., In, Y., Ishida, T., Yamamoto, D., Kamigauchi, M., Sugiura, M., Hamada, Y., Kohda, K. & Shioiri, T. (1999). Biopolymers, 49, 459–469.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaberhauer, G. & Rominger, F. (2003). Eur. J. Org. Chem. pp. 3209–3218.  Web of Science CSD CrossRef Google Scholar
First citationHamamoto, Y., Endo, M., Nakagawa, M., Nakanishi, T. & Mizukawa, K. (1983). Chem. Commun. pp. 323–324.  CrossRef Google Scholar
First citationIshida, T., Tanaka, M., Nabae, M., Inoue, M., Kato, S., Hamada, Y. & Shioiri, T. (1988). J. Org. Chem. 53, 107–112.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchmitz, F. J., Ksebati, M. B., Chang, J. S., Wang, J. L., Hossain, M. B., Van der Helm, D., Engel, M. H., Serban, A. & Silfer, J. A. (1989). J. Org. Chem. 54, 3463–3472.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShioiri, T., Hamada, Y., Kato, S., Shibata, M., Kondo, Y., Nakagawa, H. & Kohda, K. (1987). Biochem. Pharmacol. 36, 4181–4185.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o54-o55
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds